1. Introduction

Ring program is an interactive program where users define the ring geometry and loading conditions, perform analysis and view results in a single interface.

2. Understanding the limitations of ring program,

- a. Only English units supported currently, the loads can be input in **kips** for concentrated force, **inch-kips** for moments and **kips/inch** for uniform force; the angles are input in degrees and are positive clockwise.
- b. The present version of the Ring program allows the analysis of Roark ring cases 1, 2, 3, 6, 8, 12, 16, 17 and 18. See Roark and Young, "Formulas for Stress and Strain", 5th edition, McGraw-Hill Book Company, 1975.
- c. Three types of rings are currently supported: a rectangular section (no stiffener), external and internal tee stiffeners.

3. Understanding the assumptions for the ring formulas

The following are assumptions applicable to the cases ring program supported from section 8.3, Roark's Formulas for Stress and Strain, 5^{th} edition.

- 1) The ring is of uniform section;
- 2) It is such large radius in comparison with its radial thickness that the deflection theory for straight beams is applicable;
- 3) It is nowhere stressed beyond elastic limit;
- 4) It is not so severely deformed as to lose its essentially circular shape;
- 5) Its deflection is due primarily to bending, but it is desired, the deflections due to deformations caused by axial tension or compression the ring and/or by transverse shear stresses in the ring may be included.

4. Launch the ring program

Under SACS 5.3 Executive, click "**Ring Stiffener**" in "**Utilities**", this will launch the ring program user interface.

Or optionally user can browse into SACS system directory C:\Program Files\SACS53, find the program SACWRNG.exe, and double click to launch the ring program interface.

5. Understanding the front end interface of ring programs

Ring - Untitled	
<u>Eile E</u> dit <u>V</u> iew <u>H</u> elp	
	Ring Ring Information Area Second Area Ring Information Area Second Area Ring Information Area Ring Information Area Ring Area
This area is where the graphics shown	Ring Geometry Image: Stiffener Option Wall Image: Stiffener Option Wall Image: Stiffener Option Material Properties Stiffener Geometry Yield Stress 36.0 Young's Modulus 29.0 Possion's Ratio 0.3 Units Apply Image Apply
	Run Analysis View Results Reset All ✓ Automatically Open Result Data View Graphics
Ready	

6. Understanding input of Geometry and Material Properties of rings

a. Ring Geometry:

- i. Ring Diameter **D** (units in inch) is the outside diameter of the ring;
- ii. Wall thickness **T** (units in inch) of the ring;
- iii. Effective width **BE** (units in inch):

For rings with stiffeners, this should be the effective (or associated) flange width of the ring section. After user input ring diameter and wall thickness, program will automatically suggest an effective flange width based on the following formula from API RP 2A.

$$BE = 1.1\sqrt{DT}$$

For rings without stiffeners, this should be the unit calculation width corresponding to the input of loads. The program suggested value should **NOT** be used in this case.

b. Stiffener:

- i. When Stiffener option checked, user has options to define the stiffener as External stiffener or Internal stiffener;
- ii. Stiffener Web Height **DS** (units in inch);
- iii. Stiffener Web Thickness **TS** (units in inch);
- iv. Stiffener Flange Width BF (units in inch);
- v. Stiffener Flange Thickness **TF** (units in inch).

c. Material Properties:

- i. Program assumes the material properties are the same for both ring and its stiffeners (if any);
- ii. Yield Stress Fy (units in ksi), default to 36ksi;
- iii. Young's Modulus (units in 1000ksi), default to 29000ksi;
- iv. Possion's Ratio, default to 0.3;
- d. Display the geometry

After the ring geometry input, click "**Apply**", the ring and its stiffener (if any) will be displayed graphically at the main window.

🔄 Ring - Untitled	
<u>File Edit View Help</u>	
Vuntitled Image: Control Information of Ring are defined. Ready	Ring × Ring Information GEOMETRY/MATERIAL LOAD LCOMB Ring Geometry Image Stiffener Stiffener Option Wall 0.5 External Internal Effective 3.810512 Stiffener Geometry Stiffener Height 4.0 Material Properties Stiffener Height 4.0 Stiffener Thickness 0.375 Yield Stress 36.0 Stiffener Thickness 0.375 Range Height 4.0 Young's Modulus 29.0 Possion's Ratio 0.3 Apply E Units Geometry Stiffener Thickness 0.375 Range 0.5 Units O.3 Apply E E E Units C MN Reset All E E View © Bending Moment © Outer Stress Clear © Inner Stress E

e. The geometry and material property input window looks like following,

7. Understanding input of basic load conditions

A basic load condition consists of a load condition number (program automatically assigned), a ring case number (corresponding load type 1, 2, 3, 6, 8, 12, 16, 17 and 18), a load value (could be applied force, applied moment and applied distributed force), load position angles "Theta" T and "PHI" F and the rotation angle of the axis of symmetry of the loading pattern "GAMMA" G.

To input a basic load case, select load type first then click "**Add**"; input the load value and its position according to the corresponding load type selected. The loads are input in **kips** for concentrated forces, in **in-kips** for concentrated moments and in **kips/in** for distributed forces. The load position angles are input in degrees and are positive clockwise. Click "**Apply**" to add the load condition.

After a basic load case is added, click "**View**" to view the added load case.

Ring - Untitled	
File Edit View Help	
D 🖆 🖬 X 🖻 🖻 🎒 😵	
	Ring × Ring Information ^ GEOMETRY/MATERIAL LOAD Select Load Type 1 Add Basic LOADCN TYPE LOAD(W) T(°) 1 Load Type 1 5.0 0.0 0.0
	III Delete Apply
$\overline{\mathbf{\Lambda}}$	Run Analysis View Results Reset All
	Automatically Open Result Data
	View Graphics
	Load Combination
 Control Information of Ring are defined. Load information is defined. Load information is defined. 	View © Bending Moment © Outer Stress Clear © Inner Stress
Ready	· · · · · · · · · · · · · · · · · · ·

Repeat above procedures to add more basic load conditions. After a basic load case is added, click "**View**" to view the added load case. An example basic load condition 2 with load type 2 and a load value of 2.0kips at a "Theta" angle T = 35.0 degrees looks like following,

8. Understanding input of load combinations

A load combination case consists of the basic load condition numbers and the factors of the basic load to be applied. Up to 10 basic load conditions can be used in one load combination case. Total 25 load combination cases are allowed.

Select the basic load condition and click "**Add**", the selected load condition will be automatically put into the load combination with a default load factor to 1.0. After all the basic load conditions selected, click "**Apply**" to add the load combination, the names of the load combinations will be assigned automatically.

User has the options to change load factors and to add or remove basic load conditions from the defined load combinations. After a change is made, click "**Apply**" to accept the change.

A example load combination combines two basic load conditions are shown in following, the load combination consists 100% basic load condition 1 and 75% basic load condition 2.

9. Running the ring analysis

After all the ring information, load information and load combination information defined, click "**Run Analysis**" button, program will collect all the input and run the ring analysis.

10. Understanding the analysis listing results

The output listing results are divided into following four parts,

Ring Definition part is a description of all the geometry and properties user input and the calculated ring properties used in the analysis such as cross section area etc. An example output of this part looks like following,

	RING DEFINITION							
			RING DEF	INITI	ON			
			RING	1				
Ring type:	INTERNAL	stiffe	ener		Cross sectional area	А	= 5.4	1 in.**2
Effective chord width	BE =	3.81	in.		Radius to the centroidal axis	Rca	= 9.4	6 in.
Chord outside diameter	D =	24.00	in.		Radius to the neutral axis	Rna	= 9.0	3 in.
Chord wall thickness	т =	0.50	in.		Moment of inertia	Ica	= 21.8	4 in.**4
Depth of stiffener web	DS =	4.00	in.		Distance to the inner fiber	Ri	= 7.0	0 in.
Thickness of stiffener web	TS =	0.38	in.		Distance to the outer fiber	Ro	= 12.0	0 in.
Stiffener flange width	BF =	4.00	in.		Seely coefficient	Zeta	= 0.0	47416
Stiffener flange thickness	TF =	0.50	in.		Inner fiber correction factor	Ki	= 1.1	13359
Material Yield allowance	FY =	36.00	ksi		Outer fiber correction factor	Ko	= 0.9	18938
Young`s Modulus	E =	29.00	kksi					
Poisson`s Ratio	Mu =	0.30						

Description of load combination cases used in this analysis is a summary of the basic information of basic load conditions and load combinations. An example of output of this part looks like following,

DESCRIPTION OF LOAD COMBINATION CASES USED IN THIS ANALYSIS

LOAD COMB. CASE	PERCENT OF BASIC LOAD CONDITION	BASIC LOAD CONDITION NUMBER	NUMBER ROARK LOAD CASE	LOAD "W" IN KIPS	LOAD "w" IN KIPS/IN	MOMENT "Mo" IN IN-KIPS	ANGLE "THETA" IN DEGREES	ANGLE "PHI" IN DEGREES	ANGLE "GAMMA" IN DEGREES
1	100.00 75.00	1 2	1 2	5.0 2.0			35.00		0.00

The third part is a **deflection report** part. The definitions in this part are based on the diagram from Roark' formulas,

An example output of the third part looks like following,

Definitions of the Roark selected deflections

"GAMMA" - is the angle the Roark loading diagram is rotated.
Point A - is at display angle "GAMMA" degrees.
Point B - is at display angle "GAMMA" plus 90.0 degrees.
Point C - is at display angle "GAMMA" plus 180.0 degrees.
Point D - is at display angle "GAMMA" plus 270.0 degrees.
"DH" - Changes in diameter B-D Increase is positive
"DV" - Changes in diameter A-C
"DELR" - Motion relative to point C of a line through
points B & D. For Roark cases 2 & 3 and theta
is greater than 90.0 degrees , the motion is
relative to point A.
"DELRW" - Motion relative to point C of a line connecting
the load points on the ring.
"DW" - Calculated in Roark case 2. No explanation is
given in the text However, "DW" is assumed to
to be the same as "DWH".
"DWH" - Change in length of a line connecting the load
points on the ring.
"DELPSI" - Angular rotation of the load point in the plane
of the ring. Positive in the direction of the
positive moment.

Basic	Percent	"DH"	"DV"	"DELR"	"DELRW"	"DW"	"DWH"	"DELPSI"	"GAMMA"
Load	of Basic	in	in	in	in	in	in	in	in
Cond.	Load Cond	in.	in.	in.	in.	in.	in.	Radians	Degrees
1	100.00	0.002	-0.003						0.00
2	75.00	0.000	0.000	0.000	0.000	0.000		0.0000	0.00

The fourth part of the output results is **the internal loads and stresses report**. For each ring analysis, the report will be based on 36 positions with each position 10 degrees apart to cover the full 360 degrees. An example output of this part looks like following,

DISPLAY	LOAD	BENDING	AXIAL	SHEAR	TANGENTIAL	OUTER	INNER
ANGLE	COMB.	MOMENT	LOAD	LOAD	SHEAR	FIBER	FIBER
	CASE					STRESS	STRESS
DEGREES		IN-KIPS	KIPS	KIPS	KIPS/IN	KSI	KSI
0.0	1	13.60	-1.42	-2.50	0.00	-1.69	1.41
10.0	1	9.69	-1.83	-2.22	0.00	-1.35	0.84
20.0	1	6.32	-2.19	-1.86	0.00	-1.05	0.34
30.0	1	3.57	-2.48	-1.46	0.00	-0.80	-0.06
40.0	1	0.78	-1.54	-1.97	0.00	-0.35	-0.22
50.0	1	-2.23	-1.86	-1.67	0.00	-0.08	-0.66
60.0	1	-4.71	-2.12	-1.32	0.00	0.14	-1.03
70.0	1	-6.57	-2.32	-0.93	0.00	0.31	-1.30
80.0	1	-7.77	-2.45	-0.51	0.00	0.41	-1.48
90.0	1	-8.26	-2.50	-0.08	0.00	0.46	-1.55
100.0	1	-8.04	-2.48	0.35	0.00	0.44	-1.52
110.0	1	-7.10	-2.38	0.78	0.00	0.35	-1.38
120.0	1	-5.48	-2.21	1.18	0.00	0.21	-1.14
130.0	1	-3.23	-1.97	1.54	0.00	0.01	-0.81
140.0	1	-0.41	-1.67	1.86	0.00	-0.24	-0.40
150.0	1	2.89	-1.32	2.12	0.00	-0.53	0.09
160.0	1	6.57	-0.93	2.32	0.00	-0.86	0.63
170.0	1	10.52	-0.51	2.45	0.00	-1.21	1.21
180.0	1	14.61	-0.08	2.50	0.00	-1.57	1.82
190.0	1	10.52	-0.51	-2.45	0.00	-1.21	1.21
200.0	1	6.57	-0.93	-2.32	0.00	-0.86	0.63
210.0	1	2.89	-1.32	-2.12	0.00	-0.53	0.09
220.0	1	-0.41	-1.67	-1.86	0.00	-0.24	-0.40
230.0	1	-3.23	-1.97	-1.54	0.00	0.01	-0.81
240.0	1	-5.48	-2.21	-1.18	0.00	0.21	-1.14
250.0	1	-7.10	-2.38	-0.78	0.00	0.35	-1.38
260.0	1	-8.04	-2.48	-0.35	0.00	0.44	-1.52
270.0	1	-8.26	-2.50	0.08	0.00	0.46	-1.55
280.0	1	-7.77	-2.45	0.51	0.00	0.41	-1.48
290.0	1	-6.57	-2.32	0.93	0.00	0.31	-1.30
300.0	1	-4.71	-2.12	1.32	0.00	0.14	-1.03
310.0	1	-2.23	-1.86	1.67	0.00	-0.08	-0.66
320.0	1	0.78	-1.54	1.97	0.00	-0.35	-0.22
330.0	1	3.57	-2.48	1.46	0.00	-0.80	-0.06
340.0	1	6.32	-2.19	1.86	0.00	-1.05	0.34
350.0	1	9.69	-1.83	2.22	0.00	-1.35	0.84

The analysis results will not be automatically saved. User must use the browser to save the output listing file for future use or reference.

11. Viewing the analysis results graphically

The ring program has a built-in graphic results viewer. The user has the option to view the bending moments, outer stresses and inner stresses for each load combination analyzed.

Under "**View Graphics**" part, select the load combination and one of the three variables (either bending moments or outer stresses or inner stresses), then click "**View**" to view the results graphically with maximum value shown at the bottom.

- -- 33 🛃 Ring - Untitled <u>File Edit View H</u>elp 🖻 🔒 🐰 🖪 🔒 🧣 Ring 🔛 Untitled - - X **Ring Information** GEOMETRY/MATERIAL LOAD LCOMB Basic IN... TYPE FORCE(W) ANGLE(degr... Load Type 1 5.000000 0.000000 2 Load Type 2 2.000000 35.000000 Add Load Combination Action New LComb 1 -Delete All INDEX TYPE COEFFICIENT 1.0 0.75 Load Type 1 1 2 Load Type 2 <. Þ Remove Run Analysis View Results Reset All Automatically Open Result Data View Graphics Load Combination LCOMB 1 • Bending Moment View Control Information of Ring are defined. Outer Stress Load information is defined. Ε Clear Load information is defined. O Inner Stress I oad information is defined. Load combination information are defined. ÷ Ready

An example **Bending Moment** diagram for a ring analysis shown here,

An example Outer Stresses diagram for a ring analysis shown here,

12. Supported Ring Cases from Roark's Formulas For Stress and Strain

Totally nine (9) ring cases supported from Table 17 – Formulas for Circular Rings, from Roark's Formulas For Stress and Strain, 5th edition. These supported cases 1, 2, 3, 6, 8, 12, 16, 17 and 18 are listed in the following pages for reference. If there is any doubt or problem in the attached cases, the original print of Formulas For Stress and Strain should prevail.

TABLE 17 Formulas for circular rings

NOTATION: W = load (pounds); w and v = unit loads (pounds per linear inch); $\rho = \text{weight of contained liquid}$ (pounds per cubic inch); $M_o = \text{applied}$ couple (inch-pounds); M_A and M are internal moments at A and x, respectively, positive as shown. T_A , T, V_A , and V are internal forces, positive as shown. E = modulus of elasticity (pounds per square inch); I = area moment of inertia of ring cross section (inches to the fourth). [Note that for a pipe or cylinder a representative 1-in segment may be used by replacing EI by $Et^3/12(1 - v^2)$.] θ , x, and ϕ are angles (radians); $s = \sin \theta$, $c = \cos \theta$, $z = \sin x$, $u = \cos x$, $n = \sin \phi$, and $e = \cos \phi$. D_V and D_H are changes in the vertical and horizontal diameters, respectively, and an increase is positive. ΔR is the change in the lower half of the vertical diameter or the vertical motion relative to point C of a line connecting points B and D on the ring. Similarly ΔR_W is the vertical motion relative to point C of a horizontal line connecting the load points on the ring. $\Delta \psi$ is the angular rotation (radians) of the load point in the plane of the ring and is positive in the direction of a positive moment at that point

The hoop stress deformation factor is $\alpha = I/AR^2$, where A is the cross-sectional area and R is the radius to the centroid of the cross section. The transverse (radial) shear deformation factor is $\beta = FEI/GAR^2$, where G is the shear modulus of elasticity and F is a shape factor for the cross section (see page 185). The following constants are hereby defined in order to simplify the expressions which follow. Note that all of these constants are unity if no correction for hoop stress or shear stress is necessary or desired. $k_1 = 1 + \alpha + \beta$, $k_2 = 1 - \alpha + \beta$, $k_3 = 1 + \alpha - \beta$, $k_4 = k_2/k_1$, $k_5 = k_2^2/k_1$

Note: The use of the bracket $\langle x - \theta \rangle^0$ is explained on page 94 and has a value of zero unless $x > \theta$

Reference no., loading, and load terms	Formulas for moments, loads, and deformations and some selected numerical values			
1. ↓W A B	$M_A = \frac{WR}{\pi}$ $T_A = 0$ $V_A = 0$ $D_H = \frac{WR^3}{EI} \left(\frac{2}{\pi} - \frac{k_3}{2}\right)$	$\begin{array}{ll} \mathrm{Max} + M = M_A = 0.3183 WR & \mathrm{Max} - M = M_B = -0.1817 WR \\ \mathrm{If} \ \alpha = \beta = 0, \ D_H = 0.137 \frac{WR^3}{EI} \ \mathrm{and} \ D_V = -0.149 \frac{WR^3}{EI} \\ \mathrm{For} \ \mathrm{greater} \ \mathrm{accuracy} \ \mathrm{when} \ \mathrm{the} \ \mathrm{ring} \ \mathrm{is} \ \mathrm{relatively} \ \mathrm{thick}, \ \mathrm{multiply} \ D_H \ \mathrm{by} \ k_H \\ \mathrm{and} \ D_V \ \mathrm{by} \ k_V, \ \mathrm{where} \ k_H \ \mathrm{and} \ k_V \ \mathrm{depend} \ \mathrm{upon} \ \mathrm{the} \ \mathrm{ratio} \ \mathrm{of} \ \mathrm{outer} \ \mathrm{radius} \\ R_o \ \mathrm{to} \ \mathrm{inner} \ \mathrm{radius} \ R_i \ \mathrm{and} \ \mathrm{have} \ \mathrm{the} \ \mathrm{following} \ \mathrm{values:} \end{array}$		
$LT_{M} = \frac{-WRz}{2} \qquad LT_{T} = \frac{-Wz}{2}$ $LT_{V} = \frac{-Wu}{2}$	$D_V = \frac{-WR^3}{EI} \left(\frac{\pi k_1}{4} - \frac{2}{\pi}\right)$	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c$		

CHAP. 8

Reference no., loading, and load terms	Formulas for moments, loads, and deform	ations and son	ne selected num	nerical values		
3.	$M_A = -M_o \left(1 - \frac{\theta}{\pi} - \frac{2s}{\pi k_1} \right)$	Max + M =	$M_o\left(\frac{\theta}{\pi}+\frac{2sc}{\pi k_1}\right)$	at x just grea	iter than $ heta$	
A	$T_A = \frac{M_o}{R} \frac{2s}{\pi k_1}$	Max - M =	$-M_o\left(1-\frac{\theta}{\pi}\right)$	$-\frac{2sc}{\pi k_1}$ at x j	just less than $ heta$	
Mo Mo	$V_A = 0$ $M R^2 (2\theta) \qquad \pi$	If $\alpha = \beta = K_{\Delta\psi}M_oI$	0, $M = K_M M$ R/EI, etc.	$I_o, T = K_T M_o$	$/R, D = K_D M$	$M_0 R^2 / EI, \ \Delta \psi =$
	$D_H = \frac{M_{\theta} L}{EI} \left(\frac{2\pi}{\pi} - s \right) \text{if } \theta \le \frac{\pi}{2}$	θ	30°	45°	60°	90°
	$M_R^2 (2\theta)$	KM	-0.5150	-0.2998	-0.1153	0.1366
	$D_{V} = \frac{\sigma}{FI} \left(\frac{1}{\pi} - 1 + c \right)$	KT.	0.3183	0.4502	0.5513	0.6366
		KM	-0.5577	-0.4317	-0.3910	-0.5000
$LT_{M} = M_{o} \langle x - \theta \rangle^{0}$	$\Delta B = \frac{M_o R^2}{1} \left[\frac{1}{\theta} + sk_t \right] - \frac{\theta}{1} \qquad \text{if } \theta < \frac{\pi}{1}$	K _D	-0.1667	-0.2071	-0.1994	0.0000
$LT_{\pi} = 0$	$EI \begin{bmatrix} \pi (1 + 3\pi q) & 2 \end{bmatrix} = 2$	K _D	0.1994	0.2071	0.1667	0.0000
	$M_R^2(\theta)$ s^3	$K_{\Delta R}$	0.0640	0.0824	0.0854	0.0329
$LT_V \equiv 0$	$\Delta R_{W} = \frac{m_{0}c_{0}}{ET} \left\{ \frac{1}{2} \left[1 + c - (\pi - \theta)s \right] + \frac{1}{2} k_{4} \right\}$	K _{AR}	0.1326	0.1228	0.1022	0.0329
		K _D , w	-0.0488	-0.0992	-0.1180	0.0000
	$D_{WH} = \frac{-M_o R^2}{EI} \left\{ 2s - \frac{2\theta}{\pi} [(\pi - \theta)c + 2s] + \frac{2s^2 c}{\pi} k_4 \right\}$	$K_{\Delta\psi}^{WH}$	0.2772	0.2707	0.2207	0.1488
	$\Delta \psi = \frac{M_o R}{EI} \left[\theta \left(1 - \frac{\theta}{\pi} \right) - \frac{2s^2}{\pi k_1} \right]$					

TABLE 17 Formulas for circular rings (Cont.)

6. W A W	$M_A = -WR\left[\frac{s}{\pi}(1+k_4) - \left(1-\frac{\theta}{\pi}\right)(1-c)\right]$	Max —	$M = M_c = -$	$-WR\left[\frac{s}{\pi}(1-$	$k_4)+\frac{\theta}{\pi}(1+$	c)]	
(+ + + + + + + + + + + + + + + + + + +	$T_{A} = -W \Big[rac{s}{\pi} k_{4} + \Big(1 - rac{ heta}{\pi} \Big) c \Big]$	Max +	M occurs at a	n angular pos	ition $x_1 = \operatorname{arc}$	$ \tan \frac{-\pi s}{sk_4 - \theta c} $	
D B	$V_A = 0$	$(x_1 is)$	always greater	than θ and a	lso greater tha	n 90°)	
	$D_{H} = \frac{WR^{3}}{EI} \left[\frac{s}{2} (2 + k_{3}) - \frac{2}{\pi} (\theta + s) - \frac{\theta c}{2} k_{1} \right] \text{if } \theta \leq \frac{\pi}{2}$	If $\alpha = K_{\Delta \psi} W$	$\beta = 0, M = R^2/EI$, etc.	$K_M WR, T = 1$	$K_T W, D = K_L$	$WR^{3}/EI, \Delta \psi$	=
c	$D_H = \frac{WR^3}{FL} \left[2 - \frac{2}{\pi} (\theta + s) - \frac{\pi - \theta}{2} ck_1 - \frac{s}{2} k_2 \right] \text{if } \theta \ge \frac{\pi}{2}$	θ	30°	60°	90°	120°	150°
2 W sin Ø	$WR^{3} \begin{bmatrix} 2 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	KMA	-0.2067	-0.2180	-0.1366	-0.0513	-0.0073
$UT = WB[1 - \cos(r - \theta)]/r - \theta^0$	$D_V = \frac{1}{EI} \left[1 - c - \frac{1}{\pi} (\theta + s) + \frac{1}{2} s k_1 \right]$		-0.8808	-0.6090 -0.5000	-0.3183 -0.5000	-0.1090	-0.0148 -0.1117
$LI_M = -mR[1 - \cos(x - 0)](x - 0)$	$WR^3 [1, \alpha] \rightarrow 1 (\alpha, \theta_c, s_i)$	Kn Kn	-0.1284	-0.1808	-0.1366	-0.0559	-0.0083
$LT_T = W \cos(x - \theta) \langle x - \theta \rangle^*$	$\Delta R = -\frac{1}{EI} \left[\frac{1}{2} (\theta - s) - \frac{1}{\pi} \left(\theta + s - \frac{1}{2} k_2 + \frac{1}{2} k_5 \right) \right]$	$K_{D_{H}}^{D_{H}}$	0.1368	0.1889	0.1488	0.0688	0.0120
$LT_V = -W\sin\left(x-\theta\right)\langle x-\theta\rangle^0$	π ς] π	$K_{\Delta R}$	0.0713	0.1073	0.0933	0.0472	0.0088
	$+\frac{n^3}{4}k_1$ if $\theta \leq \frac{n}{2}$	K _{AR}	0.1129	0.1196	0.0933	0.0460	0.0059
	4 1 4	K _D	-0.0170	-0.1063	-0.1366	-0.0548	-0.0036
	$\Delta R = \frac{WR^3}{EI} \left[\frac{1}{2} (\pi - \theta - ck_2 - s - 2c) - \frac{\theta}{\pi} \left(1 - \frac{c}{2}k_2 \right) \right]$	$K_{\Delta\psi}$	0.0874	0.1180	0.0329	-0.0264	-0.0123
	$-\frac{s}{2\pi}(2+k_5)+\frac{\pi-\theta}{2}sk_1\right] \text{if } \theta \ge \frac{\pi}{2}$						
	$\Delta R_W = \frac{WR^3}{EI} \left\{ \frac{\theta}{\pi} \left[(\pi - \theta)s - 1 - c - s^2 \left(1 - \frac{c}{2}k_2 \right) \right] \right\}$						
	$-\frac{s}{\pi}\left(1+c+\frac{s^2}{2}k_5\right)-s\left[\frac{sc}{2}(2-k_3)-\frac{\pi-\theta}{2}k_1\right]\right\}$						
	$D_{WH} = \frac{-WR^3}{EI} \left\{ \frac{1}{\pi} [\theta(\pi - \theta)(2 + k_1)c - 2\theta sc + \theta sk_2 + 2s^2 - s^2 ck_5] \right\}$						
	$-s(2+c^2k_2)\left(1-\frac{\theta}{\pi}\right)\right\}$						
	$\Delta \psi = \frac{-WR^2}{EI} \left[\frac{\theta}{\pi} (\pi - \theta - s + sc) - sc - \frac{s^2}{\pi} k_4 \right]$						

ART. 8.3]

Curved
Beams

225

 226
Formulas for
Stress
and
Strain

Reference no., loading, and load terms	Formula for moments lack and different in the second								
,	With the state of moments, loads, and deformations and some selected numerical values								
 Ring under any number of equal radial forces equally spaced 	For $0 < x < \theta$ $M = \frac{WR}{2} \left(\frac{u}{s} - \frac{1}{\theta} \right)$ $T = \frac{Wu}{2s}$ $V = \frac{-Wz}{2s}$								
W A A W	$Max + M = M_A = \frac{WR}{2} \left(\frac{1}{s} - \frac{1}{\theta} \right)$ $Max - M = \frac{-WR}{2} \left(\frac{1}{\theta} - \frac{c}{s} \right)$ at each load position								
$\partial \theta + \theta_{0}$ B	Radial displacement at each load point $= \frac{WR^3}{EI} \left[\frac{1}{4s^2} (\theta k_1 + sck_3) - \frac{1}{2\theta} \right] = R_B$								
W 28-28 W	Radial displacement at $x = 0$, 2θ , and so on $= \frac{-WR^3}{EI} \left[\frac{1}{2\theta} - \frac{1}{4s^2} (sk_3 + \theta ck_1) \right] = R_A$								
	If $\alpha = \beta = 0$, $M = K_M WR$, $R = K_R WR^3 / EI$,								
*	$\frac{9}{15}$ $\frac{15}{30}$ $\frac{30}{45}$ $\frac{45}{60}$ $\frac{60}{90}$								
w	$K_{M_{A}}$ 0.02199 0.04507 0.07049 0.09989 0.18169								
	$A_{H_B} = -0.04383 = -0.08390 = -0.13662 = -0.18879 = -0.31831$ K = 0.00020 = 0.00168 = 0.00568 = 0.01504 = 0.07480								
	$R_{B} = -0.00018 = -0.00148 = -0.00539 = -0.01426 = -0.06831$								
8. A	$M_{A} = wR^{2} \left[\frac{1}{4} + \frac{s^{2}}{2} - \frac{1}{\pi} \left(s + \frac{3}{4}sc + \frac{s^{3}}{3}k_{4} + \frac{\theta}{4} + \frac{\theta s^{2}}{2} \right) \right] \qquad $								
0 0	$T_A = -wR\left(\frac{s^3}{3\pi}k_4\right)$ If $\alpha = \beta = 0, M = K_M wR^2, T = K_T wR, D = K_D wR^4/EI$, etc.								
	$V_A = 0 \qquad \qquad \theta \qquad 90^\circ \qquad 120^\circ \qquad 135^\circ \qquad 150^\circ$								
Ž]2₩R srinθ	$D_{r} = \frac{-wR^{4}}{2} \left[\frac{1}{2} \left(2s + \frac{3sc}{2} + \theta^{2} + \theta \right) - \frac{1}{2} + \frac{s^{3}}{2} \right] $ $K_{M} = -0.0494 - 0.0329 - 0.0182 - 0.0065$								
ATTIMA A	$EI \left[\frac{1}{\pi} \left(\frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{1}{2} \right) - \frac{1}{2} - \frac{1}{3} + \frac{1}{6} \frac{1}{6} \frac{1}{6} \right] $ $K_{T_A} -0.1061 -0.0689 -0.0375 -0.0133$								
	$D = \frac{wR^4}{k_1} \begin{bmatrix} k_1 \\ m_c \end{bmatrix} = 0.02700 \\ 0.0582 \\ 0.02582 \\ 0.$								
$\left(\text{Note: } \theta \geq \frac{\pi}{2} \right)$	$D_V = \frac{1}{EI} \left[\frac{2}{2} \left(\frac{\pi s}{2} - \frac{\sigma s}{2} - 1 - \epsilon \right) + \frac{1}{6} \left(1 + \epsilon^{\sigma} \right) + \frac{1}{2} \left(1 + s^{\sigma} \right) \right]$ $K_{D_H} = -0.0533 - 0.0362 - 0.0204 - 0.0074$ $K_H = 0.0655 - 0.0464 - 0.0078$								
	$1 \left(a + 3sc + a^2 + \theta \right) = \frac{K_{B_V}}{K_{AB}} = 0.0448 = 0.0325 = 0.0198 = 0.0108$								
$LT_{M} = \frac{-wR^{2}}{2}(z-s)^{2}\langle x-\theta \rangle^{0}$	$-\frac{1}{\pi}\left(2s+\frac{1}{2}+\theta_{s}^{2}+\frac{1}{2}\right)\right]$								
$LT_T = -wRz(z-s)\langle x-\theta \rangle^0$	$\Delta R = \frac{-wR^4}{EI} \left[\frac{1}{\pi} \left(s + \frac{3sc}{4} + \frac{\theta s^2}{2} + \frac{k_5 s^3}{6} + \frac{\theta}{4} \right) - \frac{1}{4} + \frac{s}{2} + \frac{3sc}{8} \right]$								
$LI_{y} = -wRu(z-s)\langle x-\theta \rangle^{0}$	$-\frac{\pi-\theta}{8}(1+2s^2)-\frac{k_2}{6}(1+c^3)-\frac{k_1}{2}(\pi s-\theta s-1-c)\Big]$								
$\begin{aligned} &\left(Note: \ \theta \ge \frac{\pi}{2} \right) \\ LT_{M} &= \frac{-wR^{2}}{2} (z-s)^{2} \langle x-\theta \rangle^{0} \\ LT_{T} &= -wRz(z-s) \langle x-\theta \rangle^{0} \\ LT_{Y} &= -wRu(z-s) \langle x-\theta \rangle^{0} \end{aligned}$	$D_{V} = \frac{wR^{4}}{EI} \left[\frac{k_{1}}{2} (\pi s - \theta s - 1 - c) + \frac{k_{2}}{6} (1 + c^{3}) + \frac{1}{2} (1 + s^{2}) \\ - \frac{1}{\pi} \left(2s + \frac{3sc}{2} + \theta s^{2} + \frac{\theta}{2} \right) \right]$ $\Delta R = \frac{-wR^{4}}{EI} \left[\frac{1}{\pi} \left(s + \frac{3sc}{4} + \frac{\theta s^{2}}{2} + \frac{k_{5}s^{3}}{6} + \frac{\theta}{4} \right) - \frac{1}{4} + \frac{s}{2} + \frac{3sc}{8} \\ - \frac{\pi - \theta}{8} (1 + 2s^{2}) - \frac{k_{2}}{6} (1 + c^{3}) - \frac{k_{1}}{2} (\pi s - \theta s - 1 - c) \right]$								

TABLE 17 Formulas for circular rings (Cont.)

TABLE 17 Formulas for circular	r rings (Cont.)								
Reference no., loading, and load terms	Formulas for moments, loads, and deformations and some selected numerical values								
12. JA	$M_A = -wR^2 \left[\frac{1}{\pi} (\theta + 2s - \theta c) - 1 + c \right]$	Max	$-M = M_c =$	$-wR^2\left[\frac{\theta}{\pi}(1-w)^2\right]$	(+c)				
	$T_{A} = -wR \left[\frac{1}{\pi} (s - \theta c) + c \right]$	Max	Max +M occurs at an angular position $x_1 = \arctan \frac{-s\pi}{s - \theta c}$						
	$V_A = 0$	If $\alpha = \beta = 0$, $M = K_M w R^2$, $T = K_T w R$, $D = K_D w R^4 / EI$, etc.							
2wR'sin 0	$D_{H} = \frac{-wR^{4}}{EI} \left[\frac{2}{\pi} (\theta + s) - 2 + \frac{k_{1}}{2} (2 - s + \theta c) + k_{3} (1 - s) \right] \text{if } \theta \le \frac{2}{3}$	$\frac{\pi}{2}$ θ	30°	60°	90°	120°	150°		
MATTER	$D = -wR^4 \left[k_1 \left(z_1 - \theta_1 + z \right) \right]^2 \left(z_1 - \theta_1 + z \right)^2 $		-0.2067 -0.8808	-0.2180 -0.6090	-0.1366 -0.3183	-0.0513 -0.1090	-0.0073 -0.0148		
	$D_{H} = \frac{1}{EI} \left[\frac{1}{2} (\pi c - \theta c + s) - \frac{1}{\pi} (\pi - \theta - s) \right] \qquad \text{if } \theta \ge \frac{1}{2}$	K _M	-0.3110	-0.5000	-0.5000	-0.3333	-0.1117		
	$D_{V} = \frac{wR^{4}}{EI} \left[1 - c - \frac{2}{\pi} (\theta + s) + \frac{s}{2} (\pi - \theta) k_{1} - \alpha (1 + c) \right]$	K_{D_H} K_{D_V}	-0.1284 0.1368	-0.1808 0.1889	-0.1366 0.1488	-0.0559 0.0688	-0.0083 0.0120		
$LT_{M} = -wR^{2}[1 - \cos(x - \theta)] $ $\langle x - \theta \rangle^{0}$ $LT_{T} = -wR[1 - \cos(x - \theta)]$	$\Delta R = \frac{wR^4}{EI} \left[\frac{1}{2} (\theta - s) - \frac{1}{\pi} (\theta + s) - \frac{k_1}{4} (2 - \pi s) \right]$		0.0713	0.1073	0.0933	0.0472	0.0088		
$\langle x - \theta \rangle^0$ $LT_v = -wR \sin(x - \theta) \langle x - \theta \rangle^0$	$+rac{k_2}{2\pi}(\pi-s+ heta c) ight] ext{ if } heta\leq rac{\pi}{2\pi}$	7							
	$\Delta R = \frac{wR^4}{EI} \left[0.8183(\pi - \theta - s) - 1 - c + \frac{k_2}{2\pi}(\pi - s + \theta c) \right]$								
	$-\frac{k_1}{2}(1+c-\pi s+\theta s)\right] \text{if } \theta \geq \frac{\pi}{2}$	7							

234
Formulas
for
Stress
and
Strain

TABLE	17	Formulas	for	circular	rings	(Cont.)
TUDLC		1 01 manus	101	cultur	1 11120	(00100.)

Reference no loading and load terms			Formulas for m	oments, loads,	and deformation	ons and some	selected numer	ical values			
Reference no., toaunig, and toau terms											
16. A, A ^W	$M_A = \frac{-WR}{2\pi} [c - e]$	$-(\pi - \theta$	$(x - \phi)n$	$+ k_4(s^2 - n^2)$)]						
W	$T_A = \frac{-W}{2\pi} [k_4(s^2 -$	n ²)]									
	$V_A = \frac{W}{2\pi} [\theta - \phi +$	$V_A = \frac{W}{2\pi} [\theta - \phi + s - n + k_4(sc - ne)]$									
	If $\alpha = \beta = 0, M = K$	$_{M}WR, T =$	$= K_T W, V = K$	_v W,							
VA THE	θ	φ	0°	30°	60°	90°	120°	150°	180°		
		Ku	0.0000	-0.1899	-0.2489	-0.2500	-0.2637	-0.2989	-0.3183		
$v = -\frac{W}{\sin \phi} (\sin \phi - \sin \theta) \text{ lb/in}$	0°	K	0.0000	0.0398	0.1194	0.1592	0.1194	0.0398	0.0000		
$2\pi R$		K _V	0.0000	-0.2318	-0.3734	-0.4092	-0.4023	-0.4273	-0.5000		
WP		Ku	0.1899	0.0000	-0.0590	-0.0601	-0.0738	-0.1090	-0.1284		
$LT_{M} = \frac{-mR}{2\pi}(n-s)(x-z)$	30°	K _T	-0.0398	0.0000	0.0796	0.1194	0.0796	0.0000	-0.0398		
217		K _V	0.2318	0.0000	-0.1416	-0.1773	-0.1704	-0.1955	-0.2682		
$+ WR(z-s)\langle x-\theta \rangle^{\circ}$		Ku	0.2322	0.0423	-0.0167	-0.0178	-0.0315	-0.0667	-0.0861		
$-WR(z-n)\langle x-\varphi\rangle^{2}$	45°	Ka	-0.0796	-0.0398	0.0398	0.0796	0.0398	-0.0398	-0.0796		
$LT_m = \frac{W}{m}(n-s)z$		K _V	0.3171	0.0853	-0.0563	-0.0920	-0.0851	-0.1102	-0.1829		
2π		Ky	0.2489	0.0590	0.0000	-0.0011	-0.0148	-0.0500	-0.0694		
$+ W_z \langle x - \theta \rangle^0$	60°	K _T	-0.1194	-0.0796	0.0000	0.0398	0.0000	-0.0796	-0.1194		
$-W_z\langle x-\phi\rangle^0$		K _V	0.3734	0.1416	0.0000	-0.0357	-0.0288	-0.0539	-0.1266		
$W_{T} = -W_{T}$		KM	0.2500	0.0601	0.0011	0.0000	-0.0137	-0.0489	-0.0683		
$L_{I_V} = -\frac{1}{2\pi} (n - 3)(1 - u)$	90°	KT.	-0.1592	-0.1194	-0.0398	0.0000	-0.0398	-0.1194	-0.1592		
$+W_{u/x}-\theta^{0}$		K _V	0.4092	0.1773	0.0357	0.0000	0.0069	-0.0182	-0.0909		
$-Wu(x-\phi)^0$		A									

17.	$M_A = \frac{-M_o}{2\pi} (\pi - \theta)$ $T_A = \frac{M_o}{\pi R} k_4 s$ $V_A = \frac{-M_o}{2\pi R} (1 + 2k)$ If $\alpha = \beta = 0, M = 0$	$-2k_{4}s)$ $^{4}c)$ $K_{M}M_{o}, T = -$	$K_T M_o/R, V =$	$= K_v M_o/R,$						
$v = \frac{M_0}{2\pi R^2}$	θ	0°	30°	45°	60°	90°	120°	135°	150°	180°
2	K _M A	-0.5000	-0.2575 0.1592	-0.1499 0.2251	-0.0577 0.2757	0.0683	0.1090	0.1001	0.0758	0.0000
$LT_{M} = \frac{-M_{o}}{2\pi}(x-z) + M_{o}\langle x-\theta \rangle^{0}$	K_{V_A}	-0.4775	-0.4348	-0.3842	-0.3183	-0.1592	0.0000	0.0659	0.1165	0.1592
$LT_T = \frac{M_o z}{2\pi R}$										
$LT_V = \frac{-M_o}{2\pi R} (1 - u)$										

Reference no., loading, and load terms	Formulas for moments, loads, and deformations and some selected numerical values					
18. Bulkhead or supporting ring in pipe, supported at bottom and carrying total load W transferred by tangential shear of v lb/linear in distributed as shown A	$M_{A} = \frac{WR}{2\pi} \left(k_{4} - \frac{1}{2} \right)$ $T_{A} = \frac{W}{2\pi} \left(k_{4} + \frac{1}{2} \right)$ $V_{A} = 0$ $D_{H} = \frac{WR^{3}}{EI} \left(\frac{1}{\pi} - \frac{k_{3}}{4} \right)$ $D_{V} = \frac{-WR^{3}}{EI} \left(\frac{\pi}{8} k_{1} - \frac{1}{\pi} \right)$ $\Delta R = \frac{-WR^{3}}{EI} \left[\frac{1}{4\pi} (1 - k_{5} + \beta) + \frac{3\pi k_{1}}{32} - \frac{1}{4} \right]$	If $\alpha = \beta = 0$, $M_A = 0.0796WR$ $T_A = 0.2387W$ $V_A = 0$ $D_H = 0.0683 \frac{WR^3}{EI}$ $D_V = -0.0744 \frac{WR^3}{EI}$ $\Delta R = -0.0445 \frac{WR^3}{EI}$ Max + M = 0.2387WR at x = π Max - M = -0.1028WR at x = 1.84 rad (105.2°)				
$LT_{M} = \frac{WR}{\pi} \left(1 - u - \frac{xz}{2} \right)$ $LT_{T} = \frac{-W}{2\pi} xz$ $LT_{V} = \frac{W}{2\pi} (z - xu)$						

TABLE	17	Formulas	for	circular	rings	(Cont.)
TUDIE		I or muutuo	,	our ourour	1 1180	(00000)