TITLE:	DESIGN OF Shear Wall wi	th Doundary Flomon	.					
			ι					
SUB -TITLE :	DESIGN OF WALL FOR FLI							
CODE OF PRACTICE :	IS 456-2000 + 13920-201	Ь						
DESIGN TYPE :	LIMIT STATE DESIGN							
NOTE :- 1) User to Input data in cell marked as Blue.								
·	to Mathad							
2) Design follows Limit Sta	te Metnoa.					Deference / Com		
User Input PARAMETERS:	RCDC	SYMBOL		INDLIT	UNITS	Reference / Com	iments	
Wall	RCDC	STIVIBUL		INPUT W7	<u>UNITS</u>			
Level				4.2 m To 7.858 m				
Width of Wall	Wall B	В	=	4.2 111 10 7.838 111	mm	User Input		
Depth of Wall	Wall D	D		1,100		User Input		
Grade of Concrete		fck			_			
	Grade Of Concrete		=		N/mm ²	User Input		
Grade of Steel (Main Steel)	Grade Of Steel	fy	=		N/mm ²	User Input		
Grade of Steel (Shear reinforcement)	Grade Of Steel	fyshear	=		N/mm ²	constant		
Cover to reinforcement	Clear Cover	Cc	=		mm	User Input		
Floor to floor height of the wall		hw	=	15,800		User Input		
Beam depth along D (left side)		db1	=		mm	User Input		
Beam depth along D (Right side)		db2	=		mm	User Input		
Beam depth along B (left side)		bb1	=		mm	User Input		
Beam depth along B (right side)		bb2	=		mm	User Input		
Maximum % steel		ptmax	=	4.00		User Input		
Partial Factor of Safety for Material Concrete		Yc	=	1.50	constant	User Input		
Partial Factor of Safety for Material Steel		Ϋ́s	=	1.15	constant	User Input		
Wall Type	Wall Type		=	UnBraced		User Input		
Minimum eccentricity check	Minimum eccentricity ch	eck	=	One Axis at a Time		User Input		
Code defined D/B ratio	Code defined D/B ratio		=	4				
Effective Length Factor along Major Axis			=	0.93		User Input		
Effective Length Factor along Minor axis			=	0.75		User Input		
Minimum % reinforcement in wall (User defined)			=	0.25	%			
Spacing Round Factor for Links			=	25.00	mm			
Clear Floor Height @ B	Clear Floor Height @ B		=	15,000	mm	=H-(bb1,bb2)		
Clear Floor Height @ D	Clear Floor Height @ D		=	15,000	mm	=H-(db1,db2)		
Flexural Design (Analysis Forces)								
Critical Analysis Load Combination				19				
Load Combination			=	[9] : 1.5 (LOAD 1: LOAD CASE	E 1) -1.5 (LOAD 4:	LOAD CASE 4 EQ-Y)		
Critical Location			=	Top Joint				
Axial force		Pu	=	603.09	kN	User Input		
Bending Moment along D		Mux	=	20.45	kNm	User Input		
Bending Moment along B		Muy	=	-9.66	kNm	User Input		
Shear force from Analysis along D		Vux	=	-207.97	kN	User Input		
Shear force from Analysis along B		Vuy	=	14.02	kN	User Input		
Load Combination for Boundary Element Length								
Load Combination Containing EQ where Axial Force is Maximum.								
Axial force		Pu	=	724.19	kN	User Input		
% reinforcement considered for BE length calculation			=	300.70	%			
Load Combination for Boundary Element Check								
Most Favouring Pu		Pu (Fav)	=	724.19	kN	User Input		
Bending Moment along D		Mux	=	300.70		User Input		
Most Un-favouring Pu		Pu (Un-fav)	=	147.69	kN	User Input		
Bending Moment along D		Mux	=	-259.66	kNm	User Input		

Shear Design (Analysis Forces)						
Along D						
Critical Analysis Load Combination			20			
Load Combination		[1	0] : 0.9 (LOAD 1: LOAD CASE 1) +1.5 (LOAD	3: LOAD CASE 3 EC	Q-X	
Shear force from Analysis along D	Vux	=	104.47 kN			
Axial force	Pu	=	680.86 kN			
Along B						
Critical Analysis Load Combination			23			
Load Combination		[1	3] : 0.9 (LOAD 1: LOAD CASE 1) -1.5 (LOAD	4: LOAD CASE 4 EO)-Y)	
Shear force from Analysis along B	Vux	=	228.84 kN			
Axial force	Pu	=	534.14 kN			
Reinforcement Provided in Wall						
Boundary Zone						
Diameter of longitudinal reinforcement	dia	=	16 mm	User Input		
Numbers of Rebars at Each End Zone	Nos	=	4 Nos	User Input		
No of Rebars Along B	Nos	=	2 Nos	User Input		
No of Rebars Along D	Nos	=	2 Nos	User Input		
Mid Zone	1103	_	2 1103	osci ilipat	20-T16 + 8-T10	
Diameter of longitudinal reinforcement	dia	=	8 mm	User Input	20-110 + 0-110	
Numbers of Rebars at Each End Zone	Nos	=	10 Nos	User Input		
Total area of Longitudinal reinforcement	INUS	_	2111.15 sqmm	osei iliput		
Shear Links			2111.13 5411111			
Boundary zone Links						
Link Diameter		_	16 mm			
		=				
Link Spacing Other Links		=	100 mm			
			46		10 SPECIAL SHEAR WALLS	
Link Diameter		=	16 mm		TO STECIAL SHEAR WALLS	
Link Spacing		=	175 mm		10.1 General Requirements	
No of Links		=	2 mm			
Step 1) Check Code Defined D/B Ratio					10.1.3 The minimum ratio of length of wall to its	
D/B Ratio			4.4		kness shall be 4.	
Check	D/B Ratio	=	Hence, Design as Wall		differences shall be 1.	
Step 2) Check For Requirement Of Boundary Element				[3	10.4 Boundary Elements	
Check For Maximum Compressive Stress Along Height of Wall				2.5	10.4 Doundary Elements	
Level where Maximum Stress exists		At	: level (4.2 m)	3	Boundary elements are portions along the wall edg	
Load Combination	[7] : 1.5 (LOAD 1:	LOAD CASE 1) -1.5 (LO	OAD 3: LOAD CASE 3 EQ-X)		that are strengthened by longitudinal and transver	
Axial Force	Pu	=	724.19 kN		reinforcement even if they have the same thickness	
Moment along Major Axis	Mx	=	300.70 kNm		that of the wall web. It is advantageous to provi	
Area Of Concrete (BxD)	A	=	275000 sqmm			
Section Modulus (B x D^2/6)	Zxx	=	50416666.67 mm3		boundary elements with dimension greater th	
Pu/A		=	2.633 N/mm²	1	thickness of the wall web.	
Mx/Zxx		=	5.96 N/mm ²		10.4.1 Boundary elements shall be provided along	
		=	8.60 N/mm²		vertical boundaries of walls, when the extreme file	
Maximum Stress (P/A +Mx/Zxx)					compressive stress in the wall exceeds $0.2 f_{ck}$ due	
0.2 x Fck		=	5 N/mm ²			
Check For Maximum Compressive Stress		M	aximum Stress in Wall > 0.2 x Fck		factored gravity loads plus factored earthquake for	
Check For Maximum Compressive Stress at level Considered					Boundary elements may be discontinued at elevation	
Load Combination			OAD 3: LOAD CASE 3 EQ-X)		where extreme fiber compressive stress becomes le	
Axial Force	Pu	=	724.19 kN		than $0.15 f_{ck}$. Extreme fibre compressive stress shall	
Moment along Major Axis	Mx	=	300.70 kNm		estimated using a linearly elastic model and gro	
Pu/A		=	2.63 N/mm ²		section properties.	
Mx/Zx		=	5.96 N/mm ²		######################################	
Maximum Stress (P/A +Mx/Zxx)		=	8.60 N/mm ²			
Maximum Stress (P/A +Mx/Zxx) 0.15 x Fck		=	8.60 N/mm ² 3.75 N/mm ²			

Step 2) Calculation of Boundary Element Length							
Load Combination	1.2 (LOAD 1: LOAD CASE 1) +1.2 (LOAD 2: I	LOAD CASE 2) +1.2 (LOAD 4: LOAD CASE 4 EQ-Y)					
Axial force	Pu	2566.22 kN					
Ast for for BE length calculation (0.8% assumed)	pt	826925 sqmm					
Maximum Possible Axial Force in the wall	Po	0.8 x (0.85 x Fck x Ac + Fy x Ast)					
		265156.375 kN					
Ratio of Design axial force / Maximum axial force Permissible							
Ratio for Boundary	·						
Boundary Element Length at Each End	BE Length	200 mm					
		Ductile Wall design					
		_	ductile walls as nor IS 12020. Zoning of reinforcement is done aroun				
		Boundary elements are provided for ductile walls as per IS 13920. Zoning of reinforcement is done the boundary element. The initial length of the boundary element is arrived at as per following pro-					
		i. Value Po is calculated Po = 0.8 x (0.85 x Fck x Ac + Fy x Ast)					
		ii. The largest axial force Pu in earthquake combination is determined					
		iii. Length of boundary element is determined based on the above two values as					
		a. If Pu< 0.15 x Po then length of the boundary element = 0.15 x Lw.					
		b. If Pu> 0.35 x Po then length of the boundary element = 0.25 x Lw.					
		c. If 0.15 x Po <pu< 0.15="" 0.25="" 0.35="" between="" interpolate="" lw.<="" po="" td="" the="" to="" x=""></pu<>					
		c. II 0.15 x PO <pu< 0.15="" 0.25="" 0.55="" between="" interpolate="" lw.<="" po="" td="" the="" to="" x=""></pu<>					
		The above is based on a few internation	onal papers and recommendations in the ACI code.				
			ference has also been made to an IIT-Kanpur publication IITK-GSDMA-EQ22-V3.03, example 9.				
		,	, property of the second secon				
Step 4) Effective Length Calculation							
Effective Length Factor along Major Axis		0.93					
Effective Length Factor along Minor axis		0.75					
Step 5) Minimum Eccentricity Check			25.4 Minimum Eccentricity				
Check	Since Axial Force is compr	essive, Min. Eccentricity check to be performed	All columns shall be designed for minimum				
Most critical case is with Min. Eccentricity		Y-direction	eccentricity, equal to the unsupported length of column/				
Actual Eccentricity Along D :		-	500 plus lateral dimensions/30, subject to a minimum				
, ū		0 mm	of 20 mm. Where bi-axial bending is considered, it is				
		Max (Actual Eccentricity, 20)	sufficient to ensure that eccentricity exceeds the				
Minimum Eccentricity Along D:		0.00 mm	minimum about one axis at a time.				
Mminx		-					
		0.00 kNm					
Actual Eccentricity Along B:		Clear Floor Height @ B / 500 + B / 30	25.3 Slenderness Limits for Columns				
		38.33 mm	25.5 Sienderness Limits for Columns				
Minimum Eccentricity Along B :		Max (Actual Eccentricity, 20)	25.3.1 The unsupported length between end restraint				
Minimum Eccentricity Along B:							
Minimum Eccentricity Along B :		38.33 mm	shall not exceed 60 times the least lateral dimension				
Minimum Eccentricity Along B : Mminy		38.33 mm Pu x Minimum Eccentricity	shall not exceed 60 times the least lateral dimension of a column.				

Step 5) Slenderness Check							
Max Slenderness Ratio(Clear Floor Heigh	nt @ B/B)				15000/250		
					60.00		
Check					<= 60, Hence OK		
Column Is Unbraced Along D							
Slenderness Check Along D:							
Effective Length Factor along Major Axis					0.93		
Effective Length (Unsupported Length x E	ffective Length Factor)				15000X0.93		
					13950.00	mm	
Slenderness Ratio					Effective Length / D		
					12.68		
					Wall Slender Along D		
Slenderness moment along D					(Pu D/ 2000) (Ley/D)^2		
					53.35	kNm	
Calculation of Slenderness Moment			Pu	=	603.09	kN	
			Pd	=	1558.89	kN	User Input
			Puz	=	3727.10	kN	
Reduction factor 'k' for slenderness m	oment			(Puz - Pu) / (Puz - Pd) < = 1		
				,	1.44		
			k		1.00		
Slenderness Moment along D			MsIndx		53.35	kNm	
Column Is Unbraced Along B							
Slenderness Check Along B:							
Effective Length Factor along Major Axis					0.75		
Effective Length (Unsupported Length x E					15000X0.75		
					11250.00		
Slenderness Ratio					Effective Length / B		
0.0.1.0.0					45.00		
					Wall Slender Along B		
Slenderness moment along B					(Pu D/ 2000) (Ley/D)^2		
Sichaciness moment along b					152.66	kNm	
Calculation of Slenderness Moment			Pu	=	603.09		
Calculation of Sienderness Moment			Pb	=	1194.05		
			Puz	=	3727.10		
Reduction factor 'k' for slenderness m	omont		FUZ		Puz - Pu) / (Puz - Pd) < = 1		
Reduction factor & for stenderness in	Official			(1.23		
			k		1.00		
Slenderness Moment along B			MsIndy		152.66		
Sienderness Moment along b			ivisiliuy		132.00	KINIII	
Colondation of Decision Manager							
Calculation of Design Moment		Ban : /Al)		Basis I (AL.)	nadad 6 1	1	
Direction	Manalysis	Mmin (Abs)	Mdesign	MsIndx (Abs)	Mdesign-final		
	Α	B	C	E	F	!	
Major Axis - Mux	20.45	0.00	20.45	53.35	73.80	ļ	
Minor Axis - Muy	-9.66	23.12	-23.12	152.66	-175.78	<u> </u>	
Where							
A	=	Moments directly from	analysis				
В	=	Moments due to minim					
C	=	Maximum of analysis m		entricity = Max (A.F	3)		
E	=	Moment due to slender		, , , , ,	,		
F	=	Final design Moment =		<u> </u>	_		

25.1.2 Short and Slender Compression Members

A compression member may be considered as short

when both the slenderness ratios $\frac{l_{ex}}{D}$ and $\frac{l_{ey}}{b}$ are less than 12:

39.7.1 The additional moments M_{ax} and M_{ay} shall be calculated by the following formulae:

$$M_{\text{ax}} = \frac{P_{\text{u}}D}{2000} \left\{ \frac{l_{\text{ex}}}{D} \right\}^2$$
$$M_{\text{ay}} = \frac{P_{\text{u}}b}{2000} \left\{ \frac{l_{\text{cy}}}{b} \right\}^2$$

where

 P_{u} = axial load on the member,

 l_{ex} = effective length in respect of the major

 $l_{\rm ex}$ = effective length in respect of the minor axis,

D = depth of the cross-section at right angles to the major axis, and

b = width of the member.

39.7.1.1 The values given by equation 39.7.1 may be multiplied by the following factor:

$$k = \frac{P_{\rm uz} - P_{\rm u}}{P_{\rm uz} - P_{\rm b}} \le 1$$

$$P_{\rm uz} = 0.45 f_{\rm ck} \cdot A_{\rm c} + 0.75 f_{\rm y} \cdot A_{\rm sc}$$

10.3 Design for Axial Force and Bending Moment

10.3.1 Design moment of resistance $M_{\rm u}$ of the wall section subjected to combined bending moment and compressive axial load shall be estimated in accordance with requirements of limit state design method given in IS 456, using the principles of mechanics involving equilibrium equations, strain compatibility conditions and constitutive laws.

The moment of resistance of slender rectangular structural wall section with uniformly distributed vertical reinforcement may be estimated using expressions given in Annex A. Expressions given in Annex A are not applicable for structural walls with boundary elements.

Final Critical Design Forces				
Pu =	603.09 kN			39.6 Members Subjected to Combined Axial Load
Mux =	73.80 kNm			and Biaxial Bending
Muy =	-175.78 kNm			
,				The resistance of a member subjected to axial force
Minimum % steel				and biaxial bending shall be obtained on the basis o
User defined pt min1		=	0.25	assumptions given in 39.1 and 39.2 with neutral axis
Vertical reinforcement as per type of wall				so chosen as to satisfy the equilibrium of load and
Floor to Floor height of wall	hw	=	15800 mm	moments about two axes. Alternatively such members
Depth of Wall	Lw = D	=	1100 mm	may be designed by the following equation:
hw/Lw	hw/Lw	=	14.36	10.1.4 Special shear walls shall be classified as squat,
Type of wall	, 2		hw/Lw > 2 Hence, Slender wall	intermediate or slender depending on the overall height
Width of Wall	tw = B	=	250 mm	$h_{\rm w}$ to length $L_{\rm w}$ ratio as
Minimum % of Horizontal Reinforcement	Ph	=	0.0025	
Minimum % of Web Reinforcement	Pvweb	=	0.0025	a) Squat walls: $h_{\rm w}/L_{\rm w}<1$,
Ptv min2	Ptv min		0.005625 %	b) Intermediate walls: $1 \le h_w / L_w \le 2$, and
Ptmin	Ptmin	=	Max(Pvweb,Ptv min2)	c) Slender walls: $h_w/L_w > 2$.
r uniii	FUIIII	=	0.005625	Sichler walls. $n_{\rm w} / L_{\rm w} \sim 2$.
		=	0.5625 %	
Docultont Managet (Combined Asticus)				
Resultant Moment (Combined Action)				Table 1 Minimum Paint and the PC CI
Moment Capacity Check			0.77	Table 1 Minimum Reinforcement in RC Shear
Pt Calculated		=	0.77	Walls
Reinforcement Provided		=	8-T16 + 10-T8	(Clause 10.1.6)
Load Angle		=	Tan ⁻¹ (Muy/Mux)	
		=	-67.23 deg	Sl. Type of Reinforcement Details
MRes		=	190.64 kNm	No. Wall
MCap		=	222.9 kNm	i) Squat walls $(\rho_h)_{min} = 0.0025$
Capacity Ratio		=	MRes/ MCap	IN STATE OF THE PROPERTY AND THE PROPERT
		=	0.86	$(0) = 0.0025 + 0.5 \left(1 - \frac{h_w}{1 - 0.0025}\right) \left(0.0025\right)$
Check			0.86<=1	$(p_{\rm v})_{\rm min} = 0.0025 \pm 0.5 \left(1 - \frac{t_{\rm w}}{t_{\rm w}}\right) (p_{\rm h} = 0.0025)$
				$(\rho_{v})_{min} = 0.0025 + 0.5 \left(1 - \frac{h_{w}}{t_{w}}\right) (\rho_{h} - 0.0025)$ $(\rho_{v,net}) = (\rho_{v,web}) + \left(\frac{t_{w}}{L_{w}}\right) \cdot \left[0.02 - 2.5(\rho_{v,web})\right]$
Check For Boundary Element				$(\rho_{v,net}) = (\rho_{v,web}) + \left[\frac{w}{L_{}}\right] \cdot \left[0.02 - 2.5(\rho_{v,web})\right]$
Calculation of vertical reinforcement in BE zone				$(\rho_{\nu})_{\text{provided}} < (\rho_{h})_{\text{provided}}$
Area Of Concrete (BxD)	A	=	275000 sqmm	
Section Modulus (B x D^2/6)	Z	=	50416666.67 mm3	ii) Intermediate $(\rho_h)_{min} = 0.0025$
Maximum Compressive Force in BE				wells
Most Favouring Pu	P (Fav)		724.19 kN	$\left(\rho_{v,be}\right)_{\min} = 0.0080$
Bending Moment along D	M		300.70 kNm	$(\rho_{v,web})_{ratin} - 0.0025$ $(\rho_{v,uer})_{min} = 0.0025 + 0.01375 \left(\frac{t_w}{L_w}\right).$ iii) Slender $(\rho_{h})_{min} = 0.0025 + 0.5 \left(\frac{h_w}{L_w} - 2\right) (\rho_h - 0.0025)$
P/A	P/A	=	2.63 N/mm ²	(,)
M/Z	M/Z	=	5.96 N/mm ²	$\left(\rho_{v,uer}\right)_{mir.} = 0.0025 + 0.01375 \left \frac{\iota_w}{I}\right .$
Depth of Wall	Lw = D	=	1100 mm	L _w)
Stress Slope,S1	LW = D			iii) Slender $\rho_{\text{w}} = 0.0025 + 0.5 \left(\frac{h_{\text{w}}}{h_{\text{w}}} - 2 \right) (\rho_{\text{b}} - 0.0025)$
ottess otupe,ot		=	((P/A + M/Z) - (P/A - M/Z)) / LW	walls $p_{h_{min}} = 0.0025 + 0.5 \left(\frac{\pi}{L_w} - 2\right) (\rho_h - 0.0025)$
		=	10.84 N/mm²	$(\rho_{vho}) = 0.0080$
Stress - 1		=	(P/A + M/Z) - S1 X (BE length) / 2	$(\rho_{v,be})_{\min} = 0.0080$ $(\rho_{v,web})_{\min} = 0.0025$
		=	7.51 N/mm ²	$\rho_{v,web} = 0.0025$
Stress - 2		=	(P/A - M/Z) + S1 X (BE length) / 2	$\left(\rho_{v,\text{net}}\right)_{\text{min}} = 0.0025 + 0.01375 \left(\frac{t_{\text{w}}}{L}\right).$
		=	-2.25 N/mm ²	$(\rho_{v,net})_{min} = 0.0025 + 0.01375 \left[\frac{w}{L_{}} \right].$
Maximum compressive force		=	Maximum (Stress-1, Stress-2) x BE length	(~w)
		=	375.66 kN	
Pt required	pt1	=	0 %	

Maximum Tensile Force in BE				
Most Un-Favouring Pu		Pu (Un-Fav)	147.69 kN	
Bending Moment along D		Mux	-259.66 kNm	
Pu/A		Pu/A =	0.54 N/mm ²	
Mx/Zx		M/Z =	-5.15 N/mm ²	
Stress Slope,S1		=	((P/A + M/Z) - (P/A - M/Z)) / Lw	10.4.2 A boundary element shall have adequate axis
		=	-9.36 N/mm ²	load carrying capacity, assuming short column action
Stress - 1		=	(P/A + M/Z) - S1 X (BE length) / 2	so as to enable it to carry axial compression arisin
		=	-3.68 N/mm ²	from factored gravity load and lateral seismic shakin
Stress - 2		=	(P/A - M/Z) + S1 X (BE length) / 2	effects.
0.1.030 _		=	4.75 N/mm ²	effects.
Maximum compressive force		=	Minimum (Stress-1, Stress-2) x BE length	10.4.2.1 The load factor for gravity load shall be take
Waximum compressive force		=	-183.84 kN	as 0.8, if gravity load gives higher axial compressiv
Pt required		pt2 =	1.02 %	strength of the boundary element.
Design pt in BE		pic =	1.02 /0	
Minimum pt		=	0.8 % (Constant)	Clause 10.4.3 (IS 13920-2016)
Pt required in BE		=	=Maximum (0.8, pt1, pt2)	5.8855 251 NO (10 20525 2020)
		=	1.02 %	10.4.3 The vertical reinforcement in the boundar
Check For Compression Capacity Of BE			1.02 //0	elements shall not be less than 0.8 percent and no
PT provided in BE		=	1.61 %	greater than 6 percent; the practical upper limit woul
Ast provided in BE		Ast =	804.25 sqmm	be 4 percent to avoid congestion.
Capacity of BE in compression		=	0.4 x Fck x Aconcrete + 0.67 x Fy x Ast	or i percent to avera congestion.
capacity of BE in compression		=	715.58 kN	
		_	715.58 > 375.66	
			715.58 Hence OK	
Check For Tension Capacity Of BE			7 ISSS TICHEC ON	
PT provided in BE		=	1.61 %	
Ast provided in BE		Ast =	804.25 sqmm	
Capacity of BE in Tension		7.50	0.87 x Ast X Fy	
capacity of BE III rension		=	290.37 kN	
Wall Configuration				
	Boundary Element	Mid	Boundary Element	
Lawath (mass)	200	700	200	
Length (mm)	200	700	200	
Reinforcement	4-T16	10-T8	4-T16	10.2 Design for Shear Force
Reinforcement Ast provided	4-T16 804.25	10-T8 502.65	4-T16 804.25	
Reinforcement Ast provided Pt as % of entire wall	4-T16 804.25 0.29%	10-T8 502.65 0.18%	4-T16 804.25 0.29%	10.2.1 Nominal shear stress demand τ_v on a wall shall
Reinforcement Ast provided	4-T16 804.25	10-T8 502.65	4-T16 804.25	10.2.1 Nominal shear stress demand τ_v on a wall shall be estimated as:
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone	4-T16 804.25 0.29%	10-T8 502.65 0.18%	4-T16 804.25 0.29%	10.2.1 Nominal shear stress demand τ_v on a wall shall be estimated as:
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces)	4-T16 804.25 0.29%	10-T8 502.65 0.18%	4-T16 804.25 0.29%	10.2.1 Nominal shear stress demand τ_v on a wall shall
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D	4-T16 804.25 0.29%	10-T8 502.65 0.18%	4-T16 804.25 0.29% 1.61%	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29%	4-T16 804.25 0.29% 1.61%	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: L	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ	$\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Love Vuy	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Livyy = Pu =	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN	$\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}} ,$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8 L_{\rm w}$ for
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Load 1:	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D))	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections.
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Live to the content of the content	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm²	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections.
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress Pt (20% of vertical reinforcement)	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: LOAD 1:	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm² 0.154 %	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections.
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress Pt (20% of vertical reinforcement) Beta	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Livyy = Pu = Tvy = Tvy = = = = = = = = = = = = = = = = = = =	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm² 0.154 18.906	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections.
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress Pt (20% of vertical reinforcement) Beta Design shear strength,	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: LOAD 1:	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm² 0.154 % 18.906 0.2940 N/mm²	$\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections.
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress Pt (20% of vertical reinforcement) Beta	4-T16 804.25 0.29%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Livyy = Pu = Tvy = Tvy = = = = = = = = = = = = = = = = = = =	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm² 0.154 % 18.906 0.2940 N/mm² 1 + 3 x Pu / (B x D x Fck)	$\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections. $39.2~Design~Shear~Strength~of~Concrete$ $SP~24$ $\tau_{\rm c} = \frac{0.85\sqrt{0.8~f_{\rm ck}}~(\sqrt{1.+5\beta}-1)}{6\beta}$
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress Pt (20% of vertical reinforcement) Beta Design shear strength, Shear Strength Enhancement Factor	4-T16 804.25 0.29% 1.61%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Li Vuy = Pu = Tvy =	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm² 0.154 % 18.906 0.2940 N/mm² 1 + 3 x Pu / (B x D x Fck) 1.2971	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections.
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress Pt (20% of vertical reinforcement) Beta Design shear strength, Shear Strength Enhancement Factor (max)	4-T16 804.25 0.29% 1.61%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Li Vuy = Pu = Tvy = Tvy = Tr = Tc = = Tc = = = Tc = = = = Tc = = = Te = = Te = = Te = = Te =	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm² 0.154 % 18.906 0.2940 N/mm² 1 + 3 x Pu / (B x D x Fck) 1.2971 1.50	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w}}d_{\rm w},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections. $39.2~Design~Shear~Strength~of~Concrete$ SP 24 $\tau_{\rm c} = \frac{0.85\sqrt{0.8~f_{\rm ck}}~(\sqrt{1.+5\beta}-1)}{6\beta}$ where $\beta = 0.8~f_{\rm ck}/6.89~p_{\rm t}$, but not less than 1, and
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress Pt (20% of vertical reinforcement) Beta Design shear strength, Shear Strength Enhancement Factor	4-T16 804.25 0.29% 1.61%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Li Vuy = Pu = Tvy = Tvy = Tc = = = =	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm² 0.154 % 18.906 0.2940 N/mm² 1 + 3 x Pu / (B x D x Fck) 1.2971	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w} d_{\rm w}},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections. $39.2~Design~Shear~Strength~of~Concrete$ SP 24 $\tau_{\rm c} = \frac{0.85\sqrt{0.8~f_{\rm ck}}~(\sqrt{1.+5\beta}-1)}{6\beta}$ where $\beta = 0.8~f_{\rm ck}/6.89~p_{\rm t}$, but not less than 1, and
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress Pt (20% of vertical reinforcement) Beta Design shear strength, Shear Strength Enhancement Factor (max)	4-T16 804.25 0.29% 1.61%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Li Vuy = Pu = Tvy = = = = = = = = = = = = = = = = = = =	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm² 0.154 % 18.906 0.2940 N/mm² 1 + 3 x Pu / (B x D x Fck) 1.2971 1.50	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w}}d_{\rm w},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections. $39.2~Design~Shear~Strength~of~Concrete$ SP 24 $\tau_{\rm c} = \frac{0.85\sqrt{0.8~f_{\rm ck}}\left(\sqrt{1.+5\beta}-1\right)}{6\beta}$ where $\beta = 0.8~f_{\rm ck}/6.89~p_{\rm t}$, but not less than
Reinforcement Ast provided Pt as % of entire wall Pt as % of zone Shear Design (Analysis Forces) Design for shear along D Critical Analysis Load Combination Critical Load Combination Design shear force Axial Force Shear Stress Pt (20% of vertical reinforcement) Beta Design shear strength, Shear Strength Enhancement Factor (max Shear Strength Enhancement Factor	4-T16 804.25 0.29% 1.61%	10-T8 502.65 0.18% 0.29% : [10]: 0.9 (LOAD 1: Li Vuy = Pu = Tvy = Try = Tc = = = = = = = = = = = = = = = =	4-T16 804.25 0.29% 1.61% 20 OAD CASE 1) +1.5 (LOAD 3: LOAD CASE 3 EQ 104.47 kN 680.86 kN Vuy / (0.8 x B X D)) 0.4749 N/mm² 0.154 % 18.906 0.2940 N/mm² 1 + 3 x Pu / (B x D x Fck) 1.2971 1.50 1.2971	10.2.1 Nominal shear stress demand $\tau_{\rm v}$ on a wall shall be estimated as: $\tau_{\rm v} = \frac{V_{\rm u}}{t_{\rm w}}d_{\rm w},$ where $V_{\rm u}$ is factored shear force, $t_{\rm w}$ thickness of the web, and $d_{\rm w}$ effective depth of wall section (along the length of the wall), which may be taken as $0.8~L_{\rm w}$ for rectangular sections. $39.2~Design~Shear~Strength~of~Concrete$ SP 24 $\tau_{\rm c} = \frac{0.85\sqrt{0.8~f_{\rm ck}}~(\sqrt{1.+5\beta}-1)}{6\beta}$ where $\beta = 0.8~f_{\rm ck}/6.89~p_{\rm t}$, but not less than 1, and

Links for shear design along D						
Pt (20% of vertical reinforcement)		=	0.154 %			
Effective Depth	Deff	=	880 mm			
Shear resisted by concrete along D	VcD	=	83.90 kN			
Shear to be resisted by shear reinforcement along D	VusD	=	20.57 kN			
Area of shear reinforcement required,	Asv-d	=	64.78 sqmm			
Master Link Rebar		=	16 mm			
Number of legs provided		=	2 mm			
Spacing of links prvd, Sv		=	175 mm			
Asv Provided		=	2297.85 sqmm			
Design for shear along B						
Critical Analysis Load Combination		:	23	40.2.2 Shear Strength of Members under Axial		
Critical Load Combination	[13] : 0.9 (LC	OAD 1: LOAD CASE	1) -1.5 (LOAD 4: LOAD CASE 4 EQ-Y)	Compression		
Design shear force	Vux	=	228.84 kN			
Axial Force	Pu	=	534.14 kN	For members subjected to axial compression P_u , the design shear strength of concrete, given in Table 19,		
Shear Stress	Tvx	=	Vux / (0.8 x B X D))	shall be multiplied by the following factor:		
		=	1.0402 N/mm ²			
Pt (20% of vertical reinforcement)		=	0.154 %	$\delta = 1 + \frac{3P_u}{A_g f_{ck}}$ but not exceeding 1.5		
Beta		=	18.906			
Design shear strength,	Tc	=	0.2940 N/mm ²	where		
Shear Strength Enhancement Factor		=	1 + 3 x Pu / (B x D x Fck)	$P_{\rm u}$ = axial compressive force in Newtons,		
		=	1.2331	A_g = gross area of the concrete section in mm ² ,		
Shear Strength Enhancement Factor (max)		=	1.50	and f_{ck} = characteristic compressive strength of		
Shear Strength Enhancement Factor		=	1.2331			
Enhanced shear strength (Tc x Enhancement Factor)	Tc-e	=	0.363 N/mm ²	concrete.		
Design shear check		=	Tvy > Tc x Enhancement factor			
			Shear Reinforcement required along B			
Links for shear design along B						
Pt (20% of vertical reinforcement)		=	0.154 %			
Effective Depth	Beff	=	192 mm			
Shear resisted by concrete along B	VcD	=	76.57 kN			
Shear to be resisted by shear reinforcement along B	VusD	=	152.27 kN			
Area of shear reinforcement required,	Asv-d	=	2197.70 sqmm			
Master Link Rebar		=	16 mm			
Number of legs provided		=	2 mm			
Spacing of links prvd, Sv		=	175 mm			
Asv Provided		=	2297.85 sqmm			

Design Of Links								
Main Links								
Links in the zone where special confining l	nks are not required							
Normal Links								
Horizontal reinforcement as per type of w	all							
hw				=	15,800	0 mm		
Lw				=	1,100	0 mm		
hw/Lw				=	14.36	6		
Type of wall				hv	w/Lw > 2 Hence, Slender wal	I		
tw				=	250	0 mm		
Ph				=	0.0025	5		#******
Pvweb				=	0.0025	5		eter of longitudinal steel bars
Ptv min				=	0.5625	5 %		shall not exceed 1/10th of the
Area of Horizontal Links						5 sqmm	thickness of that part.	-
Diameter of main horizontal steel				=		6 mm	10.1.9 The maximum sp	acing of vertical or horizontal
Spacing Required for Links						5 mm	reinforcement shall not e	
Thus, Spacing				=		5 mm		
Spacing of horizontal reinforcement is mi	nimum of following						a) 1/5th horizontal	
D/5	5			=	220	0 mm		s $t_{\rm w}$ of web of wall; and
3 x B				=		0 mm	c) 450 mm.	
Maximum				=		0 mm		
Spacing considered				=				
Spacing considered = 175 mm Special confining reinforcement as per IS 13920 - 2016							ements, where required as	
Min. Lateral dimension of column, B	13920 - 2010			=	250	mm	per 10.4.1, shall be pr	ovided with special confining
B/3				=		3 mm	reinforcement through	out their height, given by
,						3 mm		
6 X Smallest Longitudinal Bar Dia				=		$A_{\rm sh} = 0.05 \ s_{\rm v} \ h \ \frac{f_{\rm ck}}{f_{\rm v}}$	$0.05 \text{ s} \text{ h} \frac{f_{\text{ck}}}{}$	
Spacing				=) mm	- Sh	$f_{ m y}$
Hence Link spacing, Sv				=) mm	and have a spacing not	nore than
Hoop dimension, h) / (No of Rebars Along B -1			
Along B				=	182.00			m member dimension of the
Along D		(BE Zone - Cover + L	ink Dia + Main Reb	ar Dia / 2 + Link Dia) / (No of Rebars Along D -1		boundary elem	ent;
				=	190.00		b) 6 times diamet	er of the smallest longitudinal
		Max (Along B, Along D)			190.00		reinforcement	bars; and
Area of special confining link, Ash				=	0.05 x Sv x h x (Fck/Fy	-	c) 100 mm but n	nay be relaxed to 150 mm, if
				=		9 sqmm		nce between cross-ties/parallel
Diameter of special confining link				=		mm		ties is limited to 200 mm,
				=	Max. longitudinal bar dia / 4	1		
				=	4	1 mm	but need not be less that	n 100 mm.
Area of horizontal steel provided				Area of bar	provided x 1000 x 2 / spacing			
				=	4021.24	4 (sqmm)/ m height		
				=	1.6085	5		
					> min. steel required 0.25%			
Special confining links to be provided alon	g full height in BE.							
Table For Links								
Note: Ductile Design Of Links Is Applicable	Only For Boundary Elem	ents						
, , , , , , , , , , , , , , , , , , ,		Required			Provided			
	Normal Design	Shear Design	Ductile Design	Normal Zone	Ductile Zone			
Link Dia.	16		16	16	16	1		
	175		100	175	100			
Spacing	1/3		100	1/3	100	_		
Secondary Links:								
-	T0@100a/a							
	T8@100c/c							
IN IVIIO-70NE	Γ8@125c/c							