Maxwell Render - Settings Guide

SL – Sampling Level.

- Rendering stops once a particular SL is reached or the allocated time runs out.
- The time it takes to render each successive SL is about 1.5 times longer than that of the previous SL.
- Noise in the rendered image starts to clear up above SL 15 20. Difficult caustics may require SL 25 30.

Benchmark -

■ The benchmark number is a scene-dependent parameter where a higher value signifies faster rendering.

Layer – Material Property Layers contain the parameters that control the optical properties of a material.

- Layers can be stacked one upon another much like the Layer system in Photoshop.
- Blending of layers is controlled via the Layer Weight, Transparency, or Blend modes (Additive or Normal).
- No more than one Layer should be set to Additive mode, otherwise the material could become too bright.
- If a material is not meant to be transparent, the bottom most Layer Weight should be 100%.

BSDF – Bidirectional Scattering Distribution Function.

- You can have multiple BSDF components in a layer, each with it's own Weight contribution.
- The total Weight of all BSDF components in a particular Layer should always add up to 100%.

Reflectance 0 – Object's diffuse colour (surface perpendicular to camera).

- Practical maximum should be 230 240. (White paper is about 225)
- This colour will dominate when you have high Roughness values.

Reflectance 90 – Object's specular or Fresnel colour (surface at a glancing angle to camera).

- For most materials this will be a white colour.
- For metals this will be a brighter version of the "Reflectance 0" colour.
- If using a texture map for a metal material, it should be lighter than the "Reflectance 0" texture. You can do this by adjusting the brightness in the Texture Picker dialog box.
- This colour will dominate when you have low Roughness values.
- To get a good Fresnel curve, the Reflectance 90 colour should be at least 15 units brighter than the Reflectance 0 colour, particularly when using textures.

Transmittance – Brighter colours result in clearer transparency.

This is the colour of light when it reaches the attenuation distance.

Attenuation – Distance light travels through an object before loosing half it's energy.

- Transmittance colour should be greater than 0 for attenuation distance to become active.
- In general, attenuation distance should be comparable to the thickness of the transparent object.
- Attenuation distance for common glass should be about 3cm and going up to 40cm for high grade glass.

Nd – Index of Refraction as measured at a wavelength of 589.29 nm.

- Higher Nd weakens the Fresnel effect so that the amount of reflection becomes equal at all angles.
- Nd has less influence on the reflectance of an object the higher you set the Roughness.
- Think of Nd as a brightness multiplier for "Reflectance 90".
- Transparent materials like Glass should be about 1.5.
- Opaque materials should be about 3.
- Reflective Metals should be about 15 20.
- When using SSS, Nd must be between 1.0 & 2.5

Force Fresnel – Reflectance of object will be affected entirely by Nd and NOT by the "Refl 0 & 90" colours.

- Turn on Force Fresnel when working with simple colours in the Reflectance 0 & 90 channels.
- Turn off Force Fresnel when working with textures in the Reflectance 0 & 90 channels.
- Used to create more realistic metals or shiny materials.
- Generally the object will be brighter and less grey.
- The higher the roughness, the less influence "Force Fresnel" will have.

K – Extinction Coefficient. Amount of absorption loss as an electromagnetic wave propagates through a material.

■ Relevant for metals, ignore for most other materials.

Maxwell Render - Settings Guide

Dispersion – As white light travels through a refractive medium, different wavelengths are refracted differently and thus disperse to form a rainbow of colours.

- Turn this property ON in the "Material Properties" section of the Material Editor.
- Turning this ON will increase the render time.
- The Abbe number controls how much Dispersion you have.

Abbe – The amount different wavelengths (colours) of light disperse as they pass through a refractive medium.

■ Low values such as 5 result in a lot of dispersion whilst high values such as 60 or 70 result less dispersion.

R2 – Allows the 90° colour to be visible at high roughness values.

- Parameter 1: Fall off angle (0° 90°) determines how much "Reflectance 0" colour comes through.
- Parameter 2: Amount of virtual Roughness (1 -100) that will be introduced.
- When working with R2, try not to set the Roughness parameter over about 50.
- You might use this with a two toned car paint or velvet which has a sheen of a different colour.

Roughness – Amount of Specular (0) vs Diffuse (100) reflection.

- Practical maximum should be 90 95. (A perfect Lambertian material is 100)
- Higher Roughness "Reflectance 0" colour will dominate.
- Lower Roughness "Reflectance 90" colour will dominate.

Anisotropy – Directionally polished Materials display anisotropic reflection (as opposed to isotropic reflection).

■ Values range from 0 (isotropic) to 100 (full anisotropic).

Angle – Specifies the anisotropy angle, the main direction of the reflected light.

- 0° Angle causes reflections to be smeared out vertically.
- 90° Angle causes reflections to be smeared out horizontally.

Bump – Grey scale image that simulates the Up/Down direction of grooves.

■ Can be a sensitive parameter, standard values should be about 1 - 25 but sometimes 200 is required.

Normal Mapping – Colour coded image that simulates the actual gradient on the surface of grooves.

■ Maxwell supports three Normal map protocols: Flip X, Flip Y, & Wide.

Displacement – Grey scale image that displaces a surface to create 3D grooves.

- Higher Gain values create surfaces with greater fidelity but render times become significantly longer.
- When using Displacement, try to use a mesh with more subdivisions.

Subsurface Properties - Puts particles inside a medium so that SubSurface Scattering can occur.

- Up to Maxwell 2.1 This works best with Image Based Lighting (IBL).
- Scattering colour value has the same limitation as Reflectance 0, it should not go over about 225.
- Coefficient could start at about 250 and shouldn't go above 500 for translucent materials.
- Coefficient should go above 500 for more opaque materials.
- Asymmetry: (Forward scatter more transparent) -1 < 0 < 1 (Back scatter more opaque)
- Nd should be between 1.2 & 1.7
- Turning on "Force Fresnel" will cause the material to be more reflective at higher Nd values.
- Single Sided -
 - Much guicker than normal SSS.
 - o Used for leaves, paper, light weight cloth, etc.
 - Usually set the Transmittance & Scattering colours to be the same.
 - o To help reduce noise, don't make the colour too bright or too saturated (Keep it below 225).
 - Attenuation distance should be quite small (about 3mm) and not much more than the SS thickness.
 - o Roughness has a slightly different effect in that it makes the material look more like frosted class.
 - For a leaf texture the Coefficient might go as high as 50000.
 - Single Sided thickness can be defined with a grey scale texture map, the Min/Max values define the thickness that the Dark/Light pixels represent.

Maxwell Render - Settings Guide

Emitters - User defined light sources.

- A light source can be any colour you like but to match daylight, the temperature should be about 6500 K.
- Always use a small sphere as the emitting geometry for IES lights.
- When doing Multilight rendering, use the Custom light type settings.
- When setting a light source by Temperature, Multilight rendering will behave slightly differently because of the way that power in defined in the Kelvin scale.

Environment – Atmosphere

- Sun Solar strength multiplier.
- Sun Temp Warm < Neutral (5777 K) < Cool.
- Planet Reflection Average planet Albedo = 26-32%. Snow = 80%. Forest = 5-10%.
- Ozone Yellow < Neutral (0.4cm) < Blue.
- Water No effect on sky at midday. Raising water value makes the sky look less saturated.

Environment – Aerosol Properties

- Turbidity Coefficient Clear sky (0.01) < Normal sky (0.04) < Hazy (0.1).
- Wavelength Exponent Desaturated sky < Default sky (1.2) < Saturated sky becoming green/orange.
- Reflectance Rate of energy scattering & absorption by the Aerosols.
- Asymmetry
 - Negative values = Light scattered back towards the sun.
 - o 0 = Light scattered equally in all directions.
 - Positive values = Light scattered in same direction as incoming light rays.
 - o Positive values produce a halo effect around the sun.
 - Keep values between -0.85 & +0.85 to reduce amount of noise in the rendering.

Optimisations -

- Make sure emitter surfaces are as low-poly as possible.
- If possible, do not completely enclose an emitter inside a dielectric object.
- Make sure an emitter does not intersect other geometry.
- Do not include very white or fully saturated materials. For a white wall, an RGB of 220 is sufficient.
- Where you can, use the AGS glass material for windows. This will create reflections but not caustics.
- When using the Additive mode with material Layers, do not use more than two Layers.