TITLE :	DESIGN OF Shear Wall with Boundary Element				
SUB -TITLE :	DESIGN OF WALL FOR FLEXURE AND SHEAR				
CODE OF PRACTICE :	IS 456-2000 + 13920-2016				
DESIGN TYPE :	LIMIT STATE DESIGN				
DESIGN TIPE .					
NOTE . 1) User to innut data in call manhod on Dive					
NOTE :- 1) User to Input data in cell marked as Blue.	Mathad				
2) Design follows Limit State	Method.			Reference / Comments	
User Input				Reference / Comments	
PARAMETERS : Wall	RCDC <u>SYMBOL</u>		INPUT UNITS W7		
Level			4.2 m To 7.858 m		
Width of Wall	Wall B B	=	4.2 m 10 7.858 m 300 mm		
	Wall D D			User Input	
Depth of Wall		=	1,500 mm	User Input	
Grade of Concrete	Grade Of Concrete fck	=	25 N/mm ²	User Input	
Grade of Steel	Grade Of Steel fy	=	415 N/mm ²	User Input	
Cover to reinforcement	Clear Cover Cc	=	50 mm	User Input	
Floor to floor height of the wall	hw	=	3,658 mm	User Input	
Beam depth along D (left side)	db1	=	800 mm	User Input	
Beam depth along D (Right side)	db2	=	800 mm	User Input	
Beam depth along B (left side)	bb1	=	800 mm	User Input	
Beam depth along B (right side)	bb2	=	800 mm	User Input	
Maximum % steel	ptmax	=	4.00 %	User Input	
Partial Factor of Safety for Material Concrete	Yc	=	1.50 constant	User Input	
Partial Factor of Safety for Material Steel	۷s	=	1.15 constant	User Input	
Wall Type	Wall Type	=	UnBraced	User Input	
Minimum eccentricity check	Minimum eccentricity check	=	One Axis at a Time	User Input	
Code defined D/B ratio	Code defined D/B ratio	=	4		
Effective Length Factor along Major Axis		=	0.92	User Input	
Effective Length Factor along Minor axis		=	0.57	User Input	
Minimum % reinforcement in wall (User defined)		=	0.25 %		
Spacing Round Factor for Links		=	25.00 mm		
Clear Floor Height @ B	Clear Floor Height @ B	=	2,858 mm	=H-(bb1,bb2)	
Clear Floor Height @ D	Clear Floor Height @ D	=	2,858 mm	=H-(db1,db2)	
Flexural Design (Analysis Forces)					
Critical Analysis Load Combination			19		
Load Combination		=	[9] : 1.5 (LOAD 1: LOAD CASE 1) -1.5 (LOAD 4: L	OAD CASE 4 EQ-Y)	
Critical Location		=	Top Joint		
Axial force	Pu	=	2,261.28 kN	User Input	
Bending Moment along D	Mux	=	-12.08 kNm	User Input	
Bending Moment along B	Muy	=	158.44 kNm	User Input	
Shear force from Analysis along D	Vux	=	82.43 kN	User Input	
Shear force from Analysis along B	Vuy	=	1.05 kN	User Input	
Load Combination for Boundary Element Length					
Load Combination Containing EQ where Axial Force is Maximum.					
Axial force	Pu	=	2,566.22 kN	User Input	
% reinforcement considered for BE length calculation		=	0.80 %	· ·	
Load Combination for Boundary Element Check					
Most Favouring Pu	Pu (Fav)	=	2,370.99 kN	User Input	
Bending Moment along D	Mux	=	-257.13 kNm	User Input	
Most Un-favouring Pu	Pu (Un-fav)	=	1,265.43 kN	User Input	
Bending Moment along D	Mux	=	-255.60 kNm	User Input	
0 0 -					

Shear Design (Analysis Forces)								
Along D								
Critical Analysis Load Combination				20				
Load Combination				[10] : 0.9 (LOAD 1: LOAD CAS		AD 3.10AD CASE 3 FO-X		
Shear force from Analysis along D		Vux	=	120.57	, , ,			
Axial force		Pu	=	1,382.45				
Along B		ru	_	1,302.43	NIN			
Critical Analysis Load Combination				23				
Load Combination				[13] : 0.9 (LOAD 1: LOAD CAS				
Shear force from Analysis along D		Vux	=	73.53				
Axial force		Pu	=	1,338.35				
Reinforcement Provided in Wall		14		1,550.55				
Boundary Zone								
Diameter of longitudinal reinforcement		dia	=	16	mm	User Input		
Numbers of Rebars at Each End Zone		Nos	=		Nos	User Input		
No of Rebars Along B		Nos	=		Nos	User Input		
No of Rebars Along B		Nos	-		Nos	User Input		
Mid Zone		1403	-	4	1403	oser input		
Diameter of longitudinal reinforcement		dia	=	10	mm	User Input		
Numbers of Rebars at Each End Zone		Nos	=		Nos	User Input		
Shear Links		1103	-	8	NUS	oser input		
Boundary zone Links								
Link Diameter			=	0	mm			
Link Spacing			=	100				
Other Links			=	100	mm			
							10 SPECIAL SHEAR WA	IIS
Link Diameter			=	-	mm		IU SI ECIAL SHEAK WA	
Link Spacing			=	100	mm		10.1 General Requirements	
Step 1) Check Code Defined D/B Ratio								
D/B Ratio				5			10.1.3 The minimum ratio	of length of wall to its
Check	D/B Ratio		=	Hence, Design as Wall			thickness shall be 4.	
Step 2) Check For Requirement Of Boundary Element							10.4 Boundary Elements	s
Check For Maximum Compressive Stress Along Height of Wall								
Level where Maximum Stress exists				At level (4.2 m)			· · · · · · · · · · · · · · · · · · ·	ortions along the wall edges
Load Combination		-	D CASE 1) -1.5	(LOAD 3: LOAD CASE 3 EQ-X)			that are strengthened by	longitudinal and transverse
Axial Force		Pu	=	2634.38			reinforcement even if they	have the same thickness as
Moment along Major Axis		Mx	=	-617.13			that of the wall web. It i	s advantageous to provide
Area Of Concrete (BxD)		A	=	450000	•		The second secon	dimension greater than
Section Modulus (B x D^2/6)		Zxx	=	112500000	-		thickness of the wall web.	5
Pu/A			=		N/mm ²			
Mx/Zxx			=		N/mm ²			s shall be provided along the
Maximum Stress (P/A +Mx/Zxx)			=	11.34	N/mm ²			lls, when the extreme fibre
0.2 x Fck			=	5	N/mm ²		compressive stress in the	wall exceeds $0.2 f_{ck}$ due to
Check For Maximum Compressive Stress				Maximum Stress in Wall > 0.				s factored earthquake force.
Check For Maximum Compressive Stress at level Considered								e discontinued at elevations
Load Combination	[7]	: 1.5 (LOAD 1: LOA	D CASE 1) -1.5	(LOAD 3: LOAD CASE 3 EQ-X)				ressive stress becomes less
Axial Force		Pu	=	2370.99	kN			compressive stress shall be
Moment along Major Axis		Mx	=	-257.13				y elastic model and gross
Pu/A			=		N/mm ²		section properties.	y classic model and gloss
Mx/Zx			=		N/mm ²		section properties.	
					N/mm ²			
Maximum Stress (P/A +Mx/Zxx)			=		-			
0.15 x Fck			=		N/mm ²			
Check For Maximum Compressive Stress				Hence Boundary Element is	applicable			

Step 2) Calculation of Boundary Element Length			
Load Combination	1.2 (LOAD 1: LOAD CASE 1) +1.2 (LOAD 2: LOAD CASE		
Axial force	Pu	2566.22 kN	
Ast for for BE length calculation (0.8% assumed)	pt	3600 sqmm	
Maximum Possible Axial Force in the wall	Ро	0.8 x (0.85 x Fck x Ac + Fy x Ast)	
		8784 kN	
Ratio of Design axial force / Maximum axial force Permissible	Pu/Po	0.292	
Ratio for Boundary		0.221	
Boundary Element Length at Each End	BE Length	375 mm	
		Ductile Wall design	
		Boundary elements are provide	d for ductile walls as per IS 13920. Z
		the boundary element. The init	ial length of the boundary element
		i. Value Po is calculated Po =	0.8 x (0.85 x Fck x Ac + Fy x Ast)
		ii. The largest axial force Pu	in earthquake combination is detern
		iii. Length of boundary elem	ent is determined based on the abo
		a. If Pu< 0.15 x Po th	en length of the boundary element
			nen length of the boundary element
			.35 x Po the interpolate between 0.1
			ernational papers and recommendation o an IIT-Kanpur publication IITK-GSDN
Step 4) Effective Length Calculation			
Effective Length Factor along Major Axis		0.92	
Effective Length Factor along Minor axis		0.57	
Step 5) Minimum Eccentricity Check			25.4 Minimum
Check	Since Axial Force is compressive, Mi	n. Eccentricity check to be performed	All columns
Most critical case is with Min. Eccentricity		Y-direction	eccentricity, equ
Actual Eccentricity Along D :		-	500 plus latera
		0 mm	of 20 mm. Wh
		Max (Actual Eccentricity,20)	sufficient to e
Minimum Eccentricity Along D :		0.00 mm	minimum abou
Mminx		-	
		0.00 kNm	
		Clear Floor Height @ B / 500 + B / 30	25.3 Slende
Actual Eccentricity Along B :		15.72 mm	
			0P.0.1 m
Actual Eccentricity Along B : Minimum Eccentricity Along B :		Max (Actual Eccentricity,20)	
Minimum Eccentricity Along B :		Max (Actual Eccentricity,20) 20.00 mm	shall not exce
		Max (Actual Eccentricity,20)	25.3.1 The un shall not exce of a column.

Zoning of re	inforcement is done arc	ound
is arrived a	t as per following proce	dure:
mined		
ove two valu	ies as	
t = 0.15 x Lw		
t = 0.25 x Lw	1.	
15 to 0.25 L	W .	
	Charles 1	
ions in the A		
MA-EQ22-V.	3.03, example 9.	
m Eccentrici	ty	
shall be d	esigned for minimum	
	apported length of column/	
	30, subject to a minimum	
	ending is considered, it is	
ensure that out one axis at	eccentricity exceeds the	
at one axis at	a unic.	
erness Limi	ts for Columns	
	length between end rest	
ceed 60 tim	es the least lateral dime	nsion
•		

Step 5) Slenderness Check							
Max Slenderness Ratio(Clear Floor Heigh	nt @ B/B)				2858/300		
					9.53		25.1.2 Short
Check					< 6, Hence OK		A compression
Column Is Unbraced Along D							
Slenderness Check Along D:							when both the
Effective Length Factor along Major Axis					0.92		
Effective Length (Unsupported Length x E	Effective Length Factor)				2858X0.92		than 12:
					2629.36	mm	
Slenderness Ratio					Effective Length / D		10.3 Design fo
					1.75		
					Wall not Slender Along D		10.3.1 Design
Column Is Unbraced Along B							section subject
Slenderness Check Along B:							compressive ax
Effective Length Factor along Major Axis					0.57		with requireme
Effective Length (Unsupported Length x E	Effective Length Factor)				2858X0.57		in IS 456, using
					1629.06	mm	equilibrium equ
Slenderness Ratio					Effective Length / B		and constitutive
					5.43		
					Wall not Slender Along B		The moment of
Calculation of Design Moment							structural wall
Direction	Manalysis	Mmin (Abs)	Mdesign	MsIndx (Abs)	Mdesign-final		vertical reinf
	A	В	С	E	F		expressions give
Major Axis - Mux	-12.08	0.00	-12.08	0	-12.08		Annex A are n
Minor Axis - Muy	158.44	45.23	158.44	0	158.44		boundary elem
Where							
A	=	Moments directly from an	alveis				
B	=	Moments due to minimun					
C	=	Maximum of analysis mon		contricity - May	(A D)		
F	-	Moment due to slenderne			(А,В)		
F	-	Final design Moment = Ma		D Ton Pottom			
F	-			T, D- TOP BOLLON	I) + E		39.6 Mem
Final Critical Design Foress							and Biaxia
Final Critical Design Forces	_	2 261 28	LNI				1
Pu	=	2,261.28					The resistant
Mux	=	-12.08					and biaxial
Muy	=	158.44	KINITI				assumption
							so chosen a
Minimum % steel					0.25		moments ab
User defined pt min1	\ \			=	0.25		may be des
Vertical reinforcement as per type of wa			h		2000		
Floor to Floor height of wall			hw	=	3658		10.1.4 Specia
Depth of Wall			Lw = D	=	1500	m	intermediate of
hw/Lw			hw/Lw	=	2.44	-11	$h_{\rm w}$ to length $L_{\rm y}$
Type of wall			tu. D		hw/Lw > 2 Hence, Slender wa		
Width of Wall Minimum % of Horizontal Reinforcement			tw = B	=	300	mm	a) Squat
Wunimum % of Horizontal Pointorcomont			Ph	=	0.0025		b) Intern
			Pvweb	=	0.0025		
Minimum % of Web Reinforcement							C) Slond
Minimum % of Web Reinforcement Ptv min2			Ptv min2	=	0.00525	%	c) Slend
Minimum % of Web Reinforcement				=	Max(Pvweb,Ptv min2)	%	c) Sienc
Minimum % of Web Reinforcement Ptv min2			Ptv min2				c) Slend

and Slender	Compression Members								
n member may be considered as short									
slenderness ratios $\frac{l_{ex}}{D}$ and $\frac{l_{ey}}{b}$ are less									
SIGNUCI IIC88	$\frac{1}{D}$ $\frac{1}{b}$ $\frac{1}{b}$	/00							
Axial Force a	and Bending Moment								
	stance $M_{\rm u}$ of the wall								
	bending moment and estimated in accordance								
	e design method given								
	f mechanics involving ompatibility conditions								
section with u reement may n in Annex A.	slender rectangular iniformly distributed be estimated using Expressions given in								
t applicable for tts.	structural walls with								
ers Subjected Bending	l to Combined Axial Load								
ending shall given in 39.1 to satisfy the out two axes.7	ber subjected to axial force be obtained on the basis of and 39.2 with neutral axis as equilibrium of load and Alternatively such members allowing equation:								
aboor walls at	all be aloggified as aguet								
	all be classified as squat, ding on the overall height								
walls: $h_{\rm w}$ / $L_{\rm w}$	<1,								
ediate walls: r walls: h_w / h_w	$1 \le h_w / L_w \le 2$, and $L_w \ge 2$.								

Resultant Moment (Combined Action)			
Moment Capacity Check			Table 1 Minimum Reinforcement in RC Shear
Pt Calculated	=	1.03	Walls
Reinforcement Provided	=	20-T16 + 8-T10	
Load Angle	=	Tan ⁻¹ (Muy/Mux)	(Clause 10.1.6)
5	=	85.64 deg	SI. Type of Reinforcement Details
MRes	=	158.90 kNm	No. Wall
МСар	=	286.96 kNm	
Capacity Ratio	=	MRes/ MCap	i) Squat walls $(\rho_h)_{min} = 0.0025$
	=	0.55	$(-)$ 0.0025.05 $(1 h_{\rm w})$ (-0.0025)
Check		0.55<=1	$(\rho_v)_{\min} = 0.0025 + 0.5 \left(1 - \frac{h_w}{t_w}\right) (\rho_h - 0.0025)$
Check For Boundary Element			$\left(\rho_{v,\text{net}}\right) = \left(\rho_{v,\text{web}}\right) + \left(\frac{t_w}{L_w}\right) \cdot \left[0.02 - 2.5(\rho_{v,\text{web}})\right]$
Calculation of vertical reinforcement in BE zone			
Area Of Concrete (BxD)	A =	450000 sqmm	$(\rho_{\nu})_{\text{provided}} < (\rho_{h})_{\text{provided}}$
Section Modulus (B x D^2/6)	Z =	11250000 mm3	ii) Intermediate $(\rho_h)_{min} = 0.0025$
Maximum Compressive Force in BE			332010
Most Favouring Pu	P (Fav)	2,370.99 kN	$(\rho_{v,be})_{min} = 0.0080$
Bending Moment along D	M	-257.13 kNm	$(\rho_{v,web})_{a} = 0.0025$
P/A	P/A =	5.27 N/mm ²	
M/Z	M/Z =	-2.29 N/mm ²	$(\rho_{v,web})_{nile} = 0.0025$ $(\rho_{v,web})_{nile} = 0.0025 + 0.01375 \left(\frac{t_w}{L_w}\right).$ iii) Slender $(\rho_{v,web})_{min} = 0.0025 + 0.5 \left(\frac{h_w}{L_w} - 2\right) (\rho_b - 0.0025)$
Depth of Wall	Lw = D =	1500 mm	
Stress Slope,S1	LW = D =		iii) Slender $(p_{\rm s})^{\oplus} = 0.0025 + 0.5 \left(\frac{h_{\rm w}}{2} - 2\right)(\rho_{\rm s} - 0.0025)$
		((P/A + M/Z) - (P/A - M/Z)) / Lw	O walls we have $(L_w)^{(r)}$
Chrono 1	=	-3.05 N/mm ²	$\left(\rho_{\nu,be}\right)_{\min} = 0.008\ 0$
Stress - 1	=	(P/A + M/Z) - S1 X (BE length) / 2	
	=	3.55 N/mm ²	$(\rho_{v,web})_{\min} = 0.0025$
Stress - 2	=	(P/A - M/Z) + S1 X (BE length) / 2	$\left(\rho_{v,\text{net}}\right)_{\min} = 0.002\ 5 + 0.013\ 75 \left(\frac{t_w}{L_w}\right).$
	=	6.98 N/mm ²	
Maximum compressive force	=	Maximum (Stress-1, Stress-2) x BE lengt	:h
	=	785.60 kN	
Pt required	pt1 =	0 %	
Maximum Tensile Force in BE			
Most Un-Favouring Pu	Pu (Un-Fav)	1,265.43 kN	
Bending Moment along D	Mux	-255.60 kNm	
Pu/A	Pu/A =	2.81 N/mm ²	
Mx/Zx	M/Z =	-2.27 N/mm ²	
Stress Slope,S1	=	((P/A + M/Z) - (P/A - M/Z)) / Lw	10.4.2 A boundary element shall have adequate axial
	=	-3.03 N/mm ²	load carrying capacity, assuming short column action,
Stress - 1	=	(P/A + M/Z) - S1 X (BE length) / 2	so as to enable it to carry axial compression arising
	=	1.11 N/mm ²	from factored gravity load and lateral seismic shaking
Stress - 2	=	(P/A - M/Z) + S1 X (BE length) / 2	effects.
	=	4.52 N/mm ²	
Maximum compressive force	=	Minimum (Stress-1, Stress-2) x BE lengtl	h 10.4.2.1 The load factor for gravity load shall be taken
· · · · · · · · · · · · · · · · · · ·	=	124.66 kN	as 0.8, if gravity load gives higher axial compressive
Pt required	pt2 =	0 %	strength of the boundary element.
Design pt in BE	1.		
Minimum pt	=	0.8 % (Constar	nt) Clause 10.4.3 (IS 13920-2016)
Pt required in BE	=	=Maximum (0.8, pt1, pt2)	
	=	0.8 %	10.4.3 The vertical reinforcement in the boundary
Check For Compression Capacity Of BE			elements shall not be less than 0.8 percent and not
PT provided in BE	=	1.79 %	greater than 6 percent; the practical upper limit would
Ast provided in BE	Ast =	2010.62 sqmm	be 4 percent to avoid congestion.
Capacity of BE in compression	=	0.4 x Fck x Aconcrete + 0.67 x Fy x Ast	ee . percent to arona congestion.
		1663.95 kN	
	_	1663.95 > 785.6	
		1003.33 / 703.0	

Check For Tension Capacity Of BE								
PT provided in BE			=	1.79 %				
Ast provided in BE		Ast	=	2010.62 sqmm				
Capacity of BE in Tension			=	0.87 x Ast X Fy				
			=	725.93 kN				
Wall Configuration	· · · · · · · · · · · · · · · · · · ·							
	Boundary Element	Mid		Boundary Element				
Length (mm)	375	750		375				
Reinforcement	10-T16	8-T10		10-T16	10.2 Design for Shear Force			
Ast provided	2010.62	628.32		2010.62				
Pt as % of entire wall	0.45%	0.14%		0.45%	10.2.1 Nominal shear stress demand τ_v on a wall shall			
Pt as % of zone	1.79%	0.28%		1.79%	be estimated as:			
					$\tau = V_{u}$			
Shear Design (Analysis Forces)					$\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}}$,		
Design for shear along D					where V_{μ} is factored shear force	e, t _w thickness of the		
Critical Analysis Load Combination			:	20	web, and d_w effective depth of w			
Critical Load Combination			AD 1: LOAD CASE 1	L) +1.5 (LOAD 3: LOAD CASE 3 EQ	length of the wall), which may b			
Design shear force		Vuy	=	120.57 kN	rectangular sections.			
Axial Force		Pu	=	1,382.45 kN				
Shear Stress		Тvy	=	Vuy / (0.8 x B X D))				
			=	0.3349 N/mm ²	39.2 Design Shear Strength of	Concrete		
Pt (20% of vertical reinforcement)			= 0.207 %					
Beta			=	14.047	$\tau_{\rm c} = \frac{0.85\sqrt{0.8f_{\rm ck}}(\sqrt{1.6})}{6\beta}$	$+5\beta - 1)$		
Design shear strength,		Тс	=	0.3356 N/mm ²	и _с — <u>6</u> В			
Shear Strength Enhancement Factor			=	1 + 3 x Pu / (B x D x Fck)	where $\beta = 0.8 f_{ck}/6.89 p_t$, but			
			=	1.3687	1, and where $p = 0.8 f_{ck} / 0.89 p_t$, but	not icss tildli		
Shear Strength Enhancement Factor (max)		=	1.50		d As		
Shear Strength Enhancement Factor			=	1.3687	$P_{t} = \frac{100 A_{s}}{b_{s} d}$			
Enhanced shear strength (Tc x Enhancer	nent Factor)	Tc-e	=	0.459 N/mm ²	O _w d			
Design shear check			=	Tvy < Tc x Enhancement factor				
				Link for Shear Design along D are not required				
Design for shear along B								
Critical Analysis Load Combination			:	23				
Critical Load Combination	[13] : 0.9 (LOAD 1: LOAD CASE 1)		1: LOAD CASE 1)		40.2.2 Shear Strength of Members Compression	unaer Axiai		
Design shear force		Vux	=	73.53 kN				
Axial Force		Pu	=	1338.35 kN	For members subjected to axial co design shear strength of concrete,			
Shear Stress		Tvx	=	Vux / (0.8 x B X D))	shall be multiplied by the following			
			=	0.2043 N/mm ²				
Pt (20% of vertical reinforcement)			=	0.207 %	$\delta = 1 + \frac{3P_u}{A_g f_{ck}} \text{ but not } e$	vceeding 15		
Beta			=	14.047	$A_{g} f_{ck}$ but not e	Accounty 1.5		
Design shear strength,		Тс	=	0.3356 N/mm ²	where			
Shear Strength Enhancement Factor			=	1 + 3 x Pu / (B x D x Fck)	P_{μ} = axial compressive for	e in Newtons,		
			=	1.3569	$A_g = \text{gross area of the concrete}$			
Shear Strength Enhancement Factor (max)		=	1.505	and			
Shear Strength Enhancement Factor	,		=	1.3569	f_{ck} = characteristic compression	essive strength of		
Enhanced shear strength (Tc x Enhancer	pent Factor)	Тс-е	=	0.455 N/mm ²	concrete.	• • • •		
Design shear check			=	Tvy > Tc x Enhancement factor				

i bouilual y cicilicill	100 1000/0									
n Boundary element	T8@100c/c									
Secondary Links:										
Spacing	125		100	125	100					
Link Dia.	8		8	8	8					
	Normal Design	Shear Design	Ductile Design	Normal Zone	Ductile Zone					
		Required			Provided					
Note: Ductile Design Of Links Is Appli	able Only For Boundary Elements	5								
Fable For Links										
Special confining links to be provided	along full height in BE.		1							
					> min. steel required 0.25%					
				=	0.3351					
•				=		sqmm)/ m height				
Area of horizontal steel provided				Area of bar	provided x 1000 x 2 / spacing					
				=	-	nm	but need not be less than 100 mm.			
. 5				=	Max. longitudinal bar dia / 4		legs of miks of ties is minited to 200 mm,			
Diameter of special confining link				=	8 r	•	legs of links or ties is limited to 200 mm,			
				=	35.040 s	sqmm	maximum distance between cross-ties/parallel			
Area of special confining link, Ash				=	0.05 x Sv x h x (Fck/Fy)		c) 100 mm but may be relaxed to 150 mm, if			
		Max (Along B, Along D)			116.33 r	nm	reinforcement bars; and			
				=	116.33 mm		b) 6 times diameter of the smallest longitudinal			
Along D		(BE Zone - Cover + Link D	ia + Main Rebar D	ia / 2 + Link Dia) / (No of Rebars Along D -1)		boundary element;			
Along B				=	108.00 r	nm	a) 1/3 of minimum member dimension of the			
Hoop dimension, h			(B - 2 x Cove	er + 2 x Link Dia) / (No of Rebars Along B -1)			and have a spacing not more than,			
Hence Link spacing, Sv				=	100 r					
Spacing				=	150 r		$A_{\rm sh} = 0.05 \ s_{\rm v} \ h \ \frac{f_{\rm ck}}{f_{\rm v}}$			
6 X Smallest Longitudinal Bar Dia				=	60 r		f			
B/3				=	100 r		reinforcement throughout their height, given by			
Min. Lateral dimension of column, B				=	300 r	nm	per 10.4.1, shall be provided with special confining			
Special confining reinforcement as p	er IS 13920 - 2016						10.4.4 Boundary elements, where required as			
Spacing considered				=	125 r					
Maximum				=	450 r					
3 x B				=	900 r		c) 450 mm.			
D/5				=	300 r	nm	b) 3 times thickness t_w of web of wall; and			
Spacing of horizontal reinforcement	s minimum of following									
Thus, Spacing				=	125 r	nm	a) 1/5th horizontal length L_w of wall;			
Spacing Required for Links					134 r	nm	reinforcement shall not exceed smaller of;			
Diameter of main horizontal steel				=	8 r		10.1.9 The maximum spacing of vertical or horizontal			
Area of Horizontal Links					750 s		thickness of that part.			
Ptv min				=	0.525 %	%	used in any part of a wall shall not exceed 1/10th of the			
Pvweb				=	0.0025		10.1.8 The largest diameter of longitudinal steel bars			
Ph				=	0.0025					
tw				=	300 r	nm				
Type of wall				h	w/Lw > 2 Hence, Slender wall					
hw/Lw				=	2.44					
Lw				=	1,500 r					
hw				=	3,658 r	nm				
Horizontal reinforcement as per type	of wall									
Normal Links										
Links in the zone where special confir	ing links are not required									
Main Links										