Print Calculation Sheet

Isolated Footing Design(ACI 318-14) - Metric

	Footing No. Group ID Foundation Geometry						
-		-	Length	Width		Thickness	
1		1	4.05m	4.05m 0.90m			
Footing No.	. Footing Reinforcement Pedestal Reinforcement						einforcement
-	Bottom Reinforcement(Mz)	Bottom Reinforcement(M _x)	Top Reinforcement(M _z)	Top Reinforcement(M _x)		Main Steel	Trans Steel
1	33 - 16 mm	33 - 16 mm	N/A	N/A			N/A

Isolated Footing 1

<u>Plan</u>

Input Values

Footing Geometry

	Calculate Dimension with user specified minimums as starting value	Design Type	
mm	500.00	ting Length - X(Fl)	Minimum Footir
mm	500.00	ing Width - Z (Fw)	Minimum Footing
mm	300.00	ting Thickness (Ft)	Footin
mm	0.00	icity along X (Oxd)	Eccentrici
mm	0.00	icity along Z (Ozd)	Eccentrici

Column Dimensions

Column Shape : Rectangular

Column Length - X (D _{col}) :	0.50	m
Column Width - Z (B _{col}) :	0.50	m

Pedestal

Include Pedestal : No Pedestal Shape : N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete :	23.00	kN/m3
Strength of Concrete :	21.00	N/mm2
Yield Strength of Steel :	420.00	N/mm2
Minimum Bar Size :	16 mm	
Maximum Bar Size :	16 mm	
Top Footing Minimum Bar Size :	16 mm	
Top Footing Maximum Bar Size :	16 mm	
Pedestal Minimum Bar Size :	19 mm	
Pedestal Maximum Bar Size :	32 mm	
Minimum Bar Spacing :	100.00	mm
Maximum Bar Spacing :	1000.00	mm
Pedestal Clear Cover (P, CL) :	50.00	mm
Bottom Footing Clear Cover (F, CL) :	75.00	mm

Soil Properties

Unit Weight	:	19.00kN/m3
Base Value of Soil Bearing Capacity	:	300.00kPa
Multiplying factor for soil bearing capacity for ultimate loads	:	1.00
Soil Bearing Capacity Type	:	Net Bearing Capacity
Soil Surcharge	:	0.00kN/m2
Height of Soil above Footing	:	1.00m
Type of Depth	:	Fixed Top
Bearing Capacity Input Method	:	Fixed Bearing Capacity
Minimum Percentage of Slab area in Contact for Service Loads	:	0.00
Minimum Percentage of Slab area in Contact for Ultimate Loads	:	0.00

Sliding and Overturning

Coefficient of Friction :	0.50
Factor of Safety Against Sliding :	1.50
Factor of Safety Against Overturning :	1.50

Global Settings

Top Reinforcement Option : Calculate only when foundation is subjected to uplift forces Concrete Design Option : Net Pressure(Gross Pressure - Self Weight Pressure) Top Reinforcement Factor : 1.00

Design Calculations

Footing Size

Initial Length $(L_o) = 0.50 \text{ m}$ Initial Width $(W_o) = 0.50 \text{ m}$

Load Combinations

	Load Combination/s- Service Stress Level							
Load Combination Number	Load Combination Title	Load Case Multiplier (a)	Soil Bearing Factor (b)	Self Weight Factor (c)	Code			
a - Valu b - Valu c - Valu	e specified in the Load Multiplier table e specified in the Pile/Soil Bearing Capacity Factors table e specified in the Apply Self Weight and Dead Weight Factor table							
1	DL	1.00	1.00	1.00	-			
2	Ц	1.00	1.00	1.00	-			
3	DL + LL	1.00	1.00	1.00	-			

	Load Combination/s- Strength Level						
Load Combination Number	d ation Load Combination Title Load Case Soil Self Multiplier Bearing Weight Con (a) Factor (b) Factor (c)						
a - Value specified in the Load Multiplier table b - Value specified in the Pile/Soil Bearing Capacity Factors table c - Value specified in the Apply Self Weight and Dead Weight Factor table							
1	DL	1.00	1.00	1.00	-		
2	Ц	1.00	1.00	1.00	-		
4	1.4DL	1.00	1.00	1.40	-		
5	1.2DL + 1.6LL	1.00	1.00	1.20	-		

Applied Loads on Top of Pedestal

Before consideration of self weight and load multiplier table

Moments are about the center of Column / Pedestal (does not include moments caused by lateral loads) For the loads shown in this table, the sign convention is the same as that for JOINT LOADS in STAAD.Pro when global Y is the vertical axis.

Applied Loads from Column - Service Stress Level						
Load Case	Case F _x (kN) Case F _x (kN) Downwards is negative Upwards is positive		Fz (kN)	Mx (kNm)	Mz (kNm)	
1	0.00	-2000.00	0.00	0.00	0.00	
2	0.00	-1500.00	0.00	0.00	0.00	
3	0.00	-3500.00	0.00	0.00	0.00	

Applied Loads from Column - Strength Level						
Load Case	ase Fx (kN) Downwards is negative Upward is positive		Fz (kN)	Fz Mx (kN) (kNm)		
1	0.00	-2000.00	0.00	0.00	0.00	
2	0.00	-1500.00	0.00	0.00	0.00	
4	0.00	-2800.00	0.00	0.00	0.00	
5	0.00	-4800.00	0.00	0.00	0.00	

Reduction of force due to buoyancy = 0.00 kN

Effect due to adhesion = 0.00 kN

Area from initial length and width, $A_o \ = \ L_o \; X \; W_o \ = \ 0.25 \; m^2$

Min. area required from bearing pressure, $A_{min} = 12.34 \text{ m}^2$

Note: Amin is an initial estimation considering self-weight, axial load and moment against factored bearing capacity.

Final Footing Size

Length $(L_2) =$	4.05 m	Governing Load Case : # 5
Width (W_2) =	4.05 m	Governing Load Case : # 5
Depth (D ₂) =	0.90 m	

Depth is governed by Ultimate Load Case

(Service check is performed with footing thickness requirements from concrete check)

Area $(A_2) = 16.44 \text{ m}^2$

Final Soil Height = 1.00 m

Weight of the footing + pedestal (if any) = 340.33 kN

Soil Weight On Top Of Footing = 307.63 kN

Net Pressures at 4 Corners

Load Case / Combination	Pressure at top left corner (kN/m2)	Pressure at top right corner (kN/m2)	Pressure at bottom right corner (kN/m2)	Pressure at bottom left corner (kN/m2)	Area of footing in uplift (A _u) (m ²)	Net Bearing Capacity (kN/m2)
3	216.1882	216.1882	216.1882	216.1882	0.00	300.0000
3	216.1882	216.1882	216.1882	216.1882	0.00	300.0000
3	216.1882	216.1882	216.1882	216.1882	0.00	300.0000
3	216.1882	216.1882	216.1882	216.1882	0.00	300.0000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Load Case / Combination	Pressure at top left corner (kN/m2)	Pressure at top right corner (kN/m2)	Pressure at bottom right corner (kN/m2)	Pressure at bottom left corner (kN/m2)	Net Bearing Capacity (kN/m2)
3	216.1882	216.1882	216.1882	216.1882	300.0000
3	216.1882	216.1882	216.1882	216.1882	300.0000
3	216.1882	216.1882	216.1882	216.1882	300.0000
3	216.1882	216.1882	216.1882	216.1882	300.0000

Summary of Adjusted Net Pressures at four Corners

Stability Check

Resisting Force Along X on Pedestal	:	13.16	kN
Resisting Force Along Z on Pedestal	:	13.16	kN
Resisting Force Along X on Footing	:	278.59	kN
Resisting Force Along Z on Footing	:	278.59	kN
Resisting moment about X on Pedestal	:	16.19	kNm
Resisting moment about Z on pedestal	:	16.19	kNm
Resisting moment about X on Footing	:	112.39	kNm
Resisting moment about Z on Footing	:	112.39	kNm

-	Factor of safety against sliding			Factor of safety against overturning			
Load Case No.	Along X- Direction	Along Z- Direction	Resultant	Required FOS	About X- Direction Direction FC		
1	N/A	N/A	N/A	1.50	N/A	N/A	1.50
2	N/A	N/A	N/A	1.50	N/A	N/A	1.50
3	N/A	N/A	N/A	1.50	N/A	N/A	1.50

Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - X Direction

Critical Load Case for Sliding along X-Direction :	N/A
Governing Disturbing Force :	N/A
Governing Restoring Force :	N/A
Minimum Sliding Ratio for the Critical Load Case :	N/A
Critical Load Case for Overturning about X-Direction :	N/A
Governing Overturning Moment :	N/A
Governing Resisting Moment :	N/A
Minimum Overturning Ratio for the Critical Load Case :	N/A

Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - Z Direction

Critical Load Case for Sliding along Z-Direction :	N/A
Governing Disturbing Force :	N/A
Governing Restoring Force :	N/A
Minimum Sliding Ratio for the Critical Load Case :	N/A
Critical Load Case for Overturning about Z-Direction :	N/A
Governing Overturning Moment :	N/A
Governing Resisting Moment :	N/A
Minimum Overturning Ratio for the Critical Load Case :	N/A
Critical Load Case And The Governing Factor Of Safety For	Sliding Along Resultant Direction
Critical Load Case for Sliding along Resultant Direction :	N/A
Governing Disturbing Force :	N/A
Governing Restoring Force :	N/A
Minimum Sliding Ratio for the Critical Load Case :	N/A

Ultimate Gross Pressures

The base pressures reported in this table and the area of footing in contact include the effect of buoyancy (if any).

Load Case / Load Combination ID	Pressure at top left corner (kN/m2)	Pressure at top right corner (kN/m2)	Pressure at bottom right corner (kN/m2)	Pressure at bottom left corner (kN/m2)	Gross Factored Bearing Capacity For Ultimate Load Case (kN/m2)	Area of footing in Contact with soil (A _u) (m ²)
1	161.0538	161.0538	161.0538	161.0538	336.0987	16.44
2	130.6428	130.6428	130.6428	130.6428	336.0987	16.44
4	225.4754	225.4754	225.4754	225.4754	350.5382	16.44
5	339.2375	339.2375	339.2375	339.2375	343.3185	16.44

Minimum Required Contact Area for Ultimate Loads : 0.00 $\,{\rm m}^2$

Actual Area in Contact for all ultimate load cases exceeds the minimum required. Hence Safe

Gross Bearing Capacity for Ultimate Loads : 343.32 kN/m2

Maximum Corner Pressure from all ultimate load cases is less than the allowable. Hence Safe

Shear Calculation

Punching Shear Check

Plan

Total Footing Depth, D = 0.90mCalculated Effective Depth, d = D - C_{cover} - 1 * d_b = 0.81 mFor rectangular column, β = B_{col} / D_{col} = 1.00

Effective depth, d, increased until $0.75 X V_c \geq$ Punching Shear Force

Punching Shear Force, Vu = 4305.74kN, Load Case # 5

From ACI Cl. 22.6.5.2, b _o for column=	$2~ imes (B_{COL}+D_{COL}+2~ imes d)$	=	5.24	m
Table 22.6.5.2, (b), $V_{c1} =$	$0.17 imes \left(1+rac{2}{eta} ight) imes\lambda imes\sqrt{f_c^{'}} imes b_0 imes d$	=	9901.82	kN
Table 22.6.5.2, (c), V_{c2} =	$0.083 imes \left(rac{a_s imes d}{b_0} + 2 ight) imes \lambda imes \sqrt{f_c^{ \prime}} imes b_0 imes d$	=	13182.78	kN
Table 22.6.5.2, (a), $V_{c3} =$	$0.33 imes \lambda imes \ \sqrt{f_c^{'}} imes b_0 imes d$	=	6407.06	kN
Punching shear strength, V_c =	0.75 X minimum of (V _{c1} , V _{c2} , V _{c3})	=	4805.29	kN
0.75	X $V_c > V_u$ hence, OK			

One-Way Shear in XY Plane

(Shear Plane Parallel to Global X Axis)

Plan

From ACI Cl. 22.5.5.1, V_c =
$$0.17 \times \lambda \times b_w \times d \times \sqrt{f_c}$$
 = 2530.71 kN
Distance of critical section from top left corner
along Z, D_Z = $0.5 \times (L \pm D_{col}) - d + O_{zd}$ = 0.98 m

Check that 0.75 X V_c > V_{ux} where V_{ux} is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the X axis.

 $0.75 X V_{c}$ From above calculations, = 1898.03 kN $V_{ux} = V_{ux \mid z=Dx}$ Critical load case for V_{ux} is # 5 = 1155.67 kN $0.75 \text{ X V}_{c} > V_{ux}$ hence, OK

One-Way Shear in YZ Plane

(Shear Plane Parallel to Global Z Axis)

Plan

Distance of critical section from top left corner along

 $0.17 imes\lambda~ imes~b_w imes~d~ imes~\sqrt{f_c^{'}}$

X, Dx =

From ACI Cl. 22.5.5.1, $V_c =$

 $0.5~ imes~(L~\pm~B_{col}) - d + ~O_{xd}$ 0.98 m =

= 2530.71 kN

Check that 0.75 X V_c > V_{uz} where V_{uz} is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the Z axis.

From above calculations, $0.75 X V_{c}$ = 1898.03 kN $V_{uz} = V_{uz \mid x = Dz}$ Critical load case for V_{uz} is # 5 = 1155.67 kN $0.75 \text{ X V}_{c} > V_{uz}$ hence, OK

0.00173

6568.69 mm2

ρ_{min} Governs

=

Flexure About Z-Axis

Design For Bottom Reinforcement Parallel to X Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by Salmon and Wang (Ref. 1)

Critical Load Case # 5

The strength values of steel and concrete used in the formulae are in Mpa

Bars parallel to X Direction are placed at bottom

Effective Depth d			=	0.80 m
Factor β_1 from ACI Cl. 22.2.4.3 =	$\begin{cases} 0.85, \\ \max\left[0.65, 0.85 - \frac{0.05}{7}(f_c' - 28 Mpa)\right] \end{cases}$	$f_c' \le 28 Mpa$)], $f_c' > 28 Mpa$	=	0.85
From ACI318-2011 Appendix B 8.4.2, ρ_{bal} =	$rac{0.85 imes eta_1 imes f_c^{'}}{f_y} \; imes \left(rac{600}{600+f_y} ight)$,)	=	0.02125
From ACI318-2011 Appendix B 10.3.3, $ ho_{max}$ =	$0.75 imes ho_{bal}$		=	0.01594
From ACI Cl. 7.6.1.1, $ ho_{min}$ =	$\begin{cases} 0.0020 \\ \max \left[0.0014, \frac{0.0018 \times 420}{f_y} \right] \end{cases}$	$f_{\gamma} <~420$ Mpa $f_{\gamma} \geq 420$ Mpa	=	0.00180
From Ref.1, Eq. 3.8.4a, constant m =	$\frac{f_y}{0.85 \times 6^2}$		=	23.53
Calculat	e reinforcement ratio $ ho$ for critical load ca	se		
Design for flexure about Z axis is performed a of the column at a distance from top left foot	the face corner of $0.5 \times (L \pm B_{col}) +$ ng, Dx =	<i>O_{xd}</i> =	2.2	8 m
Ultimate m	oment = $M_u _{z = D_z}$	=	1869.8	4 kNm
Nominal moment capacity require	ed, $M_n = \frac{M_u}{\Phi}$	=	2077.6	0 kNm
(Based on effective depth) Req	ired $ ho = -rac{1}{m}\left[\ 1 - \ \sqrt{1 - 2 imes m imes rac{1}{(f_y)}} ight.$	$\overline{\frac{M_n}{\times b_w \times d^2)}} =$	0.0019	5

Area of Steel Required, $A_s =$

Since

Minimum spacing allowed (S_{min}) = 100.00mm

(Based on gross depth)ho x d / Depth

file:///C:/Users/Louis%20Phillip%20Flores/Desktop/STAAD%20Foundation%20Files/Is... 06/05/2022

Note - "Area of Steel required" reported here is the larger value between the calculated area of steel and minimum steel required as per code stipulations Selected bar Size = 16 mm

> Selected spacing (S) = 121.53mm $S_{min} {<=}\ S {\,<=\,} S_{max}$ and selected bar size ${<\,}$ selected maximum bar size

 $\rho < \rho_{min}$, select $\rho = \rho_{min}$

 $ho~ imes~b_w~ imes~d$

The reinforcement is accepted.

According to ACI 318 Clause No- 24.3.2

Max spacing for Cracking Consideration = 192.39mm

Safe for Cracking Aspect.

Based on spacing reinforcement increment; provided reinforcement is

16 mm @ 120mm o.c.					
Required development length for bars = $\frac{d_b \times f_y}{2.1 \times \lambda \times \sqrt{f_c'}}$	=	0.69	m		
Available development length for bars,DL = $~~0.5~ imes~(L-~D_{col})-~C_{cov}$	er =	1.70	m		
Try bar size 16 mm Area of one	bar =	199.00	mm2		
Number of bars required, $N_{bar} = \frac{A_s}{A_{bar}}$	=	33			
Because the number of bars is rounded up, make sure new reinforce	ement i	atio < p	max		
Total reinforcement area, $A_{s_total} = N_{bar} X$ (Area of one bar) =		6567.01	mm2		
d = D - C _{cover} - 0.5 X (dia. of = one bar)		0.80	m		
Reinforcement ratio, $\rho = \frac{A_{s_total}}{d \times b_w}$		=	0.00202		
From ACI Cl. 25.2.1, minimum req'd clear distance between bars					
C_d = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 100.00mm					
Provided Steel Area / Required Steel Area = 1.00					

Flexure About X-Axis

Design For Bottom Reinforcement Parallel to Z Axis

33 - 16 mm

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by Salmon and Wang (Ref. 1)

Critical Load Case # 5

The strength values of steel and concrete used in the formulae are in Mpa

Bars par	allel to X Direction are placed at bottom		
Effective Depth d		=	0.80 m
Factor β_1 from ACI Cl. 22.2.2.4.3 =	$\begin{cases} 0.85, & f_c' \leq 28 Mpa \\ \max\left[0.65, 0.85 - \frac{0.05}{7} (f_c' - 28 Mpa) \right], f_c' > 28 Mpa \end{cases}$	=	0.85
From ACI318-2011 Appendix B 8.4.2, ρ_{bal} =	$rac{0.85 imeseta_1 imes f_c^{'}}{f_y} \ imes \left(rac{600}{600+\ f_y} ight)$	=	0.02125
From ACI318-2011 Appendix B 10.3.3, $ ho_{max}$ =	$0.75 imes ho_{bal}$	=	0.01594

From ACI Cl. 7.6.1.1,
$$\rho_{min} = \begin{cases} 0.0020 & f_{y} < 420 \text{ Mpa} = 0.00180\\ \max \begin{bmatrix} 0.0014 & \frac{0.0018 \times 420}{f_{y}} \end{bmatrix} & f_{y} \ge 420 \text{ Mpa} \end{cases}$$

From Ref.1, Eq. 3.8.4a, constant m = $\frac{f_{y}}{0.85 \times f_{c}}$ = 23.53

Calculate reinforcement ratio ρ for critical load case

Design for flexure about X axis is performed at the face of the column at a distance from top left corner of footing, D _z =	$0.5~ imes L~\pm 0.5~ imes~B_{col}+O_{zd}$	=	2.28 m	
Ultimate moment =	$M_u _{x\ =\ D_x}$	=	1869.84 kNm	
Nominal moment capacity required, $M_n =$	$rac{M_u}{\Phi}$	=	2077.60 kNm	
(Based on effective depth) Required ρ =	$rac{1}{m}\left[\ 1 - \ \sqrt{1 - 2 imes m imes rac{M_n}{(f_y imes b_w imes d^2)}} \ ight]$	=	0.00195	
(Based on gross depth) $ ho$ x d / Depth		=	0.00173	
Since	$\rho < \rho_{min}$, select $\rho = \rho_{min}$		ρ_{min} Governs	
Area of Steel Required, $A_s =$	$ ho~ imes~b_w~ imes~d$	=	6568.69	mm2

Note - "Area of Steel required" reported here is the larger value between the calculated area of steel and minimum steel required as per code stipulations

Selected Bar Size = 16 mm

Minimum spacing allowed (S_{min}) = 100.00mm

Selected spacing (S) = 121.53mm

 $S_{min} \! < \! = S \! < \! = \! S_{max}$ and selected bar size < selected maximum bar size

The reinforcement is accepted.

Max spacing for Cracking Consideration = 192.39mm

Safe for Cracking Aspect.

Based on spacing reinforcement increment; provided reinforcement is

16 mm @ 120mm o.c.					
Required development length for bars =	$rac{d_b imes f_y}{2.1 imes \lambda imes \sqrt{f_c^{'}}}$	=	0.69 m		
Available development length for bars, $D_L =$	$0.5~ imes~(L-~D_{col})-~C_{cover}$	=	1.70 m		
Try bar size 16 mm	Area of one bar	=	199.00 mm2		
Number of bars required, N_{bar} =	$rac{A_s}{A_{bar}}$	=	33		
Because the number of bars is rounded up, make sure new reinforcement ratio < ρ_{max}					
Total reinforcement area, $A_{s_total} = N_{bar} X$ (Area of	of one bar) =		6567.01 mm2		
d = D - C _{cover} - 1. one b	5 X (dia. of par) =		0.80 m		
Reinforcement ratio, ρ =	$\frac{A_{s_total}}{d \times b_m}$		= 0.00202		

From ACI Cl. 25.2.1, minimum req'd clear distance between bars

 C_{d} = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 100.00mm

Provided Steel Area / Required Steel Area = 1.00

Material Take Off

Footing Reinforcement

Direction	Size	Number	Total Length (m)	Weight (kg)
Along Z on Bottom Face	16 mm	33	128.86	200.01
Along X on Bottom Face	16 mm	33	128.86	200.01
Along Z on Top Face	N/A	N/A	N/A	N/A
Along X on Top Face	N/A	N/A	N/A	N/A

Total Reinforcement Weight : 400.02 kg

Concrete

-	Length (m)	Width (m)	Thickness (m)	Volume (m ³)
Footing	4.05	4.05	0.90	14.80
Pedestal	0.00	0.00	0.00	0.00

Total Concrete Volume :

14.80 m³

Formwork

Footing	:	14.60	m²
Pedestal	:	0.00	m²
Total	:	14.60	m²

Soil Excavation

Pit Depth	:	1.90	m
Pit Slope (a : b)	:	1:1	(Assumed)
Side Distance, s	:	0	(Assumed)
Excavation Volume	:	69.66	m ³
Backfill Volume	:	54.86	m ³

