The lining of a shield tunnel is often constructed using prefabricated concrete ring segments, which are bolted together within the tunnel boring machine to form the tunnel lining. During the erection of the tunnel lining the tunnel boring machine (TBM) remains stationary. Once a tunnel lining ring has been fully erected, excavation is resumed, until enough soil has been excavated to erect the next lining ring. As a result, the construction process can be divided into construction stages with a length of a tunnel ring, often about 1.5 m long. In each of these stages, the same steps are repeated over and over again.

In order to model this, a geometry consisting of slices each 1.5 m long can be used. The calculation consists of a number of Plastic phases, each of which models the same parts of the excavation process: the support pressure at the tunnel face needed to prevent active failure at the face, the conical shape of the TBM shield, the excavation of the soil and pore water within the TBM, the installation of the tunnel lining and the grouting of the gap between the soil and the newly installed lining. In each phase the input for the calculation phase is identical, except for its location, which will be shifted by 1.5 m each phase.

Figure 6.1 Construction stages of a shield tunnel model
Objectives:

- Modelling of the tunnel boring process with a TBM
- Modelling of the cone shape of the TBM
- Using Tunnel designer to define geometry, trajectory and sequencing of the tunnel

6.1 GEOMETRY

In the model, only one symmetric half is included. The model is 20 m wide, it extends 80 m in the y -direction and it is 20 m deep. These dimensions are sufficient to allow for any possible collapse mechanism to develop and to avoid any influence from the model boundaries.

When starting PLAXIS 3D set the proper model dimensions in the Project properties window, that is $x_{\min }=-20, x_{\max }=0, y_{\text {min }}=0$ and $y_{\max }=80$.

6.1.1 DEFINITION OF SOIL STRATIGRAPHY

The subsoil consists of three layers. The soft upper sand layer is 2 m deep and extends from the ground surface to Mean Sea Level (MSL). Below the upper sand layer, there is a clay layer of 12 m thickness and this layer is underlain by a stiff sand layer that extends to a large depth. Only 6 m of the stiff sand layer is included in the model. Hence, the bottom of the model is 18 m below MSL. Soil layer is assumed to be horizontal throughout the model and so just one borehole is sufficient to describe the soil layers. The present groundwater head corresponds to the MSL.

Press the Create borehole button and click at the origin of the system of axis to create a borehole at (000). The Modify soil layers window will open.

- Define 3 layers: Upper sand with the top at 2 m and the bottom at 0 m , Clay with the bottom at -12 m and Stiff sand with the bottom at -18 m .
=1 Open the materials database by clicking the Materials button and create the data sets for the soil layers and the final concrete lining in the tunnel as specified in Table 6.1.

Table 6.1 Material properties for the soil layers

Parameter	Name	Upper sand	Clay	Stiff sand	Concrete	Unit
General						
Material model	Model	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Linear elastic	-
Drainage type	Type	Drained	Drained	Drained	Non porous	
Unit weight above phreatic level	$\gamma_{\text {unsat }}$	17.0	16.0	17.0	27.0	$k N / m^{3}$
Unit weight below phreatic level	$\gamma_{s a t}$	20.0	18.0	20.0	-	$k N / m^{3}$
Parameters						
Young's modulus	E^{\prime}	$1.3 \cdot 10^{4}$	$1.0 \cdot 10^{4}$	$7.5 \cdot 10^{4}$	$3.1 \cdot 10^{7}$	$\mathrm{kN} / \mathrm{m}^{2}$
Poisson's ratio	ν^{\prime}	0.3	0.35	0.3	0.1	
Cohesion	$c^{\prime}{ }_{\text {ref }}$	1.0	5.0	1.0	-	$k N / m^{2}$
Friction angle	φ^{\prime}	31	25	31	-	
Dilatancy angle	ψ	0	0	0	-	-
Interfaces						
Interface strength	-	Rigid	Rigid	Rigid	Rigid	-
Initial						
K_{0} determination	-	Automatic	Automatic	Automatic	Automatic	-

- Assign the material data sets to the corresponding soil layers (Figure 6.2) and close the Modify soil layers window. The concrete data set will be assigned later.

6.1.2 DEFINITION OF STRUCTURAL ELEMENTS

The tunnel excavation is carried out by a tunnel boring machine (TBM) which is 9.0 m long and 8.5 m in diameter. The TBM already advanced 25 m into the soil. Subsequent phases will model an advancement by 1.5 m each.

Create tunnel

In Structures mode both the geometry of the tunnel and the TBM will be defined.
(Click the Create tunnel button in the side toolbar.

- Click anywhere on the drawing area to define the insertion point. The Tunnel

Figure 6.2 Soil layer distribution
designer window pops up.

- In the Selection explorer set the insertion point of the tunnel to (0 0-13.25) (Figure 6.3).
- In the General tabsheet select the Circular option in the drop-down menu for the Shape type.
- The left half of the tunnel is generated in this example. Select the Define left half option in the drop-down menu for the Whole or half tunnel. A screenshot of the General tabsheet after the proper assignment is given in Figure 6.4.
- Click the Segments tabsheet to proceed to the corresponding tabsheet. A segment is automatically created. A new box is shown under the segment list where the properties of the segment can be defined.
- In the Segment box set Radius to 4 m . This is the inner radius of the tunnel.
- Proceed to the Subsections tabsheet.
T) Click the Generate thick lining button in the side toolbar. The Generate thick lining window pops up.
- Assign a value of 0.25 m and click OK. A screenshot of the Cross section tabsheet after the proper assignment is given in Figure 6.5.
- Proceed to the Properties tabsheet. Here we define the properties for the tunnel such as grout pressure, surface contraction, jack forces and the tunnel face pressure.
- In the Slice tabsheet, right-click the outer surface and select Create plate from the appearing menu (Figure 6.6).

Click on the Material in the lower part of the explorer. Create a new material dataset. Specify the material parameters for the TBM according to Table 6.2.

A soil-structure interaction has to be added on the outside of the tunnel due to the slight cone shape of the TBM. Typically, the cross-sectional area at the tail of the TBM is about

```
Selection explorer
G (T) Tunnel_1
        x:0,000 m
        y:0,000 m
        z: -13,25m
    @-- CrossSection: Tunnel_1_TunnelCrossSection_1
        @- Tunnel_1_Segment_1
        @-- Tunnel_1_SubsectionPolycurve_1
            Offset 1:0,000 m
            Offset 2: 0,000 m
            Orientation axis 1 x: 1,000
            Orientation axis 1 y: 0,000
            Orientation axis 1 z: 0,000
            Orientation axis 2 x:0,000
            Orientation axis 2 y: 0,000
            Orientation axis 2 z: 1,000
    巨-- Trajectory: Tunnel_1_Polycurve_1
        #- Tunnel_1_Segment_3
        # Tunnel_1_Segment_4
            x: 16,00 m
            y: 22,00 m
            z: -13,25m
            Offset 1:0,000 m
            Offset 2: 0,000 m
            Orientation axis 1x:0,000
            Orientation axis 1y: 1,000
            Orientation axis 1z: 0,000
            Orientation axis 2x: -1,000
            Orientation axis 2y:0,000
            Orientation axis 2 z: 0,000
        - Slicing: Tunnel_1_Slicing_1
    @- PhasesDefinition: Tunnel_1_PhasesDefinition_1
        Excavation method: TBM
        .- Tunnel_1_PhasesDefinition_1_TunnelAdvanceInfo_1
```

Figure 6.3 Insertion point of the tunnel

Hint: In the tunnel, as considered here, the segments do not have a specific meaning as the tunnel lining is homogeneous and the tunnel will be constructed at once. In general, the meaning of segments becomes significant when:

- It is desired to excavate or construct the tunnel (lining) in different stages.
- Different tunnel segments have different lining properties.
- One would consider hinge connections in the lining (hinges can be added after the design of the tunnel in Staged construction mode, Section 7.9.4 of the Reference Manual).
- The tunnel shape is composed of arcs with different radili (e.g. NATM tunnels).

Table 6.2 Material properties of the plate representing the TBM

Parameter	Name	TBM	Unit
Type of behaviour	-	Elastic; Isotropic	-
Thickness	d	0.17	m
Material weight	γ	247	$\mathrm{kN} / \mathrm{m}^{3}$
Young's modulus	E_{1}	$200 \cdot 10^{6}$	$\mathrm{kN} / \mathrm{m}^{2}$
Poisson's ratio	ν_{12}	0	-
Shear modulus	G_{12}	$100 \cdot 10^{6}$	$\mathrm{kN} / \mathrm{m}^{2}$

Figure 6.4 General tabsheet of the Tunnel designer

Hint: A tunnel lining consists of curved plates (shells). The lining properties can be specified in the material database for plates. Similarly, a tunnel interface is nothing more than a curved interface.
0.5% smaller than the front of the TBM. The reduction of the diameter is realised over the first 7.5 m length of the TBM while the last 1.5 m to the tail has a constant diameter. This means that the section tail has a uniform contraction of 0.5% and the remaining 5 sections have a linear contraction with a reference value $C_{\text {ref }}=0.5 \%$ and an increment $C_{\text {inc, axial }}=-0.0667 \%$. The reference is set on the front surface of the excavated slice in the tunnel during the tunnel construction. This is done while setting the Sequencing steps. The $C_{\text {inc,axial }}=-0.0667 \% / \mathrm{m}$ and remains the same in every step ($1 _1$ to $1 _5$). For further information on Surface contraction refer Section 5.5.4 of the Reference Manual.

- Right-click the same outer surface and select Create negative interface from the appearing menu to create a negative surface around the entire tunnel.
- Next step is to create Surface contraction for the tunnel. Right-click the outer surface and select Create surface contraction.
- In the properties box, select the Axial increment option for the contraction distribution and define $C_{\text {ref }}=0.5 \%$ and $C_{\text {inc,axial }}=-0.0667 \% / \mathrm{m}$. The increment must be a negative number because the contraction decreases in the direction of the positive local 1 -axis. The reference location is (0 280).

Grout pressure

The surface load representing the grout pressure is constant during the building process. In the specifications of the tunnel boring process, it is given that the grout pressure should be $-100 \mathrm{kN} / \mathrm{m}^{2}$ at the top of the tunnel $(z=-4.75)$ and should increase with -20 $\mathrm{kN} / \mathrm{m}^{2} / \mathrm{m}$ depth. To define the grout pressure:

Figure 6.5 The Cross section tabsheet of the Tunnel designer

Hint: A surface contraction of the tunnel contour of 0.5% corresponds approximately to a volume loss of 0.5% of the tunnel volume (applicable only for small values of surface contractions).
 》 The entered value of contraction is not always fully applied, depending on the stiffness of the surrounding clusters and objects.

- Right-click the outer surface and select Create surface load from the appearing menu to create a surface load around the entire tunnel.
- In the properties box, select Perpendicular, vertical increment from the drop-down menu for Distribution.
- Set the $\sigma_{n, r e f}$ to -100 and $\sigma_{n, i n c}$ to -20 and define ($00-4.75$) as the reference point for the load by assigning the values to $x_{\text {ref }}, y_{\text {ref }}$ and $z_{\text {ref }}$ (Figure 6.7).

Tunnel face pressures

The tunnel face pressure is a bentonite pressure (Bentonite Slurry, BS) or an earth pressure (Earth Pressure Balance, EPB) that increases linearly with depth. For the initial position of the TBM and the successive four positions when simulating the advancement of the TBM, a tunnel face pressure has to be defined.

- Select the Plane tabsheet above the displayed tunnel cross section.
- Multi-click both the surfaces, right-click and select Create surface load from the appearing menu to create a surface load around the entire tunnel.
- In the properties box, select Perpendicular, vertical increment from the drop-down menu for Distribution.
- Set the $\sigma_{n, \text { ref }}$ to -90 and $\sigma_{n, \text { inc }}$ to -14 and define ($00-4.75$) as the reference point for the load by assigning the values to $x_{\text {ref }}, y_{\text {ref }}$ and $z_{\text {ref }}$ (Figure 6.8).

Figure 6.6 The Properties tabsheet of the Tunnel designer for the creation of a Plate

Jack forces

In order to move forward during the boring process, the TBM has to push itself against the existing tunnel lining. This is done by hydraulic jacks. The force applied by the jacks on the final tunnel lining has to be taken into account. This will be assigned to the tunnel lining in Sequencing tab.

Trajectory

The next step is to create the path of the boring process. The TBM already advanced 25 m into the soil and then proceed from 25 m to 41.5 m excavating slices of 1.5 m each:

- Click the Trajectory tab to proceed to the corresponding tabsheet.

In the Segments tabsheet, click on the Add segment on the left toolbar.

- In the properties box set the length to 25 .
- Add the next segment and set the length to 16.5.
- To create the slices, proceed to the Slices tabsheet.
- Click on the second created segment. In the properties box, select Length as the Slicing method and set the Slice length as 1.5 (Figure 6.9).

Sequencing

In order to simplify the definition of the phases in Staged construction mode, the sequencing of the tunnel is defined. The soil in front of the TBM will be excavated, a support pressure will be applied to the tunnel face, the TBM shield will be activated and the conicity of the shield will be modelled, at the back of the TBM the pressure due to the back fill grouting will be modelled as well as the force the hydraulic jacks driving the TBM exert on the already installed lining, and a new lining ring will be installed.

- Click the Sequencing tab to proceed to the corresponding tabsheet.

Figure 6.7 Slice tabsheet in the Tunnel designer

- In the Sequencing tabsheet, set the Excavation method as TBM.

Step_1_1, face excavation: Select the Slice tabsheet above the displayed tunnel cross section and select the volumes inside the tunnel. In the Selection explorer, deactivate the soil and set the WaterConditions to Dry. In the Slice tabsheet again, select the outer surface. In the Selection explorer, activate the negative interface, the plate and the surface contraction (Figure 6.10).

Set $C_{\text {ref }}=0 \%$ (since this is on the front of the excavation).
Select the Plane Front and select all the surfaces. Activate the surface load corresponding to the face pressure (Figure 6.11).

Step_1_2, TBM with conicity: The difference with the front of the TBM is only the face pressure. Select the Plane Front and select all the surfaces. In the Selection explorer, the surface load corresponding to the face pressure is deactivated by default. Set $C_{\text {ref }}=0.1 \%$ (on the front surface of the second slice).

From Step_1_3 to Step_1_5, TBM with conicity: click on the Add Step button thrice to add 3 new steps. These steps are necessary to define the remaining cone part of the TBM shield (Figure 6.12). Set the following values for the different steps: Step 1_3: $C_{r e f}=0.2 \%$ (on the front surface of the third slice) Step 1_4: $C_{r e f}=0.3 \%$ (on the front surface of the fourth slice) Step 1_5: $C_{\text {ref }}=0.4 \%$ (on the front surface of the fifth slice)

Step_1_6, tail of the shield: The last slice of the shield has a constant diameter. Hence, from the Slice tabsheet select the outer surface and select the surface contraction. In the Selection explorer select the Uniform option with $C_{\text {ref }}=0.5 \%$ (Figure 6.13).

Step_1_7, grouting and jack thrusting: Select the Slice tabsheet and select the

Figure 6.8 Plane tabsheet in the Tunnel designer
outer surface. Deactivate the negative interface, the plate and the surface contraction. In the Selection explorer, activate the surface load corresponding to the grout pressure (Figure 6.14).
Select the Plane rear tabsheet and select the outer surface to define the jack thrusting against the final lining. In the Selection explorer, activate the surface load and select the Perpendicular option for the distribution with $\sigma_{n, \text { ref }}=635.4$ (Figure 6.15).

Step_1_8, final lining: Select the Slice tabsheet and select the outer surface. In the Selection explorer, deactivate the grout pressure and activate the negative interface. In the Slice tabsheet again, select the outer volume. Activate it, click the material and select the Concrete option from the drop-down menu (Figure 6.16).

Select the Plane rear tabsheet and select the outer surface. In the Selection explorer, deactivate the surface load corresponding to the thrusting jacks (Figure 6.17).

- Click on Generate to include the defined tunnel in the model.
- Close the Tunnel designer window.

This concludes the model creation in Structures mode (Figure 6.18).

Figure 6.9 Trajectory tabsheet in the Tunnel designer

Figure 6.10 Slice tabsheet in the Tunnel designer for Step_1_1

Figure 6.11 Plane Front tabsheet in the Tunnel designer for Step_1_1

Figure 6.12 Slice tabsheet in the Tunnel designer from Step_1_3 to Step_1_5

Figure 6.13 Slice tabsheet in the Tunnel designer for Step_1_6

Figure 6.14 Slice tabsheet in the Tunnel designer Step_1_7

Figure 6.15 Plane Rear tabsheet in the Tunnel designer Step_1_7

Figure 6.16 Slice tabsheet in the Tunnel designer Step_1_8

Figure 6.17 Slice tabsheet in the Tunnel designer Step_1_8

Figure 6.18 The created tunnels in Structures mode

6.2 MESH GENERATION

In the Mesh mode it is possible to specify global and local refinements and generate the mesh. The default local refinements are valid for this example.
(1) Click the Generate mesh button in order to generate the mesh. The Mesh options window appears.

- The default option (Medium) will be used to generate the mesh.

Click the View mesh button to inspect the generated mesh (Figure 6.19).

Figure 6.19 The generated mesh
After inspecting the mesh, the output window can be closed. Mesh generation has now been finished, and so creating all necessary input for defining the calculation phases has been finished.

6.3 PERFORMING CALCULATIONS

The excavation of the soil and the construction of the tunnel lining will be modelled in the Staged construction mode. Since water levels will remain constant the Flow conditions mode can be skipped. It should be noted that due to the mesh generation the tunnel effectively has been split into an upper part, located in the clay, and a lower part located in the stiff sand. As a result, both the lower and the upper part of the tunnel should be considered.

The first phase differs from the following phases, as in this phase the tunnel is activated for the first time. This phase will model a tunnel that has already advanced 25 m into the soil. Subsequent phases will model an advancement by 1.5 m each.

Initial phase

The initial phase consists of the generation of the initial stresses using the KO procedure. The default settings for the initial phase are valid.

Phase 1 - Initial position of the TBM

In the first phase, it is assumed that the TBM has already advanced 25 m . The section next to the first 25 m (section $25 \mathrm{~m}-26.5 \mathrm{~m}$), will represent the area directly behind the TBM were grout is injected in the tail void. In the next 6 sections ($26.5 \mathrm{~m}-35.5 \mathrm{~m}$) the

TBM will be modelled.
${ }_{\square}^{\square}$ Add the first calculation phase.

- In the Model explorer expand Tunnels and then expand Tunnel_1. Scroll down the Model explorer until the option Advancement step and set it to 7 in order to simulate the advancement of the first 25 m .

The final lining will be activated in the following phase. In order to consider the conicity of the TBM in the first 25 m , the clusters representing final lining need to be deactivated, the plates representing the TBM are activated and 0.5% contraction is applied.

Select the right view to reorientate the model in order to obtain a clearer view of the inside of the tunnel.

- In the drawing area select the soil volumes corresponding to the lining in the first 25 m (Figure 6.20).

Figure 6.20 Selection of soil volumes ($0 \mathrm{~m}-25 \mathrm{~m}$)

- In the Selection explorer deactivate the soil. The soil is switched off, but the wireframe representing the deactivated soil is still coloured red as the deactivated soil is still selected.

> Hint: An object that is deactivated will automatically be hidden as a volume or surface, but a wireframe representing the hidden object will remain. The visibility of the object not active in a calculation phase can be defined in the corresponding tabsheet of the Visualization settings window (Section 3.6.3 of the Reference Manual).

The interface is already activated. To activate the plate and the contraction in the first 25 m of the tunnel:

Select the Select plates option in the appearing menu. Select the surfaces between 0 m and 25 m in the model to which plates are assigned (Figure 6.21).

- In the Selection explorer activate plate and uniform contraction by checking the corresponding boxes.
- In the drawing area select the lateral surfaces of the outer volume, corresponding to the last slice of the TBM (grout and jack thrusting) at 25.0 m (Figure 6.22). In the Selection explorer, deactivate the surface load corresponding to the jack thrusting, because the TBM is only placed in this phase and it's not moving.
Click the Preview button to get a preview of everything that has been defined

Figure 6.21 Selection of plate ($0 \mathrm{~m}-25 \mathrm{~m}$)
(Figure 6.23). Make sure that both grout pressure and tunnel face pressure are applied and that both increase from top to bottom.

Figure 6.22 Selection of soil surfaces (25.0 m)

Figure 6.23 Preview of the Phase 1

Phase 2 - TBM advancement 1

In this phase, the advancement of the TBM by 1.5 m (from $\mathrm{y}=35.5$ to $\mathrm{y}=37$) will be modelled.
$\stackrel{\square}{\square}$ Add a new phase.

- In the Model explorer expand Tunnels and then expand Tunnel_1. Scroll down the Model explorer until the option Advancement step and set it to 8 in order to simulate the advancement of the first 26.5 m .

Figure 6.24 The Advance to next tunnel step option from Model explorer

Phase 3-TBM advancement 2

In this phase, the TBM advances from $\mathrm{y}=37$ to $\mathrm{y}=38.5$.
${ }_{\square}^{\square}$ Add a new phase.

- In the Model explorer expand Tunnels and right-click Tunnel_1. Then click on Advance to next tunnel step.

Phase 4-TBM advancement 3

In this phase, the TBM advances from $\mathrm{y}=38.5$ to $\mathrm{y}=40$.
${ }_{\square}{ }_{\square}$ Add a new phase.

- In the Model explorer expand Tunnels and right-click Tunnel_1. Then click on Advance to next tunnel step.

Phase 5-TBM advancement 4

In this phase, the final advancement of the TBM is modelled (from $y=40$ to $y=41.5$).
$\stackrel{\square}{\square}$ Add a new phase.

- In the Model explorer expand Tunnels and right-click Tunnel_1. Then click on Advance to next tunnel step.

Press the Calculate button to start the calculation. Ignore the message "No nodes or stress points selected for curves" as any load-displacement curves are drawn in this example, and start the calculation.

6.4 VIEWING THE RESULTS

Once the calculation has been completed, the results can be evaluated in the Output program. In the Output program the displacement and stresses are shown in the full 3D model, but the computational results are also available in tabular form. To view the results for the current analysis, follow these steps:

- \quad Select the last calculation phase (Phase 5) in the Phases explorer.

S0 Click the View calculation results button in the side toolbar to open the Output program. The Output program will by default show the 3D deformed mesh at the end of the selected calculation phase.

- From the Deformations menu, select Total displacements and then u_{z} in order to see the total vertical displacements in the model as a shaded plot (Figure 6.25).

Figure 6.25 Total vertical displacements after the final phase $u_{z} \approx 3.1 \mathrm{~cm}$
In order to see the settlements at ground level make a horizontal cross section by choosing the Horizontal cross section button. In the window that appears fill in a cross section height of 1.95 m . The window with the cross section opens (Figure 6.26). The maximum settlement at ground level is about 1.9 cm .

Figure 6.26 Settlement trough at ground level $|u| \approx 1.9 \mathrm{~cm}$

