TITLE :	DESIGN OF Shear column	with Boundary Ele	ement					
SUB -TITLE :	DESIGN OF COLUMN FOR							
CODE OF PRACTICE :	IS 456-2000 + 13920-201	6						
DESIGN TYPE :	LIMIT STATE DESIGN							
NOTE :- 1) User to Input data in cell marked as Blu	ie.							
2) Design fo	llows Limit State Method.							
User Input						Reference / Comm	nents	
PARAMETERS :	RCDC	SYMBOL		INPUT	UNITS			
column				W7				
Level				4.2 m To 7.858 m				
Width of column	column B	В	=	500	mm	User Input		
Depth of column	column D	D	=	800	mm	User Input		
Grade of Concrete	Grade Of Concrete	fck	=	25	N/mm ²	User Input		
Grade of Steel (Main Steel)	Grade Of Steel	fy	=	415	N/mm ²	User Input		
Grade of Steel (Shear reinforcement)	Grade Of Steel	fyshear	=		N/mm ²	constant		
Cover to reinforcement	Clear Cover	Cc	=		mm	User Input		
Floor to floor height of the column		hw	=	12,800		User Input		
Beam depth along D (left side)		db1	=		mm	User Input		
Beam depth along D (Right side)		db2	=	800	mm	User Input		
Beam depth along B (left side)		bb1	=	800	mm	User Input		
Beam depth along B (right side)		bb2	=	800	mm	User Input		
Maximum % steel		ptmax	=	4.00	%	User Input		
Partial Factor of Safety for Material Concrete		Yc	=	1.50	constant	User Input		
Partial Factor of Safety for Material Steel		Ys	=	1.15	constant	User Input		
column Type	column Type	•5	=	UnBraced		User Input		
Minimum eccentricity check	Minimum eccentricity ch	eck	=	One Axis at a Time		User Input		
Code defined D/B ratio	Code defined D/B ratio		=	4				
Effective Length Factor along Major Axis			=	0.94		User Input		
Effective Length Factor along Minor axis			=	0.85		User Input		
Minimum % reinforcement in column (User defined	1)		=	0.40	%			
Spacing Round Factor for Links			=	25.00	mm			
Clear Floor Height @ B	Clear Floor Height @ B		=	12,000	mm	=H-(bb1,bb2)		
Clear Floor Height @ D	Clear Floor Height @ D		=	12,000	mm	=H-(db1,db2)		
Flexural Design (Analysis Forces)								
Critical Analysis Load Combination				19				
Load Combination			=	[9] : 1.5 (LOAD 1: LOAD CASE 1) -1.5 (LOAD 4: LO	OAD CASE 4 EQ-Y)		
Critical Location			=	Top Joint				
Axial force		Pu	=	757.35	kN	User Input		
Bending Moment along D		Mux	=	5.40	kNm	User Input		
Bending Moment along B		Muy	=	-114.70	kNm	User Input		
Shear force from Analysis along D		Vux	=	-94.24		User Input		
Shear force from Analysis along B		Vuy	=	208.82	kN	User Input		

Shear Design (Analysis Forces)					
Along D					
Critical Analysis Load Combination			16		
Load Combination			[6] : 1.5 (LOAD 1: LOAD CASE 1) +1.5 (LOAD 3: L	OAD CASE 3 FO-X)	
Shear force from Analysis along D	Vux	=	263.00 kN		
Axial force	Pu	=	573.29 kN		
Along B			575.25 KN		
Critical Analysis Load Combination			18		
Load Combination			[8] : 1.5 (LOAD 1: LOAD CASE 1) +1.5 (LOAD 4: L	OAD CASE 4 FO-Y)	
Shear force from Analysis along B	Vux	=	184.21 kN		
Axial force	Pu	=	523.70 kN		
Reinforcement Provided in column			525.70 KN		
Diameter of longitudinal reinforcement	dia	=	12 mm	User Input	
Numbers of Rebars	Nos	=	20 Nos	User Input	
Diameter of longitudinal reinforcement	dia	=	- mm		
Numbers of Rebars	Nos			User Input	
No of Rebars Along B		=	- Nos	User Input	
	Nos	=	7 Nos	User Input	
No of Rebars Along D	Nos	=	5 Nos	User Input	
Total area of Longitudinal reinforcement			2261.95 sqmm		
Shear Links					
Ductile Links					
Link Diameter		=	8 mm		
Link Spacing		=	70 mm		
Other Links				1	0 SPECIAL SHEAR WALLS
Link Diameter		=	8 mm		
Link Spacing		=	175 mm		0.1 General Requirements
No of Links along D		=	5		
No of Links along B		=	7		0.1.3 The minimum ratio of length of wall to its
Step 1) Check Code Defined D/B Ratio				t	hickness shall be 4.
D/B Ratio			1.6		
Check	D/B Ratio	=	Hence, Design as Column	Clause 10.1.3 -	- IS 13920
Step 4) Effective Length Calculation					
Effective Length Factor along Major Axis			0.94	Annex-E	
Effective Length Factor along Minor axis			0.85	Annex-E	
Step 5) Minimum Eccentricity Check					25.4 Minimum Eccentricity
Check	Since Axial Force	e is compressive, Min. Ec	centricity check to be performed		All columns shall be designed for minimum
Most critical case is with Min. Eccentricity			X-direction	Clause 25.4	eccentricity, equal to the unsupported length of column/
Actual Eccentricity Along D :		Clea	r Floor Height @ D / 500 + B / 30		500 plus lateral dimensions/30, subject to a minimum
			50.67 mm		of 20 mm. Where bi-axial bending is considered, it is
			Max (Actual Eccentricity, 20)		sufficient to ensure that eccentricity exceeds the
Minimum Eccentricity Along D :			50.67 mm		minimum about one axis at a time.
Mminx			Pu x Minimum Eccentricity		
			38.37 kNm	Clause 25.4	
Actual Eccentricity Along B :			-		25.3 Slenderness Limits for Columns
Minimum Eccentricity Along B :			0.00 mm Max (Actual Eccentricity,20) 0.00 mm		25.3.1 The unsupported length between end restraints shall not exceed 60 times the least lateral dimension
Mminy			- 0.00 kNm		of a column.

	-1
EAR WALLS	3
quirements	_
num ratio of 4.	length of wall to its
	_
um Eccentrici	ity
equal to the unsu ral dimensions Vhere bi-axial b	esigned for minimum apported length of column/ /30, subject to a minimum bending is considered, it is eccentricity exceeds the

Step 5) Slenderness Check							
Max Slenderness Ratio(Clear Floor Height @ B/	B)				12000/500		25.1.2 Short and Slender Compression Members
					24.00		A compression member may be considered as sh
Check					<= 60, Hence OK	Clause 25.3	
Column Is Unbraced Along D							when both the slenderness ratios $\frac{l_{ex}}{D}$ and $\frac{l_{ey}}{b}$ are 1
Slenderness Check Along D:							D b
Effective Length Factor along Major Axis					0.94		than 12:
Effective Length (Unsupported Length x Effective	e Length Factor)				12000X0.94	1	20.7.1 The additional moments M and M shall be
					11280.00 mm	n	39.7.1 The additional moments M_{xx} and M_{yy} shall be calculated by the following formulae:
Slenderness Ratio					Effective Length / D		calculated by the following follitude.
					14.10		$P_n D \left(l_m\right)^2$
					column Slender Along D		$M_{\rm ax} = \frac{P_{\rm u}D}{2000} \left\{ \frac{l_{\rm ex}}{D} \right\}^2$
Slenderness moment along D					(Pu D/ 2000) (Ley/D)^2		$(1)^{2}$
					60.23 kNr	m Clause 39.7.1	$M_{\rm ay} = \frac{P_{\rm u}b}{2000} \left\{ \frac{l_{\rm ey}}{b} \right\}^2$
Calculation of Slenderness Moment			Pu	=	757.35 kN		- 2000 [b]
			Pd	=	2237.17 kN		where
			Puz	=	5178.58 kN		$P_{\rm u}$ = axial load on the member,
Reduction factor 'k' for slenderness moment					(Puz - Pu) / (Puz - Pd) < = 1		
					1.50		l_{ex} = effective length in respect of the major
			k		1.00	Clause 39.7.1.	axis,
Slenderness Moment along D			MsIndx		60.23 kNr		l_{cy} = effective length in respect of the minor axis,
Column Is Unbraced Along B							D = depth of the cross-section at right angles
Slenderness Check Along B:							to the major axis, and
Effective Length Factor along Major Axis					0.85		b = width of the member.
Effective Length (Unsupported Length x Effective	e Length Factor)				12000X0.85		
	0 ,				10200.00 mm	n	
Slenderness Ratio					Effective Length / B		39.7.1.1 The values given by equation 39.7.1 may be
					20.40		multiplied by the following factor:
					column Slender Along B		
Slenderness moment along B					(Pu D/ 2000) (Ley/D)^2		$k = \frac{P_{uz} - P_u}{P_{uz} - P_b} \le 1$
					78.79 kNr	m Clause 39.7.1	$P_{\rm uz} - P_{\rm b}$
Calculation of Slenderness Moment			Pu	=	757.35 kN		$D = 0.45 f A \pm 0.75 f A$
			Pb	=	2098.57 kN		$P_{\rm uz} = 0.45 f_{\rm ck} \cdot A_{\rm c} + 0.75 f_{\rm y} \cdot A_{\rm uc}$
			Puz	=	5178.58 kN		
Reduction factor 'k' for slenderness moment					(Puz - Pu) / (Puz - Pd) < = 1		10.3 Design for Axial Force and Bending Moment
					1.44		10.3.1 Design moment of resistance M_{μ} of the wall
			k		1.00	Clause 39.7.1.	
Slenderness Moment along B			MsIndy		78.79 kNr		compressive axial load shall be estimated in accordance
					,, ,, ,,		with requirements of limit state design method given
Calculation of Design Moment							in IS 456, using the principles of mechanics involving
Direction	Manalysis	Mmin (Abs)	Mdesign	MsIndx (Abs)	Mdesign-final		equilibrium equations, strain compatibility conditions
Direction	A	B	C				and constitutive laws.
Major Avic Mux	5.40	38.37	38.37	60.23	98.60		
Major Axis - Mux							The moment of registeres of shades mater when
Minor Axis - Muy	-114.70	0.00	-114.70	78.79	-193.49		The moment of resistance of slender rectangular structural wall section with uniformly distributed
Where							vertical reinforcement may be estimated using
A =		Moments directly from	analysis				expressions given in Annex A. Expressions given in
B =		, Moments due to minim					Annex A are not applicable for structural walls with
C =		Maximum of analysis m		entricity = Max (A.I	3)		boundary elements.
E =		Moment due to slender		,	-		
- F =		Final design Moment = I		D- Ton Bottom) +	F		

Final Critical Design Forces								39.6 Memb
Pu	=	757.35	kN					and Biaxial
Mux	=	98.60					1	
Muy	=	-193.49						The resistar and biaxial
								assumption
Resultant Moment (Combined Action)								so chosen a
Moment Capacity Check								moments ab
Pt Calculated				=	0.57			may be desi
Reinforcement Provided				=	20-T12			may be des
Load Angle				=	Tan ⁻¹ (Muy/Mux)			
				=	63.00		c)	The min
MRes				=	217.17			provided
MCap				=	325.34			columns
Capacity Ratio				=	MRes/ MCap		d)	The bar
				=	0.67			diameter
Check					0.67<=1			
ihear Design (Analysis Forces) Shear Calculation from Beam Capaci Along D:	ty							
Height of column above level considered	(hst1)		=	6000	mm		751	Design Sh
Height of column below level considered			=		mm		1.5	Jesign Sh
Height (hst)	(11312)		=	12,800			The	lesign shea
			-	12,000	mun		of,	e orgin on er
Along B:	(1						01,	
Height of column above level considered			=		mm			a) factor
Height of column below level considered	(hst2)		=		mm		`	struct
leight (hst)			=	12,800	mm			
							1	o) factore
Beam Size	Beam angle w.r.t. column L	Torsion moment	Moment Capac	ity Beam @ Top				plastic
mm)	(deg)	(kNm)	Mu	Ast req	Ast pro	Mu cap		beams
			<i>4</i> · · · · ·			(1		ocume
			(kNm)	(sqmm)	(sqmm)	(kNm)		
400x800	0	0	(kNm)	(sqmm) 1231.55	(sqmm) 1344.6	(kNm)		1
400x800 400x800	0 270	0	308.43	1231.55	1344.6	353.25		1
400x800 400x800	0 270	0						1
400x800			308.43	1231.55 1039.59	1344.6 1231.5	353.25		1
400x800 Moment Capacity Beam @ Bottom	270	0	308.43 263.36	1231.55 1039.59 Resultant Momen	1344.6 1231.5 t	353.25 325.12	Bot Lx	
400x800 Moment Capacity Beam @ Bottom Mu	270 Ast req	0 Ast pro	308.43 263.36 Mu cap	1231.55 1039.59 Resultant Momen Top Ly	1344.6 1231.5 t Top Lx	353.25 325.12 Bot Ly	Bot Lx (kNm)	
400x800 Moment Capacity Beam @ Bottom Mu (kNm)	270 Ast req (sqmm)	0 Ast pro (sqmm)	308.43 263.36 Mu cap (kNm)	1231.55 1039.59 Resultant Momen Top Ly (kNm)	1344.6 1231.5 t Top Lx (kNm)	353.25 325.12 Bot Ly (kNm)	(kNm)	
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17	270 Ast req (sqmm) 861.69	0 Ast pro (sqmm) 1005.3	308.43 263.36 Mu cap (kNm) 271.67	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0	
400x800 Moment Capacity Beam @ Bottom Mu (kNm)	270 Ast req (sqmm)	0 Ast pro (sqmm)	308.43 263.36 Mu cap (kNm)	1231.55 1039.59 Resultant Momen Top Ly (kNm)	1344.6 1231.5 t Top Lx (kNm)	353.25 325.12 Bot Ly (kNm)	(kNm) 0 270.93	2
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72	270 Ast req (sqmm) 861.69	0 Ast pro (sqmm) 1005.3	308.43 263.36 Mu cap (kNm) 271.67	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2 where M_u^A
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72	270 Ast req (sqmm) 861.69	0 Ast pro (sqmm) 1005.3 1005.3	308.43 263.36 Mu cap (kNm) 271.67	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2 where M_u^A hogging m the column
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72	270 Ast req (sqmm) 861.69 861.69	0 Ast pro (sqmm) 1005.3 1005.3 Right	308.43 263.36 Mu cap (kNm) 271.67 270.93	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	where M_u^A hogging m the column one hoggin
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm)	0 Ast pro (sqmm) 1005.3 1005.3	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2) where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left	0 Ast pro (sqmm) 1005.3 1005.3 Right	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 0 mg B) (kNm) Right	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2) where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Top Bottom	270 Ast req (sqmm) 861.69 861.69 861.69 Mu Major (Along D) (kNm) Left 0	0 Ast pro (sqmm) 1005.3 1005.3 Right 353.25	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2 where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Top Bottom Shear along D:	270 Ast req (sqmm) 861.69 861.69 861.69 Mu Major (Along D) (kNm) Left 0	0 Ast pro (sqmm) 1005.3 1005.3 Right 353.25	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2) where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Top Bottom Shear along D: Sway Right	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0	0 Ast pro (sqmm) 1005.3 1005.3 Right 353.25 271.67	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2) where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Top Bottom Shear along D: Sway Right	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0	0 Ast pro (sqmm) 1005.3 1005.3 Right 353.25 271.67 1.4 x (Left,Bottom + Right	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2 where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Effective moment for Column Shear along D: Sway Right Vuy1	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0	0 Ast pro (sqmm) 1005.3 1005.3 Right 353.25 271.67	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2 where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Effective moment for Column Shear along D: Sway Right Vuy1 Sway Left	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0 0	0 Ast pro (sqmm) 1005.3 1005.3 Right 353.25 271.67 1.4 x (Left,Bottom + Right 38.64	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2 where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Effective moment for Column Shear along D: Sway Right Vuy1 Sway Left	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0	0 Ast pro (sqmm) 1005.3 1005.4 1005.3 1005.4 1005.3 1005.3 1005.4 1005.3 1005.4 1005.3 1005.4 1005.3 1005.4 1005.3 1005.4 1005.3 1005.4	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst kN	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2 where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Effective moment for Column Top Bottom Shear along D: Sway Right /uy1 Sway Left /uy2 Shear along B:	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0 0	0 Ast pro (sqmm) 1005.3 1005.3 Right 353.25 271.67 1.4 x (Left,Bottom + Right 38.64	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst kN	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	where M_u^A hogging m the column one hoggin and h_{st} the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Effective moment for Column Shear along D: Sway Right Vuy1 Sway Left Vuy2 Shear along B: Sway Left Sway Left	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0 	0 Ast pro (sqmm) 1005.3	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst kN	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2 where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Effective moment for Column Shear along D: Sway Right Vuy1 Sway Left Vuy2 Shear along B: Sway Left Sway Left	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0 	0 Ast pro (sqmm) 1005.3 1005.4 1005.3 1005.3 1005.4 1005.3 1005.4 1005.3 1005.3 1005.4 1005.3 1005.3 1005.4 1005.4 1005.4 1005.3 1005.3 1005.3 1005.4	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst kN ttom)/hst kN	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2 where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Effective moment for Column Shear along D: Sway Right Vuy1 Sway Left Vuy2 Shear along B: Sway Left Vux1	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0 	0 Ast pro (sqmm) 1005.3	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst kN ttom)/hst kN	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2) where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Effective moment for Column Shear along D: Sway Right Vuy1 Sway Left Vuy2 Shear along B: Sway Left Vux1 Sway Right	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0 	0 Ast pro (sqmm) 1005.3 1005.3 1005.3 271.67 1.4 x (Left,Bottom + Right 38.64 1.4 x (Left,Top + Right,Bot 29.71 1.4 x (Left,Bottom + Right 29.63	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst kN kN	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	2) where M_u^A hogging m the column one hoggin and h_s the s
400x800 Moment Capacity Beam @ Bottom Mu (kNm) 58.17 137.72 Effective moment for Column Top	270 Ast req (sqmm) 861.69 861.69 Mu Major (Along D) (kNm) Left 0 0 	0 Ast pro (sqmm) 1005.3 1005.4 1005.3 1005.3 1005.4 1005.3 1005.4 1005.3 1005.3 1005.4 1005.3 1005.3 1005.4 1005.4 1005.4 1005.3 1005.3 1005.3 1005.4	308.43 263.36 Mu cap (kNm) 271.67 270.93 Mu Minor (Alor Left 325.12 270.93 ,Top)/hst kN tom)/hst kN	1231.55 1039.59 Resultant Momen Top Ly (kNm) 353.25 0 ng B) (kNm) Right 0	1344.6 1231.5 t Top Lx (kNm) 0	353.25 325.12 Bot Ly (kNm) 271.67	(kNm) 0 270.93	1) where M_a^{A} hogging m the column one hoggin and h_{st} the s of beam se

Subjected to Combined Axial Load nding

of a member subjected to axial force ding shall be obtained on the basis of ven in 39.1 and 39.2 with neutral axis o satisfy the equilibrium of load and t two axes. Alternatively such members ed by the following equation:

am number of longitudinal bars column shall be four in rectangular six in circular columns.

hall not be less than 12 mm in

Force in Columns

rce demand on columns is the larger

hear force demand as per linear analysis; and

quilibrium shear force demand when ges are formed at both ends of the en by:

or sway to right:

$$h_{\rm u} = 1.4 \frac{\left(M_{\rm u}^{\rm As} + M_{\rm u}^{\rm Bh}\right)}{h_{\rm st}},$$

or sway to left:

$$h = 1.4 \frac{\left(M_{\rm u}^{\rm Ah} + M_{\rm u}^{\rm Bs}\right)}{h_{\rm st}},$$

 M_{u}^{Ab} , M_{u}^{Bs} and M_{u}^{Bb} are design sagging and ents of resistance of beams framing into opposite faces A and B, respectively, with oment and the other sagging (see Fig. 11); wheight. The design moments of resistance as shall be calculated as per IS 456.

Design for shear along D								
Critical Analysis Load Combination		:	16	j	10.2 Design for Shear Force			
Critical Load Combination	[6] : 1.5 (LOAD 1: LOAD CA	ASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ-X)					
Design shear force	Vuy	Vuy = 263.00			10.2.1 Nominal shear stress demand τ_v on a wall			
Design shear, Maximum (Vuy,Vuy1,Vuy2)			263.00	kN	be estimated as:			
Axial Force	Pu	=	573.29	kN	$\tau - V_{u}$			
Shear Stress	Tvy	=	Vuy / (0.8 x B X D))		$\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$			
		=	0.7070) N/mm ²	where <i>V</i> is fectored shear force t thickness of the			
Pt (50% of vertical reinforcement)		=	0.283		where V_u is factored shear force, t_w thickness of the			
Beta		=	10.266		web, and d_w effective depth of wall section (along the			
Design shear strength,	Тс	=		/ N/mm ²	length of the wall), which may be taken as $0.8 L_{\rm w}$ for			
Shear Strength Enhancement Factor		=	1 + 3 x Pu / (B x D x Fck)		rectangular sections.			
			1.1720		39.2 Design Shear Strength of Concrete			
		=						
Shear Strength Enhancement Factor (max)		=	1.50		$\tau_{c} = \frac{0.85\sqrt{0.8 f_{ck}} (\sqrt{1.+5\beta}-1)}{6\beta}$			
Shear Strength Enhancement Factor		=	1.1720		· · <u>6β</u>			
Enhanced shear strength (Tc x Enhancement Factor)	Тс-е	=		. N/mm ²				
Design shear check		=	Tvy > Tc x Enhancement factor		where $\beta = 0.8 f_{ck}/6.89 p_t$, but not less than 1, and			
			Shear Reinforcement required	l along D				
Links for shear design along D					$P_{t} = \frac{100 A_{s}}{b_{s} d}$			
Pt (20% of vertical reinforcement)		=	0.283	8 %	$b_{w}d$			
Effective Depth	Deff	=	744	mm				
Shear resisted by concrete along D	VcD	=	167.73	8 kN				
Shear to be resisted by shear reinforcement along D	VusD	=	95.27	′ kN				
Area of shear reinforcement required,	Asv-d	=	354.86	5 sqmm				
Master Link Rebar		=		mm				
Number of legs provided		=	5	mm				
Spacing of links prvd, Sv		=	175	mm				
Asv Provided		=	1436.16	i samm				
Design for shear along B								
Critical Analysis Load Combination		•	23	2				
Critical Load Combination	[12] • 0.0		ASE 1) -1.5 (LOAD 4: LOAD CASE 4 EQ-Y)		40.2.2 Shear Strength of Members under Axial			
Design shear force	Vux	=	184.21		Compression			
Design shear, Maximum (Vux,Vux1,Vux2)	Vux	-	184.21		For members subjected to axial compression P_{u} , the			
Axial Force	Du		523.70		design shear strength of concrete, given in Table 19,			
	Pu	=			shall be multiplied by the following factor :			
Shear Stress	Tvx	=	Vux / (0.8 x B X D))		3 <i>P</i> .			
		=		/ N/mm ²	$\delta = 1 + \frac{3P_u}{A_n f_{ct}}$ but not exceeding 1.5			
Pt (20% of vertical reinforcement)		=	0.283		8-01			
Beta		=	10.266		where			
Design shear strength,	Тс	=	0.3847	^v N/mm ²	P_{u} = axial compressive force in Newtons,			
Shear Strength Enhancement Factor		=	1 + 3 x Pu / (B x D x Fck)		$A_g = \text{gross area of the concrete section in mm}^2$,			
		=	1.1571		and			
Shear Strength Enhancement Factor (max)		=	1.50)	f_{ck} = characteristic compressive strength of			
Shear Strength Enhancement Factor		=	1.1571		concrete.			
Enhanced shear strength (Tc x Enhancement Factor)	Tc-e	=		5 N/mm ²				
Design shear check		=	Tvy > Tc x Enhancement factor					
			Shear Reinforcement required					

Pt (20% of vertical reinforcement) Effective Depth			Beff	=	0.283	mm				
Shear resisted by concrete along B				=	158.12					
Shear to be resisted by shear reinforcem	nent along B			=	26.09			c)	Pitch and diam	ı
Area of shear reinforcement required,				=	162.83				1) Pitch-The	
Master Link Rebar				=		mm				
Number of legs provided				=		mm			ment shall following c	
Spacing of links prvd, Sv				=	175					
Asv Provided				=	2010.62				i) The le	e
									compr	
Design Of Links									ii) Sixteen	n
Main Links									the lon	15
Links in the zone where special confining lin	nks are not required								tied; a	
Normal Links										
Diameter of link				=		mm			iii) 300 m	r
					Max.longitudinal bar dia / 4				2) Diameter-	_
Criterian for energing of a second 11: 1				=	3				links or late	
Criterion for spacing of normal links										
Min. Longitudinal Bar dia X 16				=		mm			fourth of	
Min. dimension of column				=		mm			longitudina	1
Maximum,300mm				=		mm			16 mm.	
Least lateral edge dimension/2				=		mm				
Spacing considered				=	175	mm				
Special confining reinforcement as per IS	<u>13920 - 2016</u>					/	A	ndment Nr. 1	to TC 12030 . 3	1
6 X Smallest Longitudinal Bar Dia				=			AILIE	nument No. 1	to IS 13920 : 2	,U
Hence Link spacing, Sv				=		mm	laci	11	(h)] Cubatient	1.4
Hoop dimension, h			(B - 2	x Cover + 2 x Link [Dia) / (No of Rebars Along B -1)		age	11, <i>clause</i> 8.1	(b)] — Substitut	e
Along B				=	104.00	-		1 I	22	
Along D			(D - 2	1	Dia) / (No of Rebars Along D -1)		b) 1		not more than,	
				=	119.33		2) 6 times d	liameter of th	1
		Max (Along B, Along D)			119.33		1		l reinforcement	
Gross area of column, Ag		B x D		=	40000.00			0		
Core area of column, Ak				(B-2 x cover to	Link) x (D- 2 x cover to Link)		_	*	ſ	
					297856.00		_		0.18 $s_v h \frac{J_c}{d}$	<u>*</u>
Area of special confining link, Ash1				(0.18 x S	S x h x (Fck/Fy) x (Ag/Ak-1))		A.	= Maximum of		у
				=	31.062	sqmm	sn		$0.05 \ s_{\rm v} \ h \ \frac{f_{\rm c}}{c}$:k
Area of special confining link, Ash2					(0.05 x S x h x (Fck/Fy))		_		$\int f_{\rm s}$	y
					25.161	sqmm				1
					Maximum (Ash1,Ash2)		whe			
Area of special confining link, Ash							h		nension of rect	
Area of special confining link, Ash					31.062	sqmm			o its outer face, w	
• • • •				=		sqmm mm				
							-			3
Diameter of special confining link					8 Max. longitudinal bar dia / 4		_	exceed 300	mm (see Fig. 10E	
Diameter of special confining link	ion			=	8 Max. longitudinal bar dia / 4	mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei
Area of special confining link, Ash Diameter of special confining link Zone for special confining links - criteri Max. Size of column,D	ion			=	8 Max. longitudinal bar dia / 4 3	mm	_	exceed 300 = area of confi	mm (see Fig. 10E	ei
Diameter of special confining link Zone for special confining links - criteri	ìon			=	8 Max. longitudinal bar dia / 4 3	mm mm mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei
Diameter of special confining link Zone for special confining links - criteri	ion			=	8 Max. longitudinal bar dia / 4 3 800 2000	mm mm mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei
Diameter of special confining link Zone for special confining links - criteri Max. Size of column,D	ion			= = = =	8 Max. longitudinal bar dia / 4 3 800 2000	mm mm mm mm mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei
Diameter of special confining link Zone for special confining links - criteri Max. Size of column,D Hence length of confining zone	ion			= = = = =	8 Max. longitudinal bar dia / 4 3 800 2000 450	mm mm mm mm mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei
Diameter of special confining link Zone for special confining links - criteri Max. Size of column,D Hence length of confining zone Table For Links				= = = = =	8 Max. longitudinal bar dia / 4 3 800 2000 450	mm mm mm mm mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei
Diameter of special confining link Zone for special confining links - criteri Max. Size of column,D Hence length of confining zone Table For Links				= = = = =	8 Max. longitudinal bar dia / 4 3 800 2000 450 2000	mm mm mm mm mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei
Diameter of special confining link Zone for special confining links - criteri Max. Size of column,D Hence length of confining zone Table For Links	Only For Boundary Elemer	Required		= = = = = = =	8 Max. longitudinal bar dia / 4 3 800 2000 450 2000 Provided	mm mm mm mm mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei
Diameter of special confining link Zone for special confining links - criteri Max. Size of column,D Hence length of confining zone Table For Links Note: Ductile Design Of Links Is Applicable	Only For Boundary Elemer Normal Design	Required Shear Design	Ductile Design	= = = = = =	8 Max. longitudinal bar dia / 4 3 800 2000 450 2000 Provided Ductile Zone	mm mm mm mm mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei
Diameter of special confining link Zone for special confining links - criteri Max. Size of column,D Hence length of confining zone Table For Links	Only For Boundary Elemer	Required		= = = = = = =	8 Max. longitudinal bar dia / 4 3 800 2000 450 2000 Provided	mm mm mm mm mm	_	exceed 300 = area of confi	mm (see Fig. 10E ined concrete core	ei

ton of last	
meter of late	
	transverse reinforce-
	e than the least of the
distances:	
least latera	l dimension of the
ression men	nbers;
en times the	smallest diameter of
	inforcement bar to be
and	
ım.	
	ator of the networks
	eter of the polygonal Il be not less than one-
	eter of the largest
	in no case less than
ut out, mie	In no cuse ress than
2016	
te the follow	ving for the existing:
•	2.201
he smalle	st
bars; and	
(A)	
$\frac{f_{\rm ck}}{f_{\rm y}} \left(\frac{A_{\rm g}}{A_{\rm k}} - 1 \right)$	
$f_y(A_k)$	
ck f	
fy	
tangular lin	
which does n	ot
B), and	
	ar
mensions.	