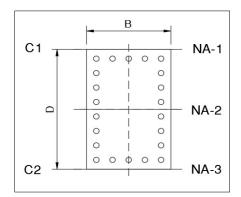

TITLE :DESIGN OF COLUMNSUB -TITLE :DESIGN OF COLUMN FOR CRACK WIDTH WITH AXIAL FORCE AND BIAXIAL MOMENTSCODE OF PRACTICE :IS 456:2000

User Input			
Column Number	=	C1	
Width of Column, B	=	600 mm	
Depth of column,D	=	900 mm	
Grade Of Steel,Fy	=	500 N/sqmm	
Grade of Concrete, Fck	=	50 N/sqmm	
Clerar Cover,Cc	=	50 mm	
Final Critical Design Forces			
Axial force,Pu	=	1000 kN	
Moment about X axis,Mux	=	-900.12 kNm	
Moment about Y axis, Muy	=	50.007 kNm	
Reinforcement Provided	=	22-T32	
Pt Calculated	=	3.28 %	
No of rebars along D	=	8 Nos	
No of rebars along B (Including corner b	oebars) =	5 Nos	
Corner Reinforcement - Dia	=	32 mm	
Permissible Crack width	=	0.2 mm	
Elastic Modulus of steel	=	200000	
Critical location	=	lop Joint	
Area of corner reinforcement, Ast	=	PI()/4x32^2	
	=	804.25 sqmm	
Cover to centre of rebar	=	50+32/2	
	=	66 mm	
c/c distance between rebars along Wid	th =	(600-66x2)/(5-1)	
	=	117.00 mm	
c/c distance between rebars along Dept	th =	(900-66x2)/(8-1)	
	=	109.71 mm	
Effective depth of the section, deff	=	900-66	
	=	834.00 mm	
Resultant Moment,Mud-x	=	SQRT(-900.1209^2 + 50.0067	'^2)
	=	901.51 kNm	

Stress Strain Diagram:

=

= =


Maximum Permissble compressive stress in cor

Maximum Permissble tension stress in Steel

50/3 16.67 N/sqmm 00x 0.55 275.00 N/sqmm Table 21 (IS 456-2000)

Table 22 (IS 456-2000)

Above is the stress-strain diagram used for computation of crack width.

The neutral axis location is calculated iteratively, based on the principles of equilibrium as below -

- 1 For the final position of the neutral axis, the sum of axial forces of the section is equal to the applied axial force, Fc (concrete) + Fc (Steel) + Ft (Steel) = P
- 2 For the final position of the neutral axis, the sum of moments about the neutral axis is equal to the moment of the applied force about the neutral axis,
 - Mc (concrete) + Mc (Steel) + Mt (Steel) = P * N

Computing Procedure:

The software works on an iterative algorithm, which calculates the equilibrium position of the neutral axis and establishes the force equilibrium. While performing calculations, stress is assumed to vary linearly from C1 to C2 For the NA-1 condition, stress at C1 is tensile and minimum. For the NA-2 condition, stress at C1 is compressive and maximum

The following are the principles for the calculation of section forces –

1 M = Modular Ratio = $280 / (3 \times \sigma cbc)$

where,

ocbc = Permissible compressive stress due to bending in concrete in N/sqmm

Table-21 (IS 456-2000)

- = 16.67 N/sqmm 2 Ec = Elastic modulus of concrete = 5000 x Sqrt (fck)
- 3 The concrete in tension is neglected.
- 4 The stress in bars in compression = M * Ec * Equivalent stress in concrete at that location
- 5 The stresses in individual bars of reinforcement are calculated as per their actual location and their perpendicular distance from the neutral axis

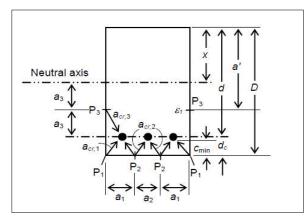
There are three possible locations of NA -

- 1 NA-1 = Neutral axis is beyond the section Column is in tension
- 2 NA-2 = Neutral axis is within the section Column is in partial tension
- 3 NA-3 = Neutral axis is below the section Column is in compression

From the above conditions, it is clear that for NA-3, the section is uncracked. For NA-1 and NA-2, the following checks are performed before calculating crack-width –

- 1 Stress at corner/level C1 = Maximum compressive stress = This should be less than permissible
- 2 Stress in corner bar near C2 = Maximum tensile stress in reinforcement = This should be less than permissible

After finding the NA position, and confirming that stresses at C1 and for a bar near C2 are within the permissible limit, the following calculations are performed for calculating crack width and defining the adequacy –


1 Epsilon (strain) at C2 is calculated from NA position and stress at C2

2 Crack-width is calculated as = Wcr = 2.3 * Acr * Epsilon at C2

3 Crack-width check at C2 = This should be less than the permissible value of crack-width.

The formula in step 2 above is available in the technical paper

"crackwidth calculation for column subjected to Biaxial Bending_R. Gong and S. Cao". Example showing calculation of Acr

As the above process is iterative, For the Validation of this example, section capacity is calculated for a given column size and reinforcement arrangement and section capacity is calculated as per the available stress in the concrete and reinforcement.

Based on the available stress in concrete and steel, we can check the section capacity and match with the design forces. If the capacity and the design forces are same, then it can be considered that the stresses calculated in the concrete and steel are correct.

Crack width Design calculation report from RCDC,

Crack Width Check as per IS 456 + IS 13920 - 2016

Location	Bottom	Top
Critical Load Combination	10001	10001
Member Force		
P (kN)	1000.3998	1000.3998
Mx (kNm)	900.1209	900.1209
My (kNm)	50.0067	50.0067
Reinforcement-Total	22-T32	22-T32
Corner Reinforcement - Dia	32	32
Ast - corner reinforcement - mm2	804.2477	804.2477
Neutral Axis Angle (Deg)	86.8202	86.8202
Neutral axis location from compressive corner (mm)	343.9969	343.9969
acr (mm)	77.3381	77.3381
Check for Stress in Steel		
Fst (N/sqmm)	-128.451	-128.451
FstPerm (N/sqmm)	275	275
Check for Stress in Concrete		<i>a</i>
Fc (N/sqmm)	15.2226	15.2226
FcPerm (N/sqmm)	16.6667	16.6667
Crack Width Check		
Epsilon-deff, 21	0.0007	0.0007
Wer (mm)	0.1235	0.1235
WcrPerm (mm)	0.2	0.2
for Stress in Concrete	= 15.223 N/sq	
for Stress in steel	= 128.45 N/sq	mm
aiton	= 343.99 mm	
below NA	= 834-343.99	

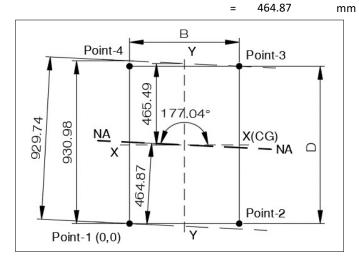
=

=

=

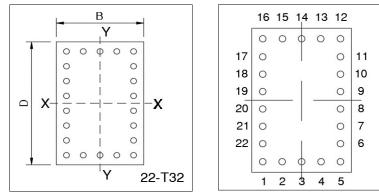
moduluar ratio		

Clause B-1.3 (IS 456-2000)

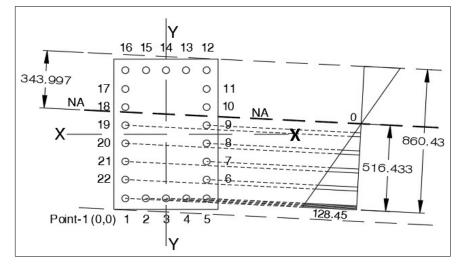

490.01 mm

280/(3x50/3)

5.6


IS Code - Column Crack-width Validation sheet

Column Reinforcement arrangement				
column Remorcement arrangement	В			
	Y	-		
		0 0		
	0	0		
	0	0		
		0	- x	
		0	~	
		0		
		0 0		
	Y			
	ř	2	22-T32	
Calculation of Section Capacity:				
Load Angle -Radian		=		.1209/50.0067))
		=	1.52	Radian
Load Angle (Degree)		=	1.5153x180/Pi(
		=	86.82	Degree
NA angle-radian (approximate)		=	1.5153+Pi()/2	
NA susta Danua		=	3.09	Radian
NA angle-Degree		=	3.09x180/Pi()	Dester
slope of NA		=	177.04 tan(3.09)	Degree
slope of INA		=	-0.052	
Sin (Pi - NA)		=	sin(Pi()-3.09)	
		=	0.052	
Area of concrete		=	00x900	
		=	540000.00	sqmm
Cg-x		=	600/2	• 4
-0		=	300.00	mm
Сд-у		=	900/2	
		=	450.00	mm
Y-intersection of line passing through P	t-3 =	=	900 - (-0.05163	85) x600
		=	930.98	mm
Y-intersection of line passing through c	g =	=	450 - (-0.05163	85) x300
		=	465.49	mm
Perpendiculat distance bet'n Line throu	igh Pt-3 and (0,0)	=		0.0516385x0.0515698
		=	929.74	mm
X-intersection of line passing through P	t-3	=	(0-930.9831)/-0	
		=	18028.86	mm
X-intersection of line passing through c	g	=	(0-465.49155)/	
Demondiaulan distance boths time three	rah CC and (0.0)	=	9014.43	mm
Perpendicular distance bet'n Line throu	ign CG and (U,U)	=	9014.4282x0.0	
		=	464.87	mm



IS Code - Column Crack-width Validation sheet

Rebar Arrangement:

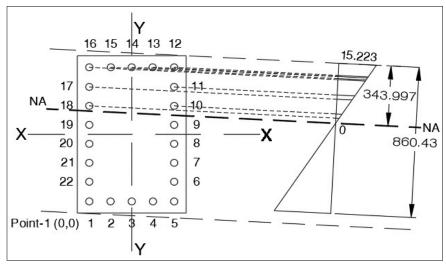
Rebar below and above the NA are shown in the above sketch

Tensile Stress at center of rebar -1 = 128.45 N/sqmm

As stress variation is linear, stress at each rebar center is calculated with respect to NA the location.

Stress in each rebar is multiplied by the area of the rebar to get the axial force in each rebar.

Summation of axial force in each rebar below the NA gives the axial tension force.


to get the Moment capacity, force in each rebar is multipled with the perpendicular distance between rebar center and CG

Sr.No	X- coordin ate from Point-1 (mm)	Y- coordin ate from Point-1 (mm)	Diamet er	Area (sqmm)	l.	X- intersectio n from 0,0 (mm)		e from point-3	e from NA (mm)	(mm)	Stress @ CG (N/sqm m)	Stress @ NA (N/sqm m)	Force @ CG (kN)	Moment @ CG (kN- m)
1	66.0	66.0	32.0	804.2	69.41	1344.12	69.32	860.43	-516.4	-395.6	128.5	128.45	103.3064	-40.86352
2	183.0	66.0	32.0	804.2	75.45	1461.12	75.35	854.40	-510.4	-389.5	126.5	126.95	102.0995	-39.77007
3	300.0	66.0	32.0	804.2	81.49	1578.12	81.38	848.36	-504.4	-383.5	124.5	125.45	100.8925	-38.69118
4	417.0	66.0	32.0	804.2	87.53	1695.12	87.42	842.33	-498.3	-377.5	122.6	123.95	99.68557	-37.62686
5	534.0	66.0	32.0	804.2	93.57	1812.12	93.45	836.29	-492.3	-371.4	120.6	122.45	98.47862	-36.5771
6	534.0	175.7	32.0	804.2	203.29	3936.78	203.02	726.73	-382.7	-261.9	85.0	95.196	76.56099	-20.04776
7	534.0	285.4	32.0	804.2	313.00	6061.44	312.59	617.16	-273.2	-152.3	49.5	67.943	54.64336	-8.321373
8	534.0	395.1	32.0	804.2	422.72	8186.10	422.16	507.59	-163.6	-42.7	13.9	40.691	32.72573	-1.39794
9	534.0	504.9	32.0	804.2	532.43	10310.76	531.72	398.02	-54.0	66.9	-21.7	13.439	8.885131	0.593984

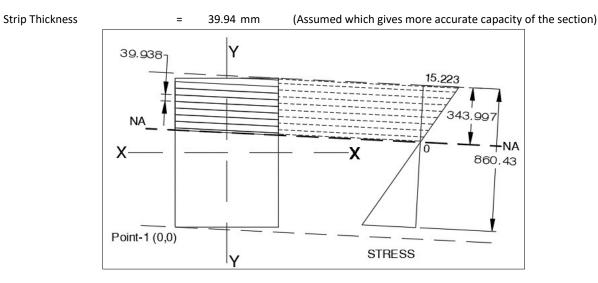
Rebar Location from left bottom corner and anti-clockwise

10	534.0	614.6	32.0	804.2	642.15	12435.42	641.29	288.45	55.5	176.4	-57.3	-13.81	0	0
11	534.0	724.3	32.0	804.2	751.86	14560.08	750.86	178.88	165.1	286.0	-92.9	-41.07	0	0
12	534.0	834.0	32.0	804.2	861.57	16684.74	860.43	69.32	274.7	395.6	-128.5	-68.32	0	0
13	417.0	834.0	32.0	804.2	855.53	16567.74	854.40	75.35	268.6	389.5	-126.5	-66.82	0	0
14	300.0	834.0	32.0	804.2	849.49	16450.74	848.36	81.38	262.6	383.5	-124.5	-65.32	0	0
15	183.0	834.0	32.0	804.2	843.45	16333.74	842.33	87.42	256.6	377.5	-122.6	-63.82	0	0
16	66.0	834.0	32.0	804.2	837.41	16216.74	836.29	93.45	250.5	371.4	-120.6	-62.32	0	0
17	66.0	724.3	32.0	804.2	727.69	14092.08	726.73	203.02	141.0	261.9	-85.0	-35.06	0	0
18	66.0	614.6	32.0	804.2	617.98	11967.42	617.16	312.59	31.4	152.3	-49.5	-7.811	0	0
19	66.0	504.9	32.0	804.2	508.27	9842.76	507.59	422.16	-78.2	42.7	-13.9	19.442	12.85397	0.549081
20	66.0	395.1	32.0	804.2	398.55	7718.10	398.02	531.72	-187.7	-66.9	21.7	46.694	37.55354	-2.51051
21	66.0	285.4	32.0	804.2	288.84	5593.44	288.45	641.29	-297.3	-176.4	57.3	73.946	59.47117	-10.49189
22	66.0	175.7	32.0	804.2	179.12	3468.78	178.88	750.86	-406.9	-286.0	92.9	101.2	81.3888	-23.27623
												Total	868.55	-258.43

Calculation of Rebar axial and moment capacity (Rebars above the NA)

Compressive Stress at extreme edge of concret 15.22 N/sqmm =

As stress variation is linear, stress at each rebar center is calculationcalculated with respect to NA location.


Stress in each rebar is multiplied by the modulus of elasticity (M) and the area of the rebar to get the axial force in each rebar. The summation of axial force in each rebar above the NA gives the axial compressive force. The concrete stress is deducted from the reinforcement stress at the rebar location to avoid duplication of force.

To get the Moment capacity, force in each rebar is multipled with the perpendicular distance between rebar center and CG

Rebar Location from left bottom con	rner and anti-clockwise
-------------------------------------	-------------------------

Sr.No	ate from Point-1 (mm)	Y- coordin ate from Point-1 (mm)	Diamet er	Area (sqmm)	to NA (mm)	intersectio n from 0,0 (mm)	ion from 0,0 (mm)	point-3 (mm)	e from NA (mm)	(mm)	Stress @ NA (N/sqm m)	Stress @ NA (N/sqm m)	Force @ CG (kN)	Moment @ CG (kN- m)
1	66.0	66.0	32.0	804.2	69.41	1344.12	69.32	860.43	-516.4	-395.6	0.0	0	0	0
2	183.0	66.0	32.0	804.2	75.45	1461.12	75.35	854.40	-510.4	-389.5	0.0	0	0	0
3	300.0	66.0	32.0	804.2	81.49	1578.12	81.38	848.36	-504.4	-383.5	0.0	0	0	0
4	417.0	66.0	32.0	804.2	87.53	1695.12	87.42	842.33	-498.3	-377.5	0.0	0	0	0
5	534.0	66.0	32.0	804.2	93.57	1812.12	93.45	836.29	-492.3	-371.4	0.0	0	0	0
6	534.0	175.7	32.0	804.2	203.29	3936.78	203.02	726.73	-382.7	-261.9	0.0	0	0	0
7	534.0	285.4	32.0	804.2	313.00	6061.44	312.59	617.16	-273.2	-152.3	0.0	0	0	0
8	534.0	395.1	32.0	804.2	422.72	8186.10	422.16	507.59	-163.6	-42.7	0.0	0	0	0
9	534.0	504.9	32.0	804.2	532.43	10310.76	531.72	398.02	-54.0	66.9	-2.4	0	0	0
10	534.0	614.6	32.0	804.2	642.15	12435.42	641.29	288.45	55.5	176.4	2.5	18.187	12.65026	2.231757
11	534.0	724.3	32.0	804.2	751.86	14560.08	750.86	178.88	165.1	286.0	7.3	54.068	37.60758	10.75532
12	534.0	834.0	32.0	804.2	861.57	16684.74	860.43	69.32	274.7	395.6	12.2	89.948	62.56489	24.74795

13	417.0	834.0	32.0	804.2	855.53	16567.74	854.40	75.35	268.6	389.5	11.9	87.972	61.19055	23.83511
14	300.0	834.0	32.0	804.2	849.49	16450.74	848.36	81.38	262.6	383.5	11.6	85.997	59.81621	22.93887
15	183.0	834.0	32.0	804.2	843.45	16333.74	842.33	87.42	256.6	377.5	11.4	84.021	58.44187	22.0592
16	66.0	834.0	32.0	804.2	837.41	16216.74	836.29	93.45	250.5	371.4	11.1	82.045	57.06753	21.19613
17	66.0	724.3	32.0	804.2	727.69	14092.08	726.73	203.02	141.0	261.9	6.2	46.164	32.11022	8.408172
18	66.0	614.6	32.0	804.2	617.98	11967.42	617.16	312.59	31.4	152.3	1.4	10.284	7.152905	1.089281
19	66.0	504.9	32.0	804.2	508.27	9842.76	507.59	422.16	-78.2	42.7	-3.5	0	0	0
20	66.0	395.1	32.0	804.2	398.55	7718.10	398.02	531.72	-187.7	-66.9	0.0	0	0	0
21	66.0	285.4	32.0	804.2	288.84	5593.44	288.45	641.29	-297.3	-176.4	0.0	0	0	0
22	66.0	175.7	32.0	804.2	179.12	3468.78	178.88	750.86	-406.9	-286.0	0.0	0	0	0
	-											Total	388.60	137.26

Compressive Stress at extreme edge of concret 15.22 N/sqmm =

As stress variation is linear, stress at each strip center is calculationcalculated with respect to NA location.

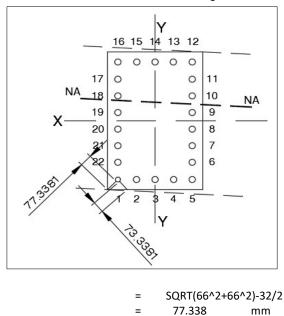
Stress in each strip is multiplied by thearea of the strip to get the axial force in each strip. The summation of axial force in each strip above the NA gives the axial compressive force.

to get the Moment capacity, force in each strip is multipled with the perpendicular distance between strip center and CG

Concrete	Capacity
----------	----------

No	Y-axis- intersec tion (mm)	length of strip (mm)	Area (sqmm)	Perpen dicular distanc e from Point-1 (mm)	Distanc e from Point-3 (mm)	Distance from NA line (mm)	Distance from CG line (mm)	Stress in concret e (N/sqm m)	Strip (kN)	Momen t (kN- m)
1	20	360.56	14400	19.969	909.78	-565.79	-444.90	0	0	0
2	60	600.93	24000	59.908	869.84	-525.85	-404.96	0	0	0
3	100	600.93	24000	99.846	829.90	-485.91	-365.03	0	0	0
4	140	600.93	24000	139.78	789.96	-445.97	-325.09	0	0	0
5	180	600.93	24000	179.72	750.02	-406.03	-285.15	0	0	0
6	220	600.93	24000	219.66	710.08	-366.09	-245.21	0	0	0
7	260	600.93	24000	259.6	670.14	-326.15	-205.27	0	0	0
8	300	600.93	24000	299.54	630.21	-286.22	-165.33	0	0	0
9	340	600.93	24000	339.48	590.27	-246.28	-125.40	0	0	0
10	380	600.93	24000	379.41	550.33	-206.34	-85.46	0	0	0
11	420	600.93	24000	419.35	510.39	-166.40	-45.52	0	0	0
12	460	600.93	24000	459.29	470.45	-126.46	-5.58	0	0	0
13	500	600.93	24000	499.23	430.51	-86.52	34.36	0	0	0
14	540	600.93	24000	539.17	390.58	-46.59	74.30	0	0	0

15	580	600.93	24000	579.11	350.64	-6.65	114.23	0	0	0		
16	620	600.93	24000	619.05	310.70	33.29	154.17	1.4732	35.357	5.4511		
17	660	600.93	24000	658.98	270.76	73.23	194.11	3.2406	77.775	15.097		
18	700	600.93	24000	698.92	230.82	113.17	234.05	5.008	120.19	28.131		
19	740	600.93	24000	738.86	190.88	153.11	273.99	6.7754	162.61	44.553		
20	780	600.93	24000	778.8	150.95	193.04	313.93	8.5428	205.03	64.363		
21	820	600.93	24000	818.74	111.01	232.98	353.86	10.31	247.44	87.562		
22	860	600.93	24000	858.68	71.07	272.92	393.80	12.078	289.86	114.15		
23	900	600.93	24000	898.61	31.13	312.86	433.74	13.845	332.28	144.12		
								Total	1470.5	503.43		
Check f	or Axial	force ca	apacity									
Axial fo	rce fron	n rebars	below N	JA		=	868.55		kN			
Axial fo	rce fron	n rebars	above N	IA		=	388.60 kN					
Axial fo	rce fron	n concre	te abov	e NA		=	1470.6	kN				
Total A	xial forc	e capaci	ty of sec	tion		=	1470.55-868.55+388.6					
						=	990.6 kN					
Axial fo	rce on s	ection				=	1000	kN				
Check							Ok					
Check f	or Bend	ling Mor	nent Ca	pacity								
Momer	nt capac	ity from	rebars b	below N	A	=	-258.43	kN-m				
Momer	nt capac	ity from	rebars a	above N	A	=	137.26	kN-m				
Momer	nt capac	ity from	Concret	te above	NA	=	503.43	kN-m				
Total A	xial forc	e in sect	ion			=	503.43	258.43+	137.26			
						=	899.1	kN-m				
Resulta	nt Mom	ent,Mu	d-x			=	901.51	kN				
Check							Ok					


Note:

The variation in the axial force and moment capacity is due to rounding off the stress values and due to strip thickness. The top most strip CG lies outside the section thus ignored in the capacity calculation. The margin for error is kept less than the 1% for the validation

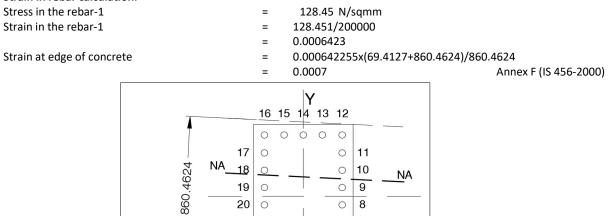
Computation of Crack Width

acr calculation:

The maximum stresses are at rebar no.01, thus acr value would be calculated for this rebar. acr value would be maximum distance from concrete surface to edge of rebar.

=

mm


IS Code - Column Crack-width Validation sheet

Strain in rebar calculation:

Computation of crackwidth

Permissible Crack width

Check

0 7

0

0 0 0 0

3 Y 4 5

0.1235 mm

Ok

0.2 mm

6

2.3x0.00069407x77.3381

21 0

22

69.4127

0

0-

1

=

=

=

2

Page 9