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ABSTRACT that typically change with time and space. Although a
fixed grid with a fine mesh may provide accurate numer-Insufficient spatial or temporal resolution is a common source of
ical solutions for such problems, high computationalerrors in numerical solutions for both water flow and solute transport

in the variably unsaturated vadose zone. Evaporation near the surface, cost may be prohibitive for complex multidimensional
as well as infiltration into initially dry soil profiles, typically create simulations of large-scale problems. One such problem
mobile local regions with large gradients of the pressure head. Convec- involves the challenge of modeling variably saturated
tion-dominant transport of solutes during water flow in soil also tends water flow in highly heterogeneous soils, particularly at
to create steep moving fronts of concentration with large localized relatively large hydrologic scales.
concentration gradients. Groundwater flow and solute transport in Three types of errors are associated with any numeri-
highly heterogeneous aquifers similarly tend to be preferentially chan-

cal solution of partial differential equations: (i) roundneled through regions of high flow rates. Without due consideration
off, (ii) truncation (or discretization error), and (iii) in-of special resolution requirements for such critical cases of flow and
herited errors (Adey and Brebbia, 1983). Round off er-transport, simulations using traditional finite difference (FDM) and
rors occur as a consequence of finite precision arithmeticfinite element (FEM) numerical methods typically provide inaccurate

solutions characterized by undesirable features such as oscillation and in numerical calculations. These errors are normally ran-
numerical dispersion. Incorporation of local adaptive grid refinement dom and generally negligible in high precision comput-
(LAGR) algorithms in numerical models for solving such cases is an ers. Truncation errors occur due to truncation of the
effective approach that has been used to provide accurate numerical specific expansion used. Assessment of the order of the
approximations by automated adjustment of local spatial resolution. error is extremely difficult for expansions other than
Local error estimates are typically utilized to optimize spatial resolu- the finite difference type. Inherited errors represent ac-
tion. Definite advantages, as well as some limitations, exist for using

cumulation of total errors from previous steps. Determi-LAGR algorithms in FDM and FEM numerical models for flow and
nation of errors is critical since numerical simulationstransport in soils.
rather than exact solutions are involved (Yeh, 2000).

“Scientific and engineering computation has become
so complex that traditional numerical computation onInsufficient spatial resolution is commonly recog-
uniform meshes is generally not possible or too expen-nized to be the primary source of errors in numerical
sive” (Bern et al., 1999). Although faster computers havesolutions of partial differential equations (PDEs) for
emerged in recent years, faster computers tend to bewater flow and solute transport in the vadose zone (Yeh,
used to solve even more difficult problems (Finlayson,2000). Proper mesh assignment is critical to valid numer-
1992). Therefore, developing efficient numerical meth-ical solutions. Traditional numerical models utilize fixed
ods that accurately solve a problem with a minimum ofspatial grids generated prior to numerically solving a
computer time continues to provide a worthy challenge.PDE. Generally when a pregenerated, fixed grid is well
This is particularly important for three-dimensional sim-chosen for a given problem, most conventional numeri-
ulations of large geographical areas of the vadose zonecal solutions methods provide valid results. However,
and associated groundwater zone.“One difficulty in solving a PDE with this approach (i.e.,

Bern et al. (1999) emphasized that numerical solu-using a pre-generated, fixed grid) is that the grid is con-
tions should utilize computable estimates of discretiza-structed and points are distributed in the physical do-
tion errors to dynamically assign mesh grids. Local adap-main before details of the solution are actually known.
tive grid refinement algorithms provide a powerful meansAs a consequence, the grid may not be the best one for the
to accomplish that purpose through the use of auto-particular problem” (Tannehill et al., 1997, p. 710–712).
mated grid assignment based upon error estimates. In-A number of specific problems of water flow and so-
corporation of LAGR algorithms into numerical modelslute transport in soils provide cases where pregenerated,
offers potential for accuracy enhancement of numericalfixed grids may provide inaccurate numerical results.
approximations for such cases. Automatic adaptive gridCritical problems such as penetration of sharp wetting
refinement procedures in LAGR algorithms providefronts during infiltration in initially dry soil or sharp con-
enrichment of an initial mesh with the goal of providingcentration fronts during convection-dominant solute
solutions with prescribed accuracy specifications in antransport impose local spatial resolution requirements
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optimal manner. Local adaptive grid refinement algo- Finite difference methods and finite element methods
are two common approaches for transforming a set ofrithms provide a gain in efficiency by the use of fewer

nodes (Finlayson, 1992). PDEs that constitute a mathematical model into a set
of algebraic equations that constitute a discrete modelAdaptive grid refinement is one of three broad cate-

gories of approaches reported in the literature to ensure (Wang and Anderson, 1982). The flow domain is discret-
ized into cells to provide FDM spatial grids and elementsaccurate numerical solutions of PDEs for critical cases

of water flow and solute transport in porous media. to provide FEM spatial grids. An approximate solution
for the mathematical problem is then obtained by use ofThese categories are (i) mathematical alteration of gov-

erning PDEs, (ii) incorporation of adaptive grid refine- iterative techniques or direct matrix methods to solve
the set of algebraic equations.ment or LAGR algorithms, and (iii) combinations of the

first two categories. Each category provides approaches Accurate and reasonable approximations to the solu-
tion of the governing PDEs require three conditions:designed to improve inadequate matches between the

mathematics given by the governing PDEs and the nu- (i) convergence of the approximating solutions to that
of the PDEs, (ii) stable decay of errors in arithmeticmerical approximations presented in model computer

codes. Representative examples of approaches in the operations, and (iii) compatibility between the differen-
tial and approximating equations (Yeh, 1999). Differ-first category for water flow include incorporation of

mathematical transformations (Kirkland et al., 1992; ences between the approximating and differential equa-
tions is designated as the truncation error. AlthoughJohnsen et al., 1995; Pan and Wierenga, 1995) and inter-

polation (Pan et al., 1996). Eulerian (Chang and Slattery, compatibility and stability often imply convergence, this
relationship has only been established for a limited num-1990) and combined Eulerian-Lagrangian (Zhang et al.,

1993) approaches in this category have been reported for ber of specific differential equations (Yeh, 1999).
The FEM and FDM numerical approaches differ insolute transport. Mesh refinement (Clausnitzer et al.,

1998) and moving mesh (Dane and Mathis, 1981) LAGR a philosophical sense. In FDM, a value for the unknown
variable (e.g., pressure head h in water flow) is com-approaches have been reported for water flow. For sol-

ute transport mesh refinement (Trompert, 1993; Wolf- puted at a node, which also is the average for the cell
that surrounds the node; whereas, in FEM, variation insberg and Freyberg, 1994), Lagrangian (Zegeling et al.,

1992), and combined Eulerian-Lagrangian (Yeh, 2000) the variable within an element is precisely defined using
linear or nonlinear interpolation functions (AndersonLAGR approaches have been reported. Cao and Kitan-

idis (1999) present an approach for multidimensional and Woessner, 1992). Positive features of FDM relative
to FEM include being simpler to understand and pro-water flow that falls into the third category. Examples

of all three categories are discussed here. Although the gram and generally requiring fewer input data. Mesh-
centered FDM grids are convenient for problems whereeffectiveness of many numerical approaches based on

the mathematical alteration of governing PDEs (first unknown parameters such as water pressure head h and
solute concentration C are specified; whereas, block-category) have been clearly demonstrated for many

problems, more complex problems often benefit from centered grids are advantageous for problems where
water or solute flux is specified across a boundary (Yeh,the other two approaches. Thus, the primary emphasis
1999). The FEM provides a distinct advantage overin this review is to critically examine benefits and limita-
FDM for approximating irregular geometrical regions.tions for using LAGR algorithms (numerical approaches
Other positive features for FEM include ready incorpo-including incorporation of adaptive grid refinement or
ration of heterogeneous and anisotropic porous mediaLAGR algorithms and combinations of the first two
properties, better capacity to handle internal bound-categories) in both FDM and FEM numerical models
aries, and providing better simulation of point sourcesfor critical cases of flow or transport in soils.
and sinks, seepage faces, and moving water tables (An-
derson and Woessner, 1992; Friedel, 2001).Pertinent Features of Traditional

Taylor series expansion in FDM is commonly usedNumerical Methods to provide difference approximation for derivatives in
Traditional numerical models for describing water differential equations. Implicit (i.e., backward-difference

flow and solute transport in subsurface porous media scheme) and explicit (i.e., forward-difference scheme)
are comprised of three fundamental components: (i) a finite difference approximations are common for spatial
theoretical basis for translating accepted understanding derivatives. For example, a weighted average of approx-

imations between current tn � n�t and advanced timesof subsurface physical and chemical phenomena into
tn�1 � [n � 1]�t (where �t is the time step) is given forthe governing PDEs, (ii) a numerical method to approxi-
the second partial derivative of water pressure head, h,mate the nonlinear governing equations, and (iii) a com-
that occurs in the one-dimensional water flow equationputer implementation to generate a generic computer

code (Yeh, 1999). The code is used to solve the matrix
equation that results from the set of algebraic equations �2h

�x 2
≈ ��h

n�1
i�1 � 2h n�1

i � h n�1
i�1

(�x)2 �
generated by approximating the PDEs (i.e., governing
equations, boundary conditions, and initial conditions)

� (1 � �)�h
n
i�1 � 2h n

i � h n
i�1

(�x)2 � [1](Anderson and Woessner, 1992). As stated above, fixed
spatial grids are traditionally generated prior to numeri-
cally solving a PDE. where � is a weighting parameter such that 0 � � � 1
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(Wang and Anderson, 1982). Subscripts and super- solution, communicating needs of the physics to the
points, and providing mutual communication amongscripts designate the spatial location of nodes and time

levels, respectively. For � � 1, the spatial derivative is points as they respond to the physics.
Two important target capabilities of adaptive gridapproximated solely at the advanced time level tn�1 to

give a fully implicit scheme which is unconditionally refinement strategies are to optimize overall computa-
tional effort (i.e., providing the best possible results forstable; that is, the time step �t can be chosen indepen-

dently of node spacing �x. For � � 0, the spatial deriva- a fixed computational effort) and to provide indicators
of residual error as a measure of simulation reliabilitytive is approximated solely at the old or current time

level tn to give a fully explicit scheme that tends not to (Oden, 1989). Adaptivity involves automated “restruc-
turing” a numerical scheme to improve the quality ofbe computationally efficient due to required very small

values for both �x and �t. For � � 1/2, the spatial the resolution (Oden and Demkowicz, 1987). Such re-
structuring may include changing the number of cells orderivative occurs midway between times tn and tn�1 to

give the Crank–Nicolson method. The Crank–Nicolson elements, increasing the local order of the approxima-
tion, moving nodal points, changing algorithm structuremethod is both computationally efficient and uncondi-

tionally stable. Generally for the Crank–Nicolson method, during the solution of governing PDEs on a changing
numerical model. Effective LAGR methods should re-the smaller the truncation error, the faster is the conver-

gence of difference equations to the differential equa- quire minimal mesh structure (i.e., essentially coordi-
nate-independent), demonstrate stability during changestion (Remson et al., 1971).
and distortions of the mesh, and utilize parallelism or
vectorization to deal with large data management re-Adaptive Grid Refinement Methods
quirements in an efficient way (Oden and Demkowicz,

Adaptive methods for solving PDEs for water flow 1987). The LAGR finite element methods meet these re-
and solute transport have been developed to increase quirements as effective adaptive schemes for very com-
the accuracy of computed solutions. Three major cate- plex three-dimensional problems (Oden and Demko-
gories of LAGR methods occur in the computational wicz, 1987).
fluid dynamics literature: mesh refinement (h-methods), Adaptive grid methods can be simply defined as “nu-
moving mesh (r-methods), and subspace enrichment merical schemes which automatically adjust themselves
(p-methods) schemes (Oden and Demkowicz, 1987; to improve solutions” (Oden and Demkowicz, 1987). Suc-
Oden, 1989). These categories appear naturally if one cessful numerical models with adaptive mesh schemes
views adaptivity as a means of reducing some measure contain three components: a flow solver, a strategy for
of the global error in the solution (Tannehill et al., 1997). identifying regions for refinement and coarsening, and
The h-methods refine the mesh to increase nodal density a mechanism for dynamically altering the mesh. A pos-
in regions of the flow domain that have large errors, and teriori local error estimates are commonly used to assess
can be very effective in producing near-optimal meshes the quality of a numerical solution after an initial calcu-
for given error tolerances. The p-methods increase the lation on a trial mesh is made. Calculation of very pre-
degree of interpolation in regions of the domain with cise and sharp error estimates provides the only general
high error, while maintaining a constant pattern of dis- method for assessing the actual quality of a numerical
cretization. The subspace enrichment methods generally solution (Oden and Demkowicz, 1987). First and second
employ a fixed mesh and a fixed number of grid cells. derivatives of domain variables are often used as simple
The r-methods relocate a fixed number of nodes within means to identify high-error regions for mesh adaption.
the domain to increase nodal densities in regions of the The trial solution is then used to compute an indication
domain having large errors. However, without careful of the distribution of error and then to change the ap-
implementation, the moving mesh schemes can be un- proximation to reduce the error. Numerical schemes are
stable. Thus, the effective approaches often use a mix- restructured so as to optimize resolution.
ture of two or three of the basic methods. Theoretically, Local adaptive grid resolution approaches typically
combined h- and p-methods offer the fastest possible con- include three major tasks: grid maintenance, integration,
vergence rates (i.e., ways to decrease local errors to zero and communication (Diaz et al., 1989). Grid mainte-
as fast as possible) can be attained by optimally decreas- nance determines placement and/or removal of high
ing the mesh size h and increasing polynomial degree resolution grids. Placement or removal of high resolu-
p in a special way. However, the complexity of data tion grids is very important for modeling problems hav-

ing both global and localized phenomena. Ultimately,structures for some combined adaptive methods can be
substantial (Oden, 1989). Effectiveness of an adaptive the solution obtained with such numerical methods is

as good as the method’s ability to track localized phe-scheme requires implementation of an efficient data
management scheme (Oden and Demkowicz, 1987). nomena over the domain.

An adaptive grid approach is most effective when itIn an adaptive grid, physics of a problem at hand
must ultimately direct the grid points to congregate so is dynamically coupled with the solution, so that the so-

lution and the grid are solved together in a single contin-that a functional relationship on these points can rep-
resent the physical solution with sufficient accuracy uous problem (Thompson, 1985). Points must not move

independently, but rather, each point much somehow(Thompson, 1985). The mathematics controls the points
by sensing gradients in the evolving physical solution, be coupled at least to its neighbors.

A number of major computational challenges relateevaluating accuracy of discrete representation of the
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to the use of LAGR algorithms, however. These chal- be inconsistent with that given in the PDE (Eq. [4]) for
highly nonlinear cases. Such accuracy problems maylenges include:
occur even with the use of iteration for numerical solu-1. Three-dimensional procedures are far from au- tions of the h-based form. The �-based form degeneratestomatic. under fully saturated conditions and has restricted appli-2. Parallel procedures are just emerging. cability in heterogeneous subsurface porous media be-3. Directional (e.g., boundary layers) meshes are not cause material discontinuities produce discontinuous �generally available. profiles. The mixed form of the continuity equation in4. Optimal adaptive enrichment strategies remain Eq. [4] is generally considered superior to the otherlargely undiscovered. two forms because of robustness with respect to mass5. Solution-based (a posteriori) error estimation pro- balance. Note that taking water content as a secondarycedures are restricted to model problems (Bern et dependent variable in the mixed-form (Eq. [4]) such thatal., 1999).
�(h) effectively converts this PDE to an h-based form.

Although mass balance is often used as an indicatorParallel computation procedures become important when
for the success of numerical solutions of Richards’ equa-models include such complexities as nonlinearity, multi-
tion, Warrick (1991) showed that mass balance alonedimensionality, and transcience.
does not always assure an acceptable solution. He dem-
onstrated that finite difference approximations to DarcyWater Flow in Porous Media:
flow may lead to erroneous water velocities for unsatu-Special Resolution Requirements
rated conditions, particularly for flow across large pres-

Critical cases of water flow such as evaporation near sure gradients. The choice of appropriate intrablock
the soil surface and infiltration into initially dry soil pro- approximations for unsaturated hydraulic conductivity
files typically create local mobile regions with large was shown to be a critical step in estimating Darcy ve-
gradients of water head. Highly nonlinear relationships locity during one-dimensional simulations of constant
between hydraulic conductivity and pressure head con- flux infiltration into a very dry clay loam soil. Simula-
tribute to very steep wetting fronts during infiltration tions with effective conductivities based upon tradi-
into initially dry soil. In the vicinity of the wetting front tional arithmetic and geometric averages provided rela-
for initially dry soil, small values of hydraulic conduc- tively diffuse and sharp wetting fronts, respectively, in
tivity require very large gradients to move even a small comparison with that for a quasi-analytical solution. A
amount of water (Pan and Wierenga, 1995). A short dis- weighted average provided intermediate results. In spite
tance behind the wetting front, water content increases, of these differences in simulated water content profiles,
providing a much higher conductivity and much smaller mass was conserved for all cases.
head gradients. Insufficient local resolution for such The three differential forms of the water continuity
cases of water flow can result in numerical oscillation equation (Eq. [2], [3], and [4]) for water flow provide
and numerical smearing. mixed hyperbolic–elliptic behavior under conditions of

The continuity equation for three-dimensional tran- variable water saturation of the soil. Hyperbolic behav-
sient water flow in unsaturated subsurface media is typi- ior occurs during unsaturation, and elliptic behavior oc-
cally expressed in three forms: curs during saturation.

An example of mathematical alteration of govern-(i) the �-based form as
ing PDEs [category (i) numerical approaches] was pre-
sented by Kirkland et al. (1992) where two numerical��

�t
� �D(�)�� �

�K(h)
�z

[2]
algorithms were implemented which retain advantages
of �-based finite difference methods for fully unsatu-(ii) the h-based form as rated heterogeneous problems but still permit fully satu-
rated conditions. One algorithm was based upon trans-

�(h)
�h
�t

� �K(h)�h �
�K(h)

�z
[3] forming Richards’ equation with a variable parameter

	 that has characteristics of water content � when the
(iii) and the mixed-form (i.e., the Richards equation) soil is unsaturated and of pressure head h when the soil

is at or near saturation. The other algorithm was an��

�t
� �K(h)�h �

�K(h)
�z

[4] h-based method (Eq. [3]), which uses flux updating to
achieve mass balance by updating � for unsaturated
nodes usingwhere z is depth, t is time, � is volumetric water content,

h is water pressure head, K is soil hydraulic conductivity,
D(�) � K(�)/C(�) is soil water diffusivity, and �(h) � � n�1

i � � n
i � �t

�q n�1
i�1/2 � a n�1

i�1/2�
�z

[5]
d�/dh is the specific water-holding capacity (Celia et al.,
1990). Numerical solutions for h-based forms can be where the Darcy flux at zi�1/2 � [zi � z�1]/2 for time t n�1

used for both saturated and unsaturated conditions
(Kirkland et al., 1992). The h-based form is sometimes

q n�1
i�1/2 � �K n

i�1/2

�h**i � h**i�1�
�z

[6]associated with poor accuracy (e.g., mass balance error
or numerical oscillations) due primarily to implementa-
tion of a capacity term in a numerical scheme that may and h** is the initial estimate at a new time step. A
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preconditioned conjugate gradient method equation sure head gradient needed to move water through dry
soil was reported to be less, the numerical scheme moresolver was used to implement both algorithms. The flux

updating method, although not as robust as the 	-based robust, and decreased central processing unit (CPU)
time. Excellent agreement was observed for simulationsalgorithm, has the advantage of significantly improving

performance relative to conventional h-based algorithms. of constant-flux infiltration into soil with very dry initial
conditions using Pt-based and 	-based (Kirkland et al.,It was also reported to be very easy to incorporate into

existing h-based codes. Water fluxes were reported to 1992) models, although the Pt-based model used much
less CPU time. Smeared wetting fronts resulted for simi-be more sensitive to spatial step size in solving Richards’

equation than were water contents or pressure heads. lar simulations using an h-based model strongly indi-
cated the need for local adaptive grid refinement. Incor-They suggest that the use of water flux rather than pres-

sure head may be preferable in judging convergence if poration of the Pt-based numerical model into existing
h-based codes was reported to be easy.solute transport is to be included with the water flow

model. A general Eulerian FDM with modified Picard itera-
tion for the mixed form of Richards’ equation for one-A further example of category (i) (mathematical al-

teration of governing PDEs) approaches where mathe- dimensional water flow has been expressed in tridiago-
nal matrix form asmatical transformations have been reported for en-

hanced numerical solution of water continuity equations h n�1,m�1
i�1 ���
K n��,m

i�1/2 �
can be found in Pan and Wierenga (1995). A fast, numer-
ically robust numerical scheme utilizing PDE transfor- � h n�1,m�1

i �� n�1,m
i � �
�K n��,m

i�1/2 � K n��,m
i�1/2 ��

mation was introduced for solving the h-based equation
� h n�1,m�1

i�1 ���
K n��,m
i�1/2 �for variably saturated, heterogeneous media. (Pan and

Wierenga, 1995). The one-dimensional form of Eq. [3] � h n
i�1��1 � ��
K n��,m

i�1/2 � [11]
was transformed using a simple nonlinear transform of

� h n
i ��� � 1�
�K n��,m

i�1/2 � K n��,m
i�1/2 ��h (e.g., pressure Pt)

� h n
i�1��1 � ��
K n��,m

i�1/2 �
Pt �

h
1 � 
h

[7]
� h n�1,m

i �� n�1,m
i � � �z
�K n��,m

i�1/2 � K n��,m
i�1/2 �

where 
 is a universal constant (≈�0.04 cm�1) indepen- � �� n
i � � n�1,m

i � � �tS(z,t)
dent of both K(h) and �(h) relationships. The resulting

where 
 � �t/(�z)2 for a fixed spatial grid; � � 1 specifiesthree-dimensional form of Richards’ equation was
backward FDM, which is fully implicit; � � 1/2 specifies
the Crank–Nicolson FDM method, which is centrally�* �Pt

�t
� �K*(h)�Pt �

�K(h)
�z

[8]
differenced in space; and � � 0 specifies fully explicit
or forward FDM (Johnsen et al., 1995). Superscripts nwhere Pt is the dependent variable, �* is a transformed
and m denote time and iteration levels, respectively.specific water capacity given as
Celia et al. (1990) used a fully implicit form of Eq. [7]
without the source–sink term.�* � K

dh
dPt

� �[1 � 
h]2 [9]
The fully implicit, mixed form of Richards’ equation

is generally considered to be an accurate model for both
and K* is a transformed hydraulic conductivity speci- saturated and unsaturated flow (Johnsen et al., 1995).
fied as The next to last term on the right-hand side of Eq. [11]

provides a mass-balance adjustment since the term on
K* � K

dh
dPt

� K [1 � 
h]2 [10] the left-hand side of Eq. [4] was approximated using a
Taylor series expansion to give

A critical feature of Pt-based Eq. [8] is that near
saturation 
h 

 1 such that Pt � h for h � 0. For the ��

�t
≈ ��

�t
� ��

n�1,m�1 � �n

�t 	
specific case when h � 0, �* � � (h � 0) � 0 and
K* � K(h � 0) � Ksat. Thus, the continuity of both

� � n�1,m �h
n�1,m�1 � h n�1,m

�t 	 � ��
n � �n�1,m

�t 	 [12]Pt(h) and �Pt/�t is guaranteed at the joint point h � 0
linking conditions of positive and negative soil water
pressure head. For large negative values of h, �Pt /�z 
 The discrete analog of �(h)�h/�t in the h-based Eq.

[3] is not equivalent to that of ��/�t in Richards’ Eq. [4]�h/�z, resulting in faster simulations for vertical flow
with less mass-balance error for conditions involving due to the highly nonlinear nature of the specific capac-

ity term �(h), even though they are mathematically equiv-large gradients of h. For zero and positive values of h,
�Pt/�z � �h/�z and �Pt/�z � �h/�z, respectively. The Pt alent (Pan and Wierenga, 1995).

Conservation of mass alone, however, does not guar-transform is free from difficulties commonly experi-
enced for heterogeneous soils and with hysteresis for antee good numerical solutions for water flow using

either FDM or FEM. For the special case of sharp wet-the case of the �-based continuity equation.
The Pt transform greatly reduces the steepness of ting front development during water infiltration into

initially dry soil, conventional mass-distributed FEMwetting fronts in initially dry soil, thus mitigating the
need for LAGR. Consequently, the transformed pres- approximations have been reported to produce oscilla-
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tory solutions even as mass is conserved (Celia et al., changes in �H that tend to cause problems with numeri-
cal convergence in model simulations.1990). Low initial water contents (Celia et al., 1990) and

Numerical tests were performed by Dane and Mathislarge grid spacing (van Genuchten, 1982) enhance such
(1981) for constant flux infiltration of water into a verti-undesirable oscillation. Pan et al. (1996) provided a phys-
cal sand column with initial, uniform water content andical interpretation of numerical oscillation when FEM
for simultaneous evaporative and drainage loss in uni-is used to model water flow into dry soil. They empha-
form coarse porous media with a water table located atsized that mass conservation in FEM is applied to each
3 m depth. Space nodes were redistributed by the codeelement, whereas mass conservation in FDM is applied
as a relatively sharp wetting front moved downward.directly to each cell. Element size represents the FEM
The smallest �z values were dynamically placed in thespatial resolution because the nodal values represent
vicinity of the front with the largest values placed boththe final solutions. Detailed distributions of h, �, and K
above and below the front. An important advantage ofwithin an element can be assumed arbitrarily without
this adaptive method is that no preliminary simulationsviolating the mass conservation law at the element level.
are necessary to obtain the optimum combination of �tLinear or nonlinear interpolation functions are com-
and �z for a given problem. For evaporation, an initialmonly used to obtain distributions for these variables.
constant flux boundary condition at the soil surface wasWater storage and flux within each element in FEM are
changed to a constant head when h reached �15 000 cmsplit into several components in the function space, each
of water. This change in the surface boundary conditionof which corresponds to one component of the boundary
occurred between 4.97 and 6.17 h, resulting in a decreaseflux of the element. Therefore even with correct applica-
in evaporation rate as the water content of the surfacetion of physical laws at the element level, traditional
soil decreased. For higher evaporation rates occurring atmass-distribution schemes may generate an incorrect
0.27 and 4.97 h, the smallest �z values were dynamicallyresponse for a neighboring node due to the highly non-
placed in the soil below the soil surface, as well as inlinear properties for water flow in unsaturated soil caus-
the soil in the vicinity of the water table. For transienting numerical oscillation (Pan et al., 1996). Although
water flow with locally large changes in �H due to in-FEM offers the flexibility to arbitrarily choose both
filtration, evaporation, and water uptake by roots, theelement shape and interpolation functions within an
LAGR approach for water flow offers more accurateelement, the cost of that flexibility is that relationships and efficient computation of water flux q and volumetricbetween nodes (at the point level) may be incorrect content � than nonadaptive schemes. Accurate values forphysically, even though their integral (at the element q and � provide critical input for accurate simulation oflevel) is correct. Mass-lumped schemes have been shown associated solute transport during transient water flow.

to improve numerical convergence and eliminate oscil- A more recent form of the self-adaptive scheme by
lations when simulating infiltration into dry soils (Neu- Dane and Mathis (1981) was incorporated into the
man, 1972). However, smearing of the wetting front may WAFLOWM model, where hydraulic head H rather
occur when a mass-lumped FEM scheme is used for than pressure head h was the dependent variable in the
infiltration into a dry soil (Pan et al., 1996). mixed-form of Richards’ equation (Johnsen et al., 1995),

Pan et al. (1996) introduced two FEM mass-distribu- such that
tion schemes that are free of oscillation and decrease
smearing in the vicinity of a sharp wetting front. Free- ��

�t
�

�

�z �K(h)
�H
�z � � S(z,t) [13]

dom from oscillation occurs with those schemes because
the distribution of ��/�t correctly expresses the physical where S(z,t) is a source–sink term for water uptake by
relationship between nodes. Interpolation functions uti- plant roots as well as tile drainage flux. This approach
lized are dependent upon the nodal values of pressure eliminates the first-order derivative term that occurs in
head at the previous time. The introduced mass-dis- Eq. [4]. The mass-conservative numerical method of
tributed schemes provided less smearing and smaller Celia et al. (1990) was used to solve this equation. John-
global mass balance errors than a traditional mass-lumped sen et al. (1995) dynamically determined space step sizes
scheme. Accuracy improvements of the new schemes by imposing the relationship
were obtained at slightly higher CPU time requirements.

An example of category (ii) (incorporation of adap- G(zi,t) � G(zi�1,t) �
G(zN,t)

N
[14]

tive grid refinement or LAGR algorithms) numerical
approaches for water flow was presented by Dane and where the error estimation function G(zi,t) is defined as
Mathis (1981) where a self- adaptive LAGR algorithm
was combined with FDM for the one-dimensional h-based G(zi,t) � 


z

0
��2 H(x,t)

�z2 �
1/2

dz [15]form of the Richards equation (Eq. [3]) to describe
transient water flow in unsaturated porous media. A

and is based upon the second-order spatial derivativefixed number (N) of spatial grid nodes were dynamically
of Harranged such that fine grids are locally imposed in those

flow regions where large changes in total head gradients ��
2H

�z2 	
n�1

i

�
H n�1

i�1 � 2H n�1
i � H n�1

i�1

(�z)2
[16](�H � �h � 1) occur. Water loss as evaporation from

the surface of moist soil and water infiltration into ini-
tially dry soil profiles tend to create regions with large Dane et al. (1982) demonstrated the utility for the use
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of second-order spatial derivative of H as an effective a problems. Most of the time 34 grid nodes were used in
RZWFLO for 15-m tile spacing, although up to 21 extraposteriori error estimator during LAGR-FDM simula-

tion of water infiltration into initially dry soil. Figure 1 nodes were temporarily added during times with steep
H gradients. The adaptive, optimizing grid scheme inwas adapted from Dane et al. (1982) and provides a

graphic plot of the one-dimensional spatial distribution WAFLOWM maintained 50 total nodes throughout
simulations, but dense grids were dynamically placed inof simulated soil water content �(z) and the correspond-

ing second-order spatial derivative �2H/�z2 . This error regions with steep gradients.
Transpiration, T, was calculated as potential evapo-estimator justifies the fine grid automatically selected

by the LAGR algorithm for the immediate vicinity of transpiration, PET, minus potential evaporation, E. A
simple Thornewaite approach was used to approximatethe sharp wetting front.

The WAFLOWM adaptive numerical model was suc- PET. T was distributed as a sink–source term over a
constant rooting depth of 15 cm. Although results fromcessfully evaluated using three years (1974–1976) of

field data for a cropped area in Aurora, NC where the two models predicted fluctuations in groundwater
table fairly well, estimated depths to water table weremidpoint water tables were measured for 7.5-, 15-, and

30-m drainage tile spacings (Johnsen et al., 1995). Drain generally overpredicted for all 3 yr. The overprediction
was attributed to inaccuracies in approximations of bothdepth was 0.90 m. Crops grown during the 3-yr period

included corn (Zea mays L.), soybean [Glycine max evapotranspiration (ET) and flow rates from tile drains.
Simple source–sink terms were used to describe drain-(L.) Merr.], potato (Solanum tuberosum L.), and wheat

(Triticum aestivum L.). Surface soil texture was sandy age. In most cases, results from WAFLOM more closely
approximated observed data than RZWFLO. Bothloam. An impermeable layer was assumed to occur at

1.40-m depth for the 15-m spacing. Simulated water ta- WAFLOM and RZWFLO models maintained perfect
soil water mass balance throughout the simulation, thusble depths with the adaptive WAFLOWM and non-

adaptive RZWFLO models were comparable to ob- paralleling observations by Pan et al. (1996).
An adaptive-grid finite FEM solver RES-1D was de-served values for 15-m tile spacing in 1975.

The RZWFLO model, extracted from the Root Zone veloped by Clausnitzer et al. (1998) for solving a one-
dimensional form of the h-based Richards equation. TheWater Quality Model (RZWQM) reported by Ahuja et

al. (2000) was modified to allow simulation of saturated adaptive-grid algorithm recreates the finite-element
grid, depending on the position of the wetting front,flow. Within RZWFLO, the Green and Ampt approach

was used to describe the water infiltration phase and to maintain the highest node density in those domain
regions where ��2h/�z2� is maximal. Consequently, forthe FDM given by Eq. [11] was used to solve the water

redistribution phase. A 1-cm node spacing was used in this solver, the total number of nodes changes with time
during a simulation. The solver incorporates a finite-RZWFLO during infiltration and variable node spacing

up to 5 cm with variable time steps up to 1 h were used element, Picard time-iterative model using linear ele-
ments and a Galerkin formulation at each time step.during water redistribution. Following rainfall, extra

grid points were manually added within regions of steep Simulations were reported for ponded (5-cm ponding
depth) infiltration into clay and sandy loam soils initially�H for the RZWFLO to prevent numerical convergence
in hydrostatic equilibrium with groundwater tables at
15 m depth for clay and 5 m depth for sandy loam
soil (Fig. 1). The RES-1D solver effectively prevented
numerical instabilities for the extreme head gradients
associated with advancing wetting fronts in these two
soil profiles.

Cao and Kitanidis (1999) presented an example of
category (iii) approaches (combinations of mathemati-
cal alteration of governing PDEs and incorporation of
adaptive grid refinement or LAGR algorithms) for nu-
merical solutions of multidimensional water flow. Mod-
eling single-phase fully saturated flow in highly hetero-
geneous formations represents a challenge due to the
tendency for flow to channel into preferential flow paths.
In the case of very large conductivity variation, the flow
regime resembles a network. Relatively fine grids are
required to maintain low truncation errors and to pre-
vent numerical dispersion associated with simulation of
such flows. However, the use of uniform fine element
meshes to capture the high-flow zones tends to be com-
putationally inefficient since a coarser mesh may ade-
quately describe typically slow flow rates that exist in
most of the domain. Cao and Kitanidis (1999) appliedFig. 1. Spatial plot of volumetric water content and the second deriva-
a mesh-adaptive approach to a dual-flow FEM formula-tive of total water pressure head during water infiltration into

initially dry soil (adapted from Fig. 4 in Dane et al., 1982). tion to simulate steady groundwater flow in heteroge-
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neous isotropic porous media. Two uncoupled elliptic posed for high-flow areas and coarsened for low-flow
equations for steady flow were utilized, one describing areas depending on accuracy levels specified. Thus,
hydraulic potential head H adaptive refinement of the grid ensures both quality of

the flow solution and significant reduction of overall
�(K�H) � 0 [17] processing time.

Cao and Kitanidis (1999) utilized a numerical experi-and the other for stream function �
ment to demonstrate that successive mesh adaptation ef-
ficiently enhanced accuracy for two-dimensional ground-��1

K
��	 � 0 [18]

water flow in heterogeneous aquifers. The experiment
involved simulation of groundwater flow in a 1 m bywhere K is hydraulic conductivity (or transmissivity for
1 m square domain where the logarithm of hydraulicDupuit–Forchheimer flows). An a posteriori error esti-
conductivity is assumed to be randomly distributed. Onmator ε was used to adapt the mesh through bisection
the adapted meshes, the grid is highly nonuniform inrefinements, unrefinements, edge swaps, and node mov-
node density, with higher density in higher conductivitying. The error was defined as ε � � � �l where �l is
areas. Large differences between the first and fifth adap-a piecewise linear solution for Eq. [18] using linear ele-
tive meshes are clearly obvious in Fig. 2. The first adap-ments. The mesh adaptation procedure produces a trian-
tive mesh was coarse, having regular triangulation withgulation on which granularity varies gradually, improv-
unit length of 0.05 m in the x and y directions (1916ing its geometric quality and reducing the error related
finite elements). Error estimates indicated that the firstto the discretization.
adaptive mesh was inadequate. The fifth adaptive meshThe procedure by Cao and Kitanidis (1999) starts by
had 9845 finite elements. Nodes were distributed un-obtaining a solution utilizing a fairly coarse initial mesh.
evenly, so that density is higher where needed as deter-A higher-order approximation is used to estimate the er-
mined with a posteriori error estimate analysis. The CPUror distribution, which serves as a guide to locate regions
percentage utilized for grid optimization in the simula-of high flow rates and consequently adjusts the grid granu-
tion was 
20%. Streamlines computed for the first andlarity. A hierarchical-style local refinement scheme bi-
fifth adaptive meshes are also shown in Fig. 2. Stream-sects the longest edge of the triangle of interest. Areas
lines from the initial coarse grid tend to miss the chan-with higher flow rates are discovered by a series of mesh
neling of flow in preferential flow paths. A numerical so-adaptations. An auxiliary unrefinement tool is used to
lution based upon a very fine uniform mesh with 0.01 mdelete unnecessary previously set points. An optional
in both x and y directions (20 000 finite elements) wasnode-moving process can further improve the grid. Ev-
observed to be less than sufficient to resolve high con-ery refinement or unrefinement process is followed by
ductivity areas. The adaptive approach described thea node-moving adjustment that improves the mesh qual-
groundwater flow more effectively and efficiently thanity. Also, error estimates are computed on the basis of

updated FEM solution. Refinement of the grid is im- did the very fine uniform mesh.

Fig. 2. (A) First adapted mesh with 1916 finite elements (adapted from Fig. 9 in Cao and Kitanidis, 1999); (B) fifth adapted mesh with 9845
finite elements (adapted from Fig. 15 in Cao and Kitanidis, 1999); (C) streamlines associated with the initial mesh (the discharge between
two consecutive plotted streamlines is 0.05 if the total discharge is regarded as 1) (adapted from Fig. 7 in Cao and Kitanidis, 1999); and (D)
flownet associated with the fifth adapted mesh (the discharge passing between two consecutive plotted streamlines is 0.05 if the total discharge
is regarded as 1) (adapted from Fig. 17 in Cao and Kitanidis, 1999).
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Solute Transport in Porous Media: tation–dissolution of solids (Wolfsberg and Freyberg,
1994). For a single reactive solute species that undergoesSpecial Resolution Requirements
simple instantaneous nonlinear Freundlich sorption, the

Steep moving fronts of solute concentration may oc- corresponding sink term becomes
cur for convective-dispersive transport during water
flow in porous media for conditions when the convection

�i �
�(�bSi)

�Ci

�Ci

�t
� �b�K C��1

i where
term dominates or the concentration moves along in a
wave (Finlayson, 1992). Accurate numerical solutions for

Si � K C�
i [22]solute transport involving steep concentration fronts

create special requirements for optimum resolution. For where media bulk density �b is assumed constant for a
convection-dominant transport of solutes in porous me- given strata of porous media and the exponent � 
 1.0
dia, sharp peaks and valleys of solute concentration, as for many solute species. For steady flow, the corre-
well as details of the solution controlling transport be- sponding form of Eq. [20] simplifies to
tween nodes after each time step are truncated by inter-
polation between nodes. Such truncation is the source R(Ci)

�Ci

�t
� �(�D�Ci) � ��Ci [23]

of all numerical problems in simulations of convective-
dispersive solute transport (Yeh, 2000). Truncation of where R(Ci) is a sorption retardation function given as
peaks and valleys is an important cause of peak clipping,
numerical spreading, and spurious oscillation. Incorpo- R(Ci) � 1 �

�b

�
�K C��1

i [24]
ration of local adaptive grid refinement algorithms in
numerical models provides opportunity to enhance the When multiple interacting species are present, sub-
accuracy of numerical approximations by automated surface Eq. [20] represents a system of coupled equa-
adjustment of local spatial resolution for such cases. tions where coupling occurs through the sink terms �i.The three-dimensional continuity equation for con- For competitive instantaneous ion exchange between
vective-dispersive transport of multiple solutes during multiple cations, the �i terms are typically given as func-
water flow in fully saturated subsurface porous media tions of concentrations C of both the ith species and
can be expressed as competing species (Mansell et al., 1993). Typical units

for C in the solution phase and S in the exchange phase�(φCi)
�t

� �[D�(φCi) � �(φCi)] � �i are moles of charge per cubic meter and per megagram,
respectively, where associated units of �b are megagrams

i � 1, 2, 3, ..., Nc [19] per cubic meter. Exchange isotherms relating S and C
with fixed exchange coefficients are assumed for binarywhere Ci is the concentration of species i in the solution
combinations of species. The cation exchange capacityphase, φ is porosity, D is the dispersion tensor, �i is a
defined as the summationsink–source term, � � q/φ is the seepage velocity, q is

the Darcy flow velocity, and Nc is the number of species
ST � �

Nc

i�1

Si [25](Wolfsberg and Freyberg, 1994). For transient water
flow in variably saturated subsurface porous media, the

is generally assumed constant for a given strata of po-continuity equation for multi-species transport becomes
rous media.

Equation [20] provides mixed parabolic–hyperbolic�Ci

�t
�

1
�

�(�D�Ci) � ��Ci �
1
�

�(CiD��) �
�i

� behavior for solute transport during transient water flow
in variably saturated soil. For conditions of dispersion-

i � 1, 2, 3, ..., Nc [20] dominant transport parabolic behavior prevails, but
during convection-dominant transport hyperbolic be-where � is volumetric water content and � � q/� is the
havior prevails. Sharp fronts of concentration may ap-pore velocity. A simplified form of Eq. [2] was utilized
pear during convection-dominant transport, creating ain obtaining Eq. [20]. For two-dimensional systems, the
need for increased resolution localized in numericaldispersion tensor D may be defined by the components
models. For the case of convection only, transport oc-
curs along characteristic lines that follow water flow;Djj � �L

�2
j

�
� �T

�2
j

�
and Djk � [�L � �T]

�j�k

� whereas for dispersion only, transport occurs along and
between characteristic lines (Yeh, 2000). Three catego-� � √[�2

j � �2
k] [21]

ries of numerical methods are utilized to solve for solute
transport: Eulerian (computations at nodes of a fixedwhere �j and �k are the velocity components in two Car-

tesians directions, and �L and �T are the longitudinal grid), Lagrangian (computations at nodes moving with
the fluid [particles]), and Eulerian-Lagrangian methods.and transverse dispersivities. The first and third terms

on the right-hand side of Eq. [20] represent hydrody- When convection dominates transport, Eulerian meth-
ods tend to generate numerical oscillation (wiggles) andnamic dispersion, and the second term represents con-

vection. spreading. Numerical schemes that resolve numerical
oscillation tend to yield excessive numerical spreading,The �i term in Eq. [20] represents chemical processes

such as sorption on solid surfaces, stochastic exchange whereas schemes that resolve spreading tend to create
severe oscillation (Yeh, 2000). Oscillation is often theon solid surfaces, solution-phase reactions, and precipi-
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beginning of instability, whereas excessive spreading that undergo instantaneous competitive exchange was
simulated during steady flow into a two-dimensionalgives inaccurate solutions and may cause nonconver-

gence for nonlinear problems. The most severe limita- unidirectional flow field with homogeneous medium
(�x � 0.18 m d�1, �y � 0, and dispersivities �L � �T �tion of Eulerian methods is that none of them can be

safely applied for large Courant numbers (Cr � ��t/�z). 0.45 m). Initially, the solution and exchange phases were
assumed saturated with species 1 with C1 � CT � 0.5 mgAn example of category (i) numerical approaches for

solute transport is the flux-corrected transport (FCT) L�1 and S1 � ST � 0.5 mg L�1, where CT is the total
solution normality and ST is the concentration of ex-algorithm, which provides an Eulerian method for over-

coming both numerical oscillation and dispersion (Boris change sites. Species 2 and 3 were applied as a strip
source centered on the upstream boundary (source lengthand Book, 1973). The FCT algorithm, which utilizes a

weighting average of the flux computed by a low- and is 0.6 of the 400-m domain width) with solution-phase
concentrations C2 � C3 � 1.0 mg L�1. Equilibrium par-a high-order scheme, has been successfully used to simu-

late unstable solute transport (Chang and Slattery, 1990). titioning coefficients (Kij � [Sj /Si]/[Cj/Ci]), K12 � 2 and
K13 � 4, were specified such that invader species 3 ex-The FCT employs a clipping mechanism by forcing cal-

culated concentration values to stay between the given changes more readily than invader species 2, which in
turn exchanges more readily than the resident species 1.maximum and minimum values for each node.

Wolfsberg and Freyberg (1994) presented an example As the two invader species move into the flow domain,
they preferentially displace the exchange phase of spe-of category (ii) numerical approaches for solute trans-

port. A LAGR algorithm was utilized in conjunction with cies 1. A fixed coarse spatial grid was imposed with
4-m spacing and a 5-d time step. A fixed fine grid wasan Eulerian solver that utilized an explicit second-order

central finite difference spatial discretization and a imposed with 1-m spacing and 1.25-d time step. Simu-
lated spatial distributions of species concentrations forsecond-order Runge–Kutta time stepping scheme to

demonstrate efficient simulation of solute transport in the fine grid, coarse grid, and LAGR were compared
for an elapsed time of 1500 d. The numerical error ingroundwater. The LAGR tracks error-prone regions

and supplies high-resolution subgrids locally as needed the coarse grid solution is greatest in the region where
competitive exchange occurs between all three cationand maintains relatively few nodes elsewhere on a

coarse base grid. The algorithm proceeds through five species. The LAGR subgrids and the fixed fine grid pro-
vided greater resolution, which reduced numerical er-steps during each integration on the base grid: (i) trunca-

tion error estimation, (ii) node flagging and subgrid ror. The leading concentration front for species 1 was
not covered with a subgrid because it was beyond thegeneration, (iii) interpolation of initial and boundary

conditions on subgrids, (iv) integration through multiple influence of the reactive invader species. Imposing sub-
grids for only two species rather than three resulted insteps on subgrids, and (v) updating coarse grid solution.

Important features include a unique method for de- savings in CPU time. Early in the simulation, the front
for species 1 was sharp, but with time dispersion moder-tecting a priori where the numerical error is unaccept-

able, variable time step control, which allows smaller ated the front sharpness so that the coarse grid resolu-
tion was adequate at 1500 d.time steps on subgrids than on the base grid, and a

modular framework that allows easy exchange of PDE Trompert (1993) presented another example of cate-
gory (ii) numerical approaches for solute transport. Asolvers to accommodate different problem formula-

tions. The process of computing local truncation error LAGR solver was utilized to investigate nonlinear, brine
transport in heterogeneous porous media located inat every node is inexpensive relative to the simulation

cost because only coarse grid solutions are required groundwater. Disposal of hazardous waste in salt forma-
tions results in special problems related to brine trans-for estimates. Subgrids with higher resolution than the

original base grid are created and placed in regions of port. In the vicinity of rock salt formations (e.g., salt
domes), salt concentrations may become very large, sounacceptable numerical error. Speed gained through

enablement of parallel computations outweighed the as to influence groundwater flow (Zegeling et al., 1992).
Adaptive grid methods are especially valuable for suchtime step limitation required of the explicit numerical

method used by Wolfsberg and Freyberg (1994). Any problems where locally steep concentration fronts com-
monly occur. Trompert (1993) demonstrated that adap-FDM using a uniform discretization and of the same

order in space and time can be coupled with the LAGR tive grid methods can compute a solution to such prob-
lems with locally the same resolution as on a very fineroutines used by Wolfsberg and Freyberg (1994).

An example of multiple species transport of three uniform grid, but with less computational cost. Equa-
tions for transient groundwater flow and salt transportcations in a uniform flow field demonstrated that the
were assumed to be coupled through fluid density � andLAGR by Wolfsberg and Freyberg (1994) achieved nu-
dynamic viscosity �, which were assumed to be relatedmerical solutions with accuracies comparable to those
to salt concentration C through the functionsachieved with a uniform fine grid but with only 28%

of the computational cost. The controlling PDEs for
�/�o � exp(�C)

transport of the three cations are coupled through reac-
andtion terms. Due to iterations among multiple PDEs,

solutions to this reactive multispecies problem cost sig-
�/�o � (1 � 1.85C � 4.10C 2 � 44.50C 3) [26]nificantly more CPU time per node than nonreactive

single-species cases. Transport of three cation species where � (log[2.0] used here) is an experimental coeffi-
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cient, and �o (1000 kg m�3) and �o (10�3 kg m�1 s�1) are with brine displacement of fresh water (i.e., salt-free
water) for a vertical two-dimensional reservoir. Fourreference density and dynamic viscosity, respectively,

for solute-free water. Thus, the coupled flow and trans- distinct regions (I, II, III, and IV) in the reservoir were
identified with different intrinsic permeabilities and dis-port equations were
persivities. Permeabilities for Regions I, II, III, and IV
were 10�13, 10�15, 10�10, and 10�13 m, respectively. Lateral�

�t
(φ�) � ��(�q) for fluid flow

and transversal dispersivities for these four regions were
0.008, 0.005, 0.010, and 0.008 m, respectively, and 0.0016,and
0.0010, 0.0020, and 0.0016 m, respectively. The top of
the reservoir was open. Saturated brine was injected�

�t
(φ�C) � ��(�Cq � J) for salt transport [27]

through the opening on the left-hand side at the bottom.
During injection, brine moved slowly into Region III

where J � �(�φD)�C and q �
k
�

(�� � �g) toward the top of the reservoir, initially bypassing Re-
gion IV with 1000-fold smaller permeability than Region
III such that a very sharp transition in salt concentrationThe parameter J is the dispersive salt flux, q is Darcy
developed at the interface between these two regions.water flux, p is water pressure, D is the 2 by 2 dispersion
With time, dispersion tended to smooth the movingtensor, φ is porosity, g (9.81 m s�2) is acceleration of
front. Later, the front passed the interface between Re-gravity, and k is permeability of the porous media. For
gions III and I and then moved into Region I with 1000-time integration of these equations, an implicit Euler
fold smaller permeability than Region III, bypassingmethod was used for the first time step and a second-
Region II with 100-fold smaller permeability than Re-order implicit Gear-type BDF stiff ODE solver with
gion I. Much later, salt penetrated Regions II and IVvariable coefficients for following time steps where vari-
from III at approximately the same time. At first, saltable step sizes are taken (Trompert, 1993). Standard
penetrated Region IV at the top-left corner and latersecond-order central finite differences were used for
at the entire interface. Steady state occurred when even-space discretization. Linear interpolation was used for
tually the saturated brine has spread out over the entireobtaining initial and boundary conditions.
domain. Salt concentrations in the reservoir were simu-Local-uniform-grid refinement (LUGR) methods gen-
lated using LUGR at t � 60 000 s when two grid levelserally start from a coarse-base grid covering the entire
were used in the model. The coarsest of the two gridsdomain. Finer and finer uniform subgrids are created lo-
was 20 � 20 m. User specified time and space tolerancescally in a nested manner in regions of large spatial varia-
were 0.10 and 0.25, respectively. The two-grid LUGRtions. The LUGR method used by Trompert (1993) per-
computations were 1.8 times faster than those with aforms integration on a series of nested, local-uniform
40 � 40 m fine uniform grid.finer and finer subgrids. Subgrids are created up to a

The Lagrangian approach or moving-grid method islevel of refinement where sufficient spatial accuracy is
generally less favored in operational transport modelsreached, and their location and shape are adjusted after
than the Eulerian approach because of complexity ofeach time step. The space domain is considered to be a
application. Computation of partial derivatives becomesrectangle, and all grids in use are uniform and Cartesian.
very complicated in distorted Lagrangian-point net-Interfaces demarking inhomogeneities are assumed to
works (Yeh, 2000).coincide with cell edges in the numerical approximation.

Zegeling et al. (1992) applied a Lagrangian methodHeuristic error monitors are used to control mesh re-
[category (ii) numerical approach] to simulate nonlin-finement and the variable-time step sizes.
ear, brine transport for groundwater flows in the vicinityFor each time step, the computation starts at the
of salt domes. Coupled equations for groundwater flowcoarse-base grid by using the most accurate solution
and salt transport are those of Eq. [27]. An implicit FDMavailable since coarser-grid-solution values are always
approach based on the method of lines (MOL) methodupdated by the finer grid solution. Eight operations are
for time-dependent PFDs was utilized. With evolvingperformed during each time step:
time the spatial grid is automatically refined in regions

1. Solve PDEs on the coarse grid. with large spatial transitions. One grid-smoothing proce-
2. If the desired accuracy in space or the maximum dure was employed to generate a spatially smooth grid

number of grid levels is reached, then go forward and another for avoiding temporal grid oscillations. Two
to Step 8. types of automatic grid-adaptation were used. For one

3. Determine new finer-grid level at forward time. type, integration occurs on grids that spatially equidistri-
4. Interpolate internal-boundary values at forward bute a relevant measure of the error. The equidistribution

time. is realized in a dynamic Lagrangian approach where the
5. Provide new initial values at backward time. grid is adapted continuously in time. This feature makes
6. Solve PDEs on new grid level, by using the same it possible to accurately and efficiently follow steep trav-

time step. eling fronts of concentration. A second type of adapta-
7. Go back to Step 2. tion serves to cope with rapid temporal transitions and
8. Update the coarse-grid solution by using the finer- involves the use of variable step sizes in the numerical

grid values. integration. An advantage of this Lagrangian approach
is that the grid movement often softens the solutionTrompert (1993) demonstrated his LUGR method
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behavior in time, so that larger time steps can be taken distributions obtained with Upstream FEM, Galerkin
FEM, Upstream FDM, and Central FDM numericalthan on a fixed spatial grid. The moving-grid finite dif-

ference method was demonstrated for two one-dimen- approaches, as well as an exact solution for the problem
of one-dimensional nonreactive solute transport duringsional numerical problems with sharp traveling concen-

tration fronts. The first derivative �C/�x was used as a steady water flow through homogeneous porous media
(Yeh, 2000). Solute-free water was applied to the mediamonitor to place a number of points just within the front

where large values occurred. and the initial concentration distribution with distance
was expressed as a Gaussian HillSimulation of groundwater flow in heterogeneous aq-

uifers with high contrast in equation coefficients can be
a difficult task (Cao and Kitanidis, 1999). An accurate C(x,t � 0) � exp ��(x � x0)2

2� 2
0

� [28]
description of the velocity field has been shown to be a
prerequisite for a realistic analysis of convective-disper- where x is the space coordinate, x0 (2000 m used here)
sive transport of reactive solutes (Cao and Kitanidis, is the center of mass of the initial concentration field,
1997). In mixing-limited reactions, use of inaccurate ve- t is time (9600 s), and �0 (264) is the standard deviation
locity causes miscalculation of the rate of mixing and of the initial Gaussian concentration field. An exact
thus the rate of chemical reactions (Cirpka et al., 1999). solution for the Gaussian Hill problem was expressed as
Neglecting spatial variability may be inappropriate when
heterogeneity has a strong influence on mixing. Cao and C(x,t) �

�0

�
exp ��(x � x)2

2�2 � [29]
Kitanidis (1999) reported a procedure for high-accuracy
computation of flow in heterogeneous aquifers that uti- where � 2 � � 2

0 � 2Dt and x � x0 � 
 1
0 �(�)d�, with D

lized a dual-flow formulation and adaptive gridding [an the diffusion coefficient and � the pore velocity field.
example of category (iii) numerical approaches]. Mesh Peclet numbers Pe (Pe � ��x/D) of infinity, 50,

Lagrangian-Eulerian methods (LEMs) combine the and 2 were assumed, with a small mesh Courant number
best aspects of Eulerian and Lagrangian approaches. Cr (Cr � ��t/�x) of 0.24.
Lagrangian-Eulerian methods provide further examples For the pure convection case (Pe � ∞) and convection-
of category (iii) numerical methods. All LEMs solve the dominant case (Pe � 50), the Upstream FEM and Up-
Lagrangian form of the transport equation at the nodes stream FDM produced excessive peak clipping, numeri-
of a fixed grid (Yeh, 2000). Particle tracking methods cal diffusion, and slight phase error (Yeh, 2000). Neither
form a variant of LEMs in which particles are introduced approach gave spurious oscillation. Simulations for the
into the domain. Each particle is associated with a spa- “worst-case” scenario (i.e., the pure convection case
tial coordinate and a discrete quantity of mass. The num- where Pe � ∞) are shown in Fig. 3 for Upstream FEM,
ber of particles and location of the introduced particles Galerkin FEM, and ALGR-EPCOF. For the case with
depend upon the initial concentration field, boundary Pe � ∞, the Galerkin FEM produced much less peak
conditions, and artificial sources or sinks. During each clipping than the Upstream FEM and Upstream FDM
time step, the particles are moved forward with convec- approaches. The Central FDM presented some peak
tion and dispersion, the number and location of particles clipping, as well as unacceptable spurious oscillation and
is converted back to concentrations for the fixed grid phase error for Pe � ∞. For the diffusion-dominant case
nodes, concentration changes resulting from biochemi- (Pe � 2), all five numerical methods approximated the
cal reactions are computed, and mass associated with exact solution. The ALGR-EPCOF algorithm provided
each particle is recomputed. Particle tracking methods identical results with the exact solution within specified
can accurately handle sharp gradients and small sources
of mass. However, a very large number of particles and
a fine support grid are required to conserve mass in
particle tracking approaches.

Backward methods of characteristics (i.e., hybrid
LEMs) form another variant of LEMs. Unfortunately,
peak clipping is not eliminated by the hybrid LEM ap-
proach. Yeh (2000) utilized a Lagrangian-Eulerian de-
coupling with an adaptive zooming hidden fine mesh
approach to solve transport equations to minimize peak
clipping. The algorithm included “adaptive local grid
refinement based on exact peak capture and oscilla-
tion free behavior” (i.e., ALGR-EPCOF). The ALGR-
EPCOF algorithm was designed to capture peaks and
valleys and high curvature areas to within a specified
error tolerance to eliminate spurious oscillation, numer-
ical diffusion, and peak clipping. This algorithm can be

Fig. 3. Spatial concentration distributions for Gaussian transportused with both FDM and FEM numerical approaches.
problem as obtained with ALGR-EPCOF, Upstream FEM, Galer-It can also be used for multidimensional cases. kin FEM, and Exact Solution for a Peclet number Pe of infinity

Spatial distributions of solute concentration obtained (convection-dominant transport) (adapted from Fig. 3.4.5 in Yeh,
2000).with the ALGR-EPCOF algorithm were compared with
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error tolerance for each of the three Pe cases. It elimi- time, especially for multidimensional cases. The local ele-
ment zooming method constitutes embedding new nodesnated spurious oscillation, introduced no numerical dif-

fusion, captured the peak entirely, and generated no directly into the existing computational grid (Wolfsberg
and Freyberg 1994). Although this produces improve-phase error.

For simulations of another extreme case with large ments in local accuracy, it complicates the solution strat-
egy because the nodes are no longer regularly distrib-mesh Courant number (Cr � 12 due to a relatively large

time step �t) and very large mesh Peclet number (Pe � uted over the entire domain.
A Crank-Nicolson FDM tridiagonal matrix form of∞), the ALGR-EPCOF algorithm also provided excel-

lent agreement with the exact solution, in contrast to the one-dimensional form of Eq. [20] for transport of
a nonreactive solute with �i � 0 can be expressed assevere peak clipping, oscillatory behavior, numerical dif-

fusion, and phase error observed with the four con-
ventional FDM and FEM approaches (Yeh, 2000). The C n�1

i�1 ��(�D) n�1/2
i�1/2 �

�z
2

q n�1/2
i�1/2 �

second-order accuracy Central FDM generated unac-
ceptable solutions for all time-step sizes used, and the

� C n�1
i �2
 � n�1/2

i � (�D)n�1/2
i�1/2 � (�D) n�1/2

i�1/2second-order accuracy Galerkin FEM gave barely ac-
ceptable solutions for cases when Cr 
 1.0. Yeh (2000)
concluded that peak clipping in numerical simulation of �

�z
2

(q n�1/2
i�1/2 � q n�1/2

i�1/2 )�solute transport produces all ancillary problems of nu-
merical diffusion, spurious oscillation, and phase error.

Yeh (2000) compared a spatial distribution of solute � C n�1
i�1 ��(�D) n�1/2

i�1/2 �
�z
2

q n�1/2
i�1/2 �

concentration obtained with the ALGR-EPCOF algo-
rithm with distributions obtained with Upstream FEM,

� C n
i�1�(�D) n�1/2

i�1/2 �
�z
2

q n�1/2
i�1/2 �Galerkin FEM, Upstream FDM, Central FDM, and an

exact solution for the problem of one-dimensional non-
reactive solute transport resulting from a step-function

� C n
i �2
 � n�1/2

i � (�D) n�1/2
i�1/2 � (�D) n�1/2

i�1/2input during steady water flow through solute-free ho-
mogeneous porous media. An analytical or exact solu-
tion of the convective-dispersive transport in a uniform �

�z
2

(q n�1/2
i�1/2 � q n�1/2

i�1/2 )�flow field where solute concentration at the surface in-
creased as a step function with solute-free initial condi-

� C n
i�1��(�D) n�1/2

i�1/2 �
�z
2

q n�1/2
i�1/2 � [32]tions

C(x,t) �
1
2 �erfc� x � �t

(4Dt)1/2� � exp��x
D	erfc� x � �t

(4Dt)1/2�� where 
 � �t/(�z)2 for a fixed grid and q is the Darcy
[30] water flux. Eulerian numerical solutions such as Eq. [32]

perform well for dispersion-dominant solute transportwas used for convective-diffusive transport with D � 0.
but encounter difficulties such as numerical dispersionFor the case of pure convection with D � 0, Eq. [28]
and/or oscillation for convection-dominant solute trans-simplifies to
port (Liu et al., 1995). Extremely fine space and time

C(x,t) � 1 if x 
 �t and 0 otherwise [31] grids may be required to eliminate such difficulties.
Lagrangian-Eulerian methods where convection isConcentration profiles at t � 9600 s were simulated for

Pe of infinity (pure convection), 50 (convection-domi- solved with a moving Lagrangian grid using particle track-
ing along characteristics of the flow field and dispersionnant transport), and 2 (diffusion-dominant transport).

For pure convection (Pe � ∞), the ALGR-EPCOF sim- is solved with a fixed Eulerian grid have been used to
deal with such difficulties. Zhang et al. (1993) presentedulation is exact to within specified error tolerance. The

ALGR-EPCOF algorithm provided excellent agreement a modified single-step reverse particle tracking (MSRPT)
technique to handle steep concentration fronts duringwith the exact solution for all three values of Pe . Accu-

mulative mass balance errors of 0, �0.110, and �0.482% convection-dominant transport, as well as pure convec-
tion. Two weighting factors are employed to control theoccurred for pure convection, convection-dominant, and

diffusion-dominant transport cases. In contrast, none particle tracking process. A factor greater than unity is
used in the upstream region and another less than unityof the four conventional FEMs and FDMs could solve

the convection-dominant and pure convection solute is used in the upstream region. For dispersion-dominated
problems, the two factors approach unity, in which casetransport satisfactorily. For diffusion-dominant trans-

port (Pe � 2), all four FEM and FDM schemes gave MSRPT becomes single-step reverse particle tracking
(SRPT). The MSRPT method maintains advantages ofvery good solutions, but the ALGR-EPCOF provided

a superior solution. SRPT procedures, such as providing efficient and oscil-
lation-free computations, but circumvents artificial dis-Practical implementation of the ALGR-EPCOF algo-

rithm presents a limitation of this approach because the persion introduced by SRPT near sharp concentration
fronts. However, in regions where concentration gradi-process of zooming and refining the finite elements at

each time step is not straightforward (Zhang et al., 1993). ents are small, the SRPT method is effective. One-dimen-
sional numerical tests revealed the MSRPT method toThe large number of elements needed for this method

also requires excessive computer memory and execution be relatively accurate, efficient and mass-conservative
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for solute transport in transient flow fields. An analytical
�i,j �Ci,j � C �i,j

�tj
	solution of the convective-dispersive transport in a uni-

form flow field where solute concentration at the surface
increased as a step function with solute-free initial con-
ditions as given in Eq. [28] was utilized in a numerical �

(�D)i�1/2 �Ci�1,j � Ci,j

�xi�1
	 � (�D)i�1/2 �Ci,j � Ci�1,j

�xi
	

0.5(�xi�1 � �xi� [38]test. Excellent agreement occurred between MSRPT
and analytical results. The MSRPT method was demon- Space step sizes were determined by imposing the rela-
strated to handle the entire range of grid Peclet num- tionship
bers Pe from zero to infinity for steady and transient
water flow. The grid Courant number Cr cannot exceed G(xi,t) � G(xi�1,t) �

G(xN,t)
N

[39]
unity, however.

The modified method of characteristics (MMOC) is where N is the number of nodes and the function G(xi ,
a LEM that treats convection through a fictitious parti- t) is defined as
cle moving backward or forward with respect to each
fixed node at every time step. Liu et al. (1995) combined G(xi,t) � 


x

0
��2C(x,t)

�x2 �
1/2

dx [40]
a self-adaptive algorithm with the computational power
of the MMOC to yield an adaptive modified method of following the method of Dane and Mathis (1981), Dane
characteristics AMMOC to simulate convection-domi- et al. (1982), and Johnsen et al. (1995). A four-step pro-
nated solute transport in subsurface porous media. The cedure allows spatial grid nodes to be moved with time
one-dimensional convective-dispersive transport equa- and ensures small space step sizes at locations where
tion was expressed as concentration gradients change rapidly with distance.

Three numerical tests of the AMMOC with a clipped
quadratic interpolation scheme adapted from Wang et�

DC
Dt

�
�

�x ��D
�C
�x 	 [33]

al. (1988) showed the simulations to be free of oscilla-
tion, approximately global mass conservative, and ex-

where the Lagrangian derivative was defined as hibited insignificant numerical dispersion. An extreme
case of testing involved the application of a rectangularDC

Dt
�

�C
�t

� �
�C
�x

[34] salt pulse without physical dispersion (D � 0) during
steady saturated flow. Predicted concentration distri-
butions with distance for two times following pulse ap-and C represents the concentration of a fluid particle
plication agreed very well with an analytical solution,moving along the characteristics given as
although some numerical dispersion was unavoidable.
The AMMOC result was superior to a classical FDMdx

dt
�

q
�

� � [35] simulation in both numerical accuracy and computa-
tional efficiency (Liu et al., 1995).

The Lagrangian derivative in Eq. [34] was approxi-
Examples of Local Adaptive Grid Refinementmated by

Usage in Related Fields of Interest
Field-scale simulation of multiphase flow associated

DC
Dt

�
Ci,j � C �i,j

�tj

[36]
with the remediation of aquifers contaminated with non-
aqueous phase liquids is computationally expensive andwhere Ci,j is the solute concentration at node xi and time
may provide unsatisfactory results (Hornung and Tran-

tj , and C �i,j is the concentration of a fluid particle at tj�1, genstein, 1997). Conventional simulations often do not
which moves with velocity � and coincides with node xi adequately resolve important flow features for several
at tj . According to the single-step reversible particle reasons:
tracking method, a fictitious particle moves backward

1. The influence of fine-scale flow mechanisms onfrom each node to the point
macroscopic behavior approximated during field-
scale simulations is incompletely known.x �i � xi � 


tj

tj�1

�dt [37]
2. Complicated fluid interface structures develop dur-

ing the flow of multiphase fluid mixtures through
during each time step �tj � tj � tj�1, and C �i,j � C(xi ,tj) porous media.

3. Porous media flow often involves important infor-is subsequently computed from the concentration distri-
mation on many physical scales.bution at tj�1. The value for x �i was determined by fourth-

order Runga-Kutta numerical integration of Eq. [34]. Standard computational methods typically have diffi-
Once x �i is determined, clipped quadratic interpolation culty representing unstable fluid interfaces, and numeri-
was used to calculate C�i,j � C(x�i ,tj�1). Combining the ap- cal dispersion of conventional low-order methods may
proximation given by Eq. [37] with a central finite differ- dominate physical dispersion. Field-scale simulations

may require computational grids sufficiently fine to re-ence scheme for the dispersion term in Eq. [33] gave
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solve length scales of features characteristic of fine-scale in reservoir simulation problems (Prakash, 1987) which
allows flexible grids. Mesh refinement techniques havelocalized flow behavior. Representing physically mean-

ingful data on various length and time scales efficiently been shown to be useful in obtaining high resolution of
shock fronts and near wellbore flow in reservoir simula-during a simulation is a formidable task (Hornung and

Trangenstein, 1997). Additionally, very large volumes tion of cyclic steam injection for recovery of crude oil.
Forsythe (1989) reported a CVFEM local mesh refine-of aquifers may be involved, and many chemical compo-

nents may be of interest. ment technique for coupling coarse grids with local fine
meshes. Significant savings in execution times were ob-To make simulations computationally viable, low-res-

olution numerical methods are often combined with tained, while providing similar predictions to global fine
mesh runs.coarse numerical meshes. If such coarse numerical ap-

proximations do not resolve relevant flow features, com-
putational results and actual flows in an aquifer may

CONCLUSIONSbe unclearly linked (Hornung and Trangenstein, 1997).
Lower resolution methods often underresolve compli- A number of critical problems involving water flow
cated fluid interfaces spatially due to substantially in- and solute transport in soils provide cases where pregen-
creased numerical diffusion. erated, fixed grids may provide inaccurate numerical re-

A combination of high resolution numerical discreti- sults. Problems such as penetration of sharp wetting
zation techniques and adaptive mesh refinement offers a fronts during infiltration in initially dry soil or sharp con-
tool that allows provision of fine-scale resolution locally centration fronts during convection-dominant solute
and concentration of numerical effort near important transport impose local spatial resolution requirements
flow features. This tool offers achievement of local reso- that typically change with time and space. Insufficient
lution without overwhelming computational expense. spatial resolution is commonly recognized to be the pri-
Hornung and Trangenstein (1997) combined adaptive mary source of errors for simulations of these cases
mesh refinement with multilevel iteration to accommo- resulting in such undesirable features as numerical oscil-
date elliptic and parabolic aspects of equations for flow lation and numerical smearing for water flow simula-
in porous media. A system of nonlinear hyperbolic mass tions of water flow and solute transport, as well as peak
conservation equations was coupled to an elliptic pres- clipping for solute transport. Although utilizing a fixed
sure equation. Three fluid components (oil, water, and grid with a fine mesh may provide accurate numerical
polymer) that flow in two phases (oleic and aqueous) solutions for such problems, high computational cost
were assumed. The authors assumed no mass transfer may be prohibitive for multidimensional simulations in-
between phases and incompressible flow. Oil exists only volving large areas of the vadose zone and associated
in the oleic phase, whereas a water and polymer mixture groundwater zone.
forms the aqueous phase. Three general categories of numerical approaches are

The algorithm of Hornung and Trangenstein (1997) reported in the literature to ensure accurate solutions
was applied to a two-phase polymer flooding problem of PDEs for water flow and solute transport in porous
for a two-dimensional vertical cross-section between an media: (i) mathematical alteration of governing PDEs,
injection well and a production well. The top and bottom (ii) incorporation of adaptive grid refinement (LAGR)
of the reservoir were sealed, and permeability heteroge- algorithms, and (iii) combinations of the first two cate-
neity was imposed. Initially the reservoir was filled with gories. Each of these categories present methods de-
a 10% aqueous phase mixture containing a 10% poly- signed to improve inadequate matches between the
mer concentration. A 100% aqueous phase mixture with mathematics given by the governing PDEs and the nu-
a 90% polymer concentration was injected at a constant merical approximations presented in model computer
rate in the injector. Complex two-dimensional distribu- codes. Mathematical transformations of PDEs and local
tions of aqueous phase saturation and polymer concen- adaptive grid refinement and combinations of both have
tration for the polymer flooding problem resulted from been used successfully by many investigators to enhance
the injection. The adaptive mesh refinement algorithm numerical solutions of water flow and solute transport.
allowed significant computational savings with an over- Although mathematical transformations provide im-
head cost of slightly more than 20% for mesh adaptation provement in simulations for simple cases such as water
and data synchronization. The adaptive mesh refine- flow into initially dry soil, LAGR approaches generally
ment ran approximately four times faster than the fine offer greater potential for a broader spectrum of large-
mesh calculation. Nearly the same rate of convergence scale complex problems. Soil heterogeneity is one of
and magnitude of accuracy were achieved on a series many complexities associated with such problems. Auto-
of uniform meshes as on adaptive meshes. matic adaptive refinement of the grid based upon a

Grid refinement algorithms have also been used ex- posteriori error estimates can be used to ensure both
tensively in the solution of the Navier–Stokes equations quality of the flow solution and significant reduction of
(Tannehill et al., 1997). One example is the LAGR tech- overall processing time. Incorporation of local adaptive
nique used by Perng and Street (1992) in modeling grid refinement algorithms in numerical models provide
the Navier–Stokes equations to describe flow in a lid- opportunity to enhance the accuracy of numerical ap-
driven cavity. proximations by automated adjustment of local spatial

The control volume finite element numerical method resolution for such cases.
Three principal groups of local adaptive grid refine-(CVFEM) is a technique used for Navier–Stokes flows
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ment (LAGR) methods include: mesh refinement Partial differential equations for variably saturated flow
tend to have parabolic behavior, saturated flow tends(h-methods), moving-mesh (r-methods), and subspace

enrichment (p-methods) schemes. The most effective ap- to be elliptic in nature, and solute transport equations
are characteristically parabolic–hyperbolic. Initial andproaches often use a mixture of two or three of the basic

methods. Theoretically, combined h- and p-methods of- boundary conditions also influence the choice of LAGR
to be used.fer the fastest possible convergence rates. However, the

complexity of data structures for some combined adap- Implementation costs of ALGR algorithms are a valid
consideration in deciding whether to use such algorithmstive methods can be substantial. Effectiveness of an

adaptive scheme requires implementation of an efficient in numerical modeling. For simple small-scale multidi-
mensional problems, a fixed fine mesh may actually bedata management scheme.

Successful numerical models with incorporated adap- simpler to implement than adaptive grid refinement al-
gorithms, even though the computational cost is higher.tive mesh schemes contain three components: a flow

solver, a strategy for identifying regions for refinement However, for large-scale multidimensional problems in-
volving large flow domains, adaptive approaches mayand coarsening, and a mechanism for dynamically alter-

ing the mesh. A posteriori local error estimates are com- be preferred in practice over fixed fine grids because of
very large CPU costs associated with fixed fine meshes.monly used to assess the quality of a numerical solution

after an initial calculation on a trial mesh is made. First A number of major computational limitations relate
to the incorporation of LAGR algorithms into numeri-and second derivatives of domain variables are often

used as simple means to identify regions for mesh adap- cal methods. Limitations include:
tion. The trial solution is then used to compute an indica-

1. Three-dimensional procedures are far from auto-tion of the distribution of error and then to change the
matic.approximation to reduce the error. Numerical schemes

2. Parallel procedures are just emerging.are restructured to improve the quality of the resolution.
3. Directional (e.g., boundary layers) meshes are notThe main objective for utilizing any local adaptive

generally available.grid refinement approach is to effectively achieve an ap-
4. Optimal adaptive enrichment strategies remainproximate numerical solution that occurs within the range

largely undiscovered.of admissible accuracy (tolerance) and to do so with min-
5. Solution-based (a posteriori) error estimation pro-imal computational cost (Babuska, 1989). Successful

cedures are restricted to model problems.adaptive grid methods have been shown to compute
solutions to water flow and solute transport problems Future design of LAGR approaches may also require
with locally the same resolution as on a very fine uniform overcoming difficulties sometimes experienced in auto-
grid, but with less computational cost. Test problems of mated regridding of mesh for complex multidimensional
water flow and solute transport for a number of LAGR geologies to obtain grids that ensure converging solu-
algorithms by different authors generally show that solu- tions. Thus, opportunities exist for further development
tions computed with LAGR require smaller operational of simple but efficient LAGR numerical approaches for
costs than a comparable method with a fine uniform a broader range of complex problems of multidimen-
grid. Accuracy of the results range from being similar to sional water flow and solute transport in soils. Spatial
identical. However, cost for development, implementa- heterogeneity of soils in nature is one of many important
tion, and testing of LAGR algorithms may be substantial. features that add complexity to such problems.

Operational LAGR algorithms for simulating water The potential need for adaptive grid techniques in
flow and solute transport optimize simulation accuracy numerical simulations will obviously be impacted by
and computational efficiency, especially for critical prob- future advancements in computer technology. On aver-
lems that involve moving wetting fronts and/or con- age, the number of transistors per integrated circuit in
centration fronts that are characteristically sharp. Both desktop computers has approximately grown exponen-
simulation accuracy and cost effectiveness of a specific tially with time during the past 43 yr or so (http://www.
LAGR approach are required to justify the use of such intel.com/research/silicon/mooreslaw.htm). This expo-
algorithms, which typically involve complex code. Com- nential growth rate roughly equates to a doubling every
paring LAGR simulation results with those obtained 2 yr and was first reported in 1965 (Moore, 1965). This
with a fixed spatial grid provide a common means to trend, commonly referred to as Moore’s Law, is ex-
evaluate accuracy and computational efficiency. Tradi- pected to continue at least through this decade. As com-
tional FEM and FDM numerical approaches using fixed puter technology advances, more complex problems of
spatial grids tend to be computationally inefficient since water flow and solute transport are likely to become
they typically offer optimal accuracy but high computa- numerically solvable without the use of adaptive grid ap-
tional cost. proaches. However, advances in computer technology

Unfortunately, no single LAGR algorithm is capable simultaneously tend to generate an increasing demand
of providing accurate, efficient numerical solutions for for addressing even more complex problems, which may
all critical problems involving water flow and solute require further use of adaptive approaches. Although
transport in subsurface porous media. The choice for a a first objective for any numerical simulation is to obtain
LAGR algorithm for solving a specific problem depends a physically and mathematically correct answer for a
upon such factors as to whether the PDEs are mathe- given problem, a second objective is obviously to obtain

such an answer as fast as possible with minimal resources.matically elliptic, hyperbolic, or parabolic in behavior.
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