PILECAP DESIGN CALCULATIONS
Project Name : Sample
Client Name : Sample
Engineer Name : Sample
Design File : D:\Bentley\Common data\Bentley Communities\IS\Validation Sheets\IS code_Validation problem_Updated\Pile-cap\pilecap design.rcdx
Analysis File : D:\Bentley\000 RCDC 2010\10.0.0\Standard model for Demo\Staad\RCDC-Staad-Demo -with RCC wall.std
Analysis Last Modified : 6/16/2020 4:07:28 PM
Definitions:
1. α = Coefficient of Thermal Expansion
2. ε1 = Strain at level considered, Calculated ignoring the stiffening of the concrete in tension zone
3. εm = Average steel strain at level considered
4. ρact = Percentage steel provided
5. ρcrit = Percentage steel critical as per code
6. A1 = Area of Base for Load Transfer
7. A2 = Area of Bearing under column
8. acr = Distance from the point considered to the surface of the nearest longitudinal bar
9. AsfrPrv = Area of face reinforcement provided
10. AsfrReq = Area of face reinforcement required
11. AstPrv = Area of tensile reinforcement provided
12. AstReq = Area of tensile reinforcement required
13. AsvPrv = Area of shear reinforcement provided
14. AsvReq = Area of shear reinforcement required
15. Av = Location of section of shear-check from Pile Center
16. Beff = Effective Width for design for bending and shear
17. Beffsfr = Effective Width for design for Face Reinforcement
18. BMux = Factored Bending Moment for pile-cap along column D
19. BMuy = Factored Bending Moment for pile-cap along column B
20. D = Depth of Pilecap
21. Deff = Effective Depth of Pilecap
22. DfCol = Distance of Pile center to face of column
23. Ec = Modulus of elasticity of concrete
24. Es = Modulus of elasticity of steel
25. Fst = Stress in steel
26. Mx = Bending Moment in column along Column D
27. My = Bending Moment in column along Column B
28. P = Axial load in pile due to Ptotal
29. Pcomb = Axial load in column for a load combination
30. Ppile = Axial Load on pile
31. Ptotal = Total vertical load on pile-cap for a load combination
32. Pmx = Axial load on pile due to moment Mx
33. Pmy = Axial load on pile due to moment My
34. sp = Spacing Between bars at outer most layer
35. Tc = Design Shear Strength of Concrete
36. Tce = Enhanced Shear Strength of concrete
37. Temp1 = Peak Hydration temperature
38. Temp2 = Seasonal Temperature Variations
39. Tv = Nominal shear stress
40. Vu = Design shear force
41. Vus = Design shear force for stirrups
42. Wcr = Surface Crack Width
 
Code References:
IS 456
1. Ptmax : clause 26.5.1.1
2. Ptmin : clause 26.5.2.1
3. Pt : clause 38
4. Tc : clause 40.2.1
5. Tcmax : clause 40.2.3
6. AsvReq : clause 40.4
7. Min Shear Reinf : clause 26.5.1.6
8. Max Stirrup Spacing : clause 26.5.1.5
9. One Way Shear Criteria : clause 34.2.4.2
10. Load transfer : clause 34.4
11. Ptnominal : clause 34.5.2
12. crack width calculation : Annex-F
13. cracking : clause. 35.3.2
 
IS 2911 Part-1 Section 2
1. Pile capacity check : clause 5.10
 
BS 8007 (For Early / Initial Thermal Cracking)
1. Surface Zone for suspended slab : Figure A.1
2. Surface Zone for ground slab : Figure A.2
3. Factors for the calculation of minimum reinforcement : Table A.1



 
Design Code : IS 456 + IS 13920 - 2016  
Pilecap No : PC23  
Column No : C23 (400mm X 700mm)
Member Ref. No : 1901  
       
Concrete Grade : M20  
Steel Grade : Fe415  
Clear Cover : 50 mm
Top of pile-cap below ground : 3.3 m
       
Density of Soil = 18 kN/cum
Founding Depth = 4 m
Pile Capacity in Compression = 1000 kN
Pile Capacity in Tension = 350 kN
Pile Capacity in Shear = 250 kN
Pile Capacity Reduction = 0 %
Pile Overloading = 10 %
Pile Group Overloading = 10 %
Pile Capacity Increase for EQ = 25 %
Pile Capacity Increase for Wind = 25 %
Live Load Reduction = 0 %
       
Consider Capacity Design : No  
Consider Overburden Pressure : No  
       
No. of Piles = 3  
Pile Diameter = 750 mm
Pilecap Offset = 150 mm
Pile Spacing = 2.5 x Ø
Pilecap Size = 2481 mm (edge)
Pilecap Depth = 700 mm
Pile-cap Wt. = 95.029 kN
       
       
 
Check for Maximum Load on One Pile:
Critical Load Combination : [4] : (LOAD 1: LOAD CASE 1) +(LOAD 2: LOAD CASE 2) +(LOAD 4: LOAD CASE 4 EQ-Y)
Pcomb = 2822.16 kN
Ptotal = Pcomb + Pilecap Wt.
  = 2917.19 kN
Mx = -261.34 kNm
My = -6.77 kNm
P = Ptotal/ No. of Piles
  = 972.4 kN
Pmx = 160.947 kN
Pmy = 0 kN
       
Maximum load on pile = 1133.34 kN
Allowable load on pile = 1000 x 1.25
  = 1250 kN
 
Check for Maximum Load on Pile Group:
Critical Load Combination : [1] : (LOAD 1: LOAD CASE 1) +(LOAD 2: LOAD CASE 2)
Pcomb = 2835.22 kN
Ptotal = Pcomb + Pilecap Wt.
  = 2930.25 kN
Mx = -15.43 kNm
My = -2.58 kNm
       
Maximum load on pile group = 2930.25 kN
Allowable load on pile group = 3 x 1000 x 1.1
  = 3300 kN
 
Check for Maximum shear on Pile Group:
Critical Load Combination : [4] : (LOAD 1: LOAD CASE 1) +(LOAD 2: LOAD CASE 2) +(LOAD 4: LOAD CASE 4 EQ-Y)
Pcomb = 2822.16 kN
Ptotal = Pcomb + Pilecap Wt.
  = 2917.19 kN
Mx = -261.34 kNm
My = -6.77 kNm
Vx = 3.05 kNm
Vy = -87.03 kNm
Maximum shear on pile group = sqrt(3.052 + -87.032)
= 87.09 kN
Shear capacity of pile group = 3 x 250 x 1 x 1.25
  = 937.5 kN
 
Check for Uplift Load on Pile:
No uplift in any pile
 
Design for Bending:
Bottom Reinforcement Along Parallel Edge
Critical Load Combination : [6] : 1.5 (LOAD 1: LOAD CASE 1) +1.5 (LOAD 2: LOAD CASE 2)
Pcomb = 4252.83 kN
Ptotal = Pcomb + Pilecap Wt.
  = 4395.373 kN
Mx = -23.14 kNm
My = -3.87 kNm
Ppile = Max Load on pile
  = 1460.06 kN
       
Deff = 620 mm
Beff = 1050 mm
DfCol = 0.74 m
BMux = Ppile X DfCol
  = 1076.8 kNm
PtReq = 0.91 %
AstReq (BM) = 5658 sqmm/m
AstPrv = T32 @ 140 C/C
  = 5744.64 sqmm/m
 
Top Reinforcement Along Parallel Edge
D = 700 mm
  <= 1000 mm, Hence
AstReq (BM) = Min Pt for Top Reinforcement X D X 1000
  = 0.06% X 700 X 1000
  = 420 sqmm/m
AstPrv = T10 @ 185 C/C
  = 424.54 sqmm/m
 
Bottom Reinforcement Along Perpendicular Edge
Critical Load Combination : [6] : 1.5 (LOAD 1: LOAD CASE 1) +1.5 (LOAD 2: LOAD CASE 2)
Pcomb = 4252.83 kN
Ptotal = Pcomb + Pilecap Wt.
  = 4395.373 kN
Mx = -23.14 kNm
My = -3.87 kNm
Ppile = Max Load on pile
  = 1479.38 kN
       
Deff = 640 mm
Beff = 1050 mm
DfCol = 0.73 m
BMuy = Ppile X DfCol
  = 1083.69 kNm
PtReq = 0.85 %
AstReq (BM) = 5426 sqmm/m
AstPrv = T32 @ 145 C/C
  = 5546.55 sqmm/m
 
Top Reinforcement Along Perpendicular Edge
D = 700 mm
  <= 1000 mm, Hence
AstReq (BM) = Min Pt for Top Reinforcement X D X 1000
= 0.06% X 700 X 1000
  = 420 sqmm/m
AstPrv = T10 @ 185 C/C
  = 424.54 sqmm/m
       
Design for One Way Shear:
Along Parallel Edge
Critical Load Combination : [6] : 1.5 (LOAD 1: LOAD CASE 1) +1.5 (LOAD 2: LOAD CASE 2)
Pcomb = 4252.83 kN
Ptotal = Pcomb + Pilecap Wt.
  = 4395.37 kN
Mx = -23.14 kNm
My = -3.87 kNm
Ppile = Max Load on pile
  = 1479.377 kN
       
Location of critical section is at d/2 from face of column
Section Location from column center = 510 mm
       
Data for Piles      
Pile No Load (kN) % covered Shear (kN)
P1 1479.38 0 0
P2 1460.06 100 1460.06
P3 1455.94 100 1455.94
 
Design Shear Force (Vu) = Max. of (Shear due to P2, P3)
  = 1460.06 kN
Deff = 620 mm
Beff = 2315.45 mm
Tv = Vu/(Beff x Deff)
  = 1.02 N/sqmm
Tc = 0.6 N/sqmm
Av = 427.5 mm
Shear enhancement factor = 2 X Deff / Av  
  = 2.9
Enhanced shear strength (Tce) = 1.75 N/sqmm
Tv < Tce, Hence Shear Reinforcement is not required
 
Along Perpendicular Edge
Critical Load Combination : [6] : 1.5 (LOAD 1: LOAD CASE 1) +1.5 (LOAD 2: LOAD CASE 2)
Pcomb = 4252.83 kN
Ptotal = Pcomb + Pilecap Wt.
  = 4395.37 kN
Mx = -23.14 kNm
My = -3.87 kNm
Ppile = Max Load on pile
  = 1479.377 kN
       
Location of critical section is at d/2 from face of column
Section Location from column center = 670 mm
       
Data for Piles      
Pile No Load (kN) % covered Shear (kN)
P1 1479.38 100 1479.38
P2 1460.06 67.16 479.42
P3 1455.94 67.16 478.06
 
Design Shear Force (Vu) = Max. of (Shear due to P1, P2+P3)
  = 1479.38 kN
Deff = 640 mm
Beff = 1688.79 mm
Tv = Vu/(Beff x Deff)
  = 1.37 N/sqmm
Tc = 0.59 N/sqmm
Av = 412.53 mm
Shear enhancement factor = 2 X Deff / Av  
  = 3.1  
Enhanced shear strength (Tce) = 1.82 N/sqmm
Tv < Tce, Hence Shear Reinforcement is not required
 
Design of Face Reinforcement:
AsfrReq = SFR % X D X Beffsfr
= 0.05 X 700 X 500 / 100
= 175 sqmm
Asfr Prv = 3-T10
= 236 sqmm
 
Check for Load Transfer from Column to PileCap
Critical Analysis Load Combination =
Critical Load Combination : [6] : 1.5 (LOAD 1: LOAD CASE 1) +1.5 (LOAD 2: LOAD CASE 2)
P = 4252.83 kN
A2 = 0.28 sqm
A1 = 5.43 sqm
Base Area = 5.43 sqm
A1 < Base Area  
Modification Factor = SquareRoot(A1/A2) < = 2
SquareRoot(A1/A2) = 4.4  
Thus, Modification Factor = 2  
Concrete Bearing Capacity = 0.45 X Fck X Modication Factor X Column Area
  = 5040 kN
Concrete Bearing Capacity > P, Hence Safe.