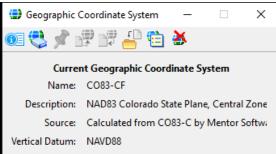

## Creating and Aligning ContextCapture Reality model to MicroStation Project Ground Coordinates

Update 19

Many Departments of Transportation, rail or spatial base projects use localized or project specific coordinate systems. These localized systems typically will use a scale and or rotation factor from a known Grid. These coordinate values when used for surveyed ground control provide the positioning constraint for photogrammetric Reality Model in ContextCapture. This document refers only to those systems based on feet or survey feet "Local coordinate system". A "metric" Local coordinate option continues to be available.

This document will supersede any previous workflows for managing ground or cartesian coordinate systems using imperial units (foot, survey feet).


This document will also provide instruction on properly attaching or referencing the localized (English or metric) reality models (3sm and 3mx) to a MicroStation design file (.dgn)



## Reviewing the Data

We would like to thank Colorado DOT for providing the dataset including the following.

- Nadir Imagery captured over small portion of project (172 jpg photos)
- Survey ground control EPSG 2232+ 6360 (Referred to as "Grid") csv file
- Same Ground control points converted to "Ground" csv file
- Design dgn including imported "Grid" GCP 2232 w/ state plane coordinate system set



 Design dgn including "Ground" GCP w/ ground coordinates inc "affine" parameters scale and rotation

| Coordinate System        |                                           |
|--------------------------|-------------------------------------------|
| Name                     | Copy-CO83/2011-CF                         |
| Description              | NAD83/2011 Colorado State Planes, Cent    |
| Projection               | Lambert Conformal Conic with Affine Proc  |
| EPSG Code                | 0                                         |
| Source                   | Derived from CO83-C                       |
| Units                    | US Survey Foot                            |
| First Standard Parallel  | 39°45'00.0000"N                           |
| Second Standard Parallel | 38°27'00.0000"N                           |
| Origin Longitude         | 105°30'00.0000''W                         |
| Origin Latitude          | 37°50'00.0000"N                           |
| False Easting            | 300000.0000                               |
| False Northing           | 100000.0000                               |
| Quadrant                 | Positive X and Y                          |
| Minimum Longitude        | 110°00'00.0000"W                          |
| Maximum Longitude        | 101°30'00.0000"W                          |
| Minimum Latitude         | 37°15'00.0000''N                          |
| Maximum Latitude         | 40°45'00.0000''N                          |
| Affine A0 Parameter      | -2100719.7817                             |
| Affine B0 Parameter      | -1500484.6022                             |
| Affine A1 Parameter      | 1.00029591                                |
| Affine A2 Parameter      | 0.0000000                                 |
| Affine B1 Parameter      | 0.00000000                                |
| Affine B2 Parameter      | 1.00029591                                |
| Affine B2 Parameter      | 1.00029591                                |
| Datum                    |                                           |
| Name                     | NAD83/2011                                |
| Description              | NAD 1983/2011 adjustment through US G     |
| Source                   | NOAA's National Geodetic Survey           |
| Conversion Method        | Geocentric Translation                    |
| Delta X                  | 0.0000                                    |
| Delta Y                  | 0.0000                                    |
| Delta Z                  | 0.0000                                    |
| Ellipsoid                |                                           |
| Name                     | GRS1980                                   |
| Description              | Geodetic Reference System of 1980         |
| Equatorial Radius        | 6378137.0000                              |
| Polar Radius             | 6356752.3141                              |
| Eccentricity             | 0.0818                                    |
| Source                   | Stem, L.E., Jan 1989, State Plane Coordin |
| Coordinate System Modif  | iers                                      |
| Vertical Datum           | North American Vertical Datum of 1988 (N  |
| Local Transform Type     | No Transform                              |

You can learn more here on how to create a custom Coordinate System in MicroStation

## Creating a Reality Model in ContextCapture with survey ft GCP

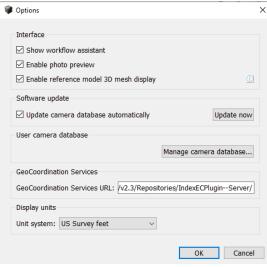
This section will detail the process of creating the Local coordinate system for survey feet

- 1. Open ContextCapture and create a new project
- 2. Import your photos > adjust the height reference as needed for sea level or ellipsoid as needed
- 3. Import your survey control
- 4. On the Data Properties open the "spatial Reference System dialog (1)
- 5. Scroll down and select Local Coordinate System Arbitrary Units > click Edit (2)
- 6. In the Edit Dialog enter the text *Local:unit=foot\_us*
- 7. you can rename the- coordinate display name to "Local Survey ft" Click ok and accept the changes

| 1                                      | s <b>import wizard</b><br>Jints from a custom text format made of delimiter-separated-values. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input file<br>File format              | Data properties<br>Define properties of the imported data                                     | Select a spatial reference system from the database.<br>You can also create your own definition by creating new user defined system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data properties                        | Spatial reference system                                                                      | Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fields                                 | Spatial reference system Spatial reference system database                                    | Spatial Reference Systems: 5518 items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| To find known def<br>Display name Loca | tinitions you can also visit www.spatialreference.org.                                        | Spatial Reference System       Definition       ^         NAD83 / Pennsylvania South (EPSG:32129) + NAVD88 height (       NAD83 / Pennsylvania South (EVS) (EPSG:2272) + NAVD88 height (         NAD83 / Pennsylvania South (fUS) (EPSG:2272) + NAVD88 height (       NAD83 / Pennsylvania South (fUS) (EPSG:4276) + NAVD88 height (         NAD83 / Pennsylvania South (fUS) (EPSG:4505) + NAVD88 height       NAD83(2011) / Idaho East (fUS) (EPSG:4505) + NAVD88         NAD83(2011) / Minnesota South (fUS) (EPSG:4505) + NAVD88       NAD83(2011) / Minnesota South (fUS) (EPSG:4505) + NAVD88         NAD83(2011) / Minnesota South (fUS) (EPSG:2886) + NAVD88       NAD83(HARN) / Idaho East (fUS) (EPSG:2886) + NAVD88         WGS 84 (EPSG:4326)       WGS 84 - World Geodetic System 1984 (EPSG:4326) + EGM96 g         WGS 84 - World Geodetic System 1984 (EPSG:4326) + NAVD88       missouri-east         missouri_west_ft       Local coordinate system (arbitrary units) |
|                                        | OK Cancel                                                                                     | Selection Local coordinate system (arbitrary units) Type Use defined systems Definition Locak0 Edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | SBack Nez                                                                                     | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | The current block doesn't have ar                                                             | ny ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

8. finish importing the GCP by specifying the fields to the cooresponding Name, Y, X and Z

you are now ready to mark the appropriate photos to the correct control point.


**Important**- because the image geotags will be using GPS coordinates they will not immediately correlate the local coordinates to the imagery.. marking the GCP in the field with the corresponding point number can save time to set the first couple of points. The software will attempt to locate images for the remaining controls.



9. Submit Aerotriangulation -

**Note :** the majority of time default settings can be used. This document is meant to guide a user through the process. If you would like more information on GCP settings you can download and review the Bentley learn Documents on <u>working with GCP</u>

- 10. Review the AT results in the 3D view
- 11. Set the measuring options under the tools > Options menu > change the units to "survey feet"



12. Use the measurement command in the 3d View and check a know distance to confirm the scale is accurate



- 13. Create a 3D reconstruction > Note the spatial framework tab No spatial reference system is available as this model is using "Local Coordinates"
- 14. Set the tiling as needed (Adaptive if you are unsure and do not adjust ram usage)
- 15. Create a production "3D Mesh > choose **3mx** > on completion create a second 3D mesh **3sm**

**Note:** Spatial Reference will be unavailable as this is a "local coordinate system" (meaning it is using a scale factor to adjust for the grids projection)

When the productions complete you will have two Reality models ready to use in your project or cartesian design