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Het door Sluys in zijn proefschrift gestelde,
dat een Perzyna overstress model niet gebruikt
kan worden voor hoekige vloeioppervlakken of
vloeioppervlakken met een apex, is onjuist.

L.J. Sluys, ‘Wave Propagation,
Localisation and Dispersion in
Softening Materials’, Proefschrift
TU Delft, 1992, p 106-107.

Materiaalgedrag is nodig voor het bepalen van
constructiegedrag. Bij het ontwikkelen van
modellen voor het materiaalgedrag is het
noodzakelijk rekening te houden met het feit
dat een model (in de toekomst) gebruikt kan
worden voor het berekenen van constructies.
Indien hier geen rekening mee wordt gehouden
volgt er een model dat voor de praktijk weinig
waarde heeft.

Vermindering van het aantal (betaalde)
arbeidsuren zal vaak gecompenseerd dienen te
worden door toenemend hobbyisme van de
betrokken werknemer.

Het gebruik van meerdere Kelvin-Voigt elementen
in een visco-elastisch model verruimt de
toepassingsmogelijkheden, zonder dat voor
iedere toepassing andere parameters gekozen
dienen te worden. In een eindige-elementen-
berekening zullen hierbij de rekentijden
nauwelijks toenemen.



10.

De aanname dat het volume van de zettingstrog
bij het boren van tunnels gelijk is aan het

teveel ontgraven volume grond is onjuist.

Het introduceren van normen ondermijnt het
gebruik van het gezonde verstand van degenen

die de normen moeten toepassen.

Het gebruik van complexe modellen verhoogt het
inzicht in het werkelijke gedrag van

constructies.

Het vergelijken van parameters voor
verschillende materiaal-modellen is lang niet
altijd mogelijk. Daarom dient de term
‘materiaal-parameters’ niet gebruikt te
worden. Een term als ‘model-parameter’ is meer
op zijn plaats.

Het meenemen van de stijfheid van een
bekledingslaag bij de analyse van
opdrijfproblemen geeft hogere toelaatbare
overdrukken dan volgt uit een één-dimensionale
beschouwing. In dit proefschrift is dit
aangetoond voor een ontkoppelde grondwater en
deformatie berekening. Bij een gekoppelde
analyse zal een hogere veiligheid worden
gevonden.

Beter een kind dat niet hoort dan een kind dat

niet luistert.
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1. INTRODUCTION

Bituminous concrete is often used for the construction of road surfaces and
revetments for embankments. For the design of such structures in bituminous
concrete the linear elastic model for mechanical behaviour is most often
used. This limits the possibilities for analysing and predicting deformations
such as rut formation for road surfaces and uplift for revetments of

embankments which often occur in practice.

To improve the quality of analysis and predictions of the behaviour of
bituminous concrete structures, it is necessary to construct a material model
with the aid of which its behaviour can be described under a variety of
conditions. To this end Rijkswaterstaat initiated research in this field

(Troost, 1989).

For the development of a new model for bituminous concrete a series of
triaxial experiments was carried out on samples taken from an existing
revetment in the neighbourhood of West-Kapelle. These samples were tested at
Delft Geotechnics. The results of these tests are reported in this study. For
the sake of simplicity this material will be referred to as Delft bituminous

concrete.

1.1 Aims and scope of this study

The main aim of this study is to develop a constitutive model for bituminous
concrete. This material model should be able to describe the most important
types of behaviour of the material in practical situations. In practice,
bituminous concrete serves as a load-bearing layer or a protection layer on a

granular sub-base.

In hydraulic engineering, where the material is used, for instance, to
protect embankments, one can distinguish between short and long loading
times. Wave attack on revetments of embankments is an example of rapid
loading whilst uplift of a revetment can be caused by much slower tidal
movements. In road engineering both short-term and long-term loading also

occur. Loading by moving traffic is an example of short term loading. On a



parking-lot loading times are much longer. Compared to hydraulic structures,
road structures are subjected to relatively high loads. The constitutive

model should take this variety of load situations into account.

Another important effect is that of temperature. In practical situations
temperature plays an important role in the development of deformations.

Temperature-dependent model parameters have therefore been derived.

The second aim is to develop numerical procedures and implement these
procedures in a finite element program (PLAXIS) which can be used for the

analysis of practical structures.

1.2 Contents of this thesis

This study of the deformation behaviour of bituminous concrete ~ as is the
case with the study of many other materials - is based on two theoretical
approaches to deformation behaviour, namely that of reversible visco-elastic
strain and that of irreversible visco-plastic strain. This thesis starts in
Chapters 2, 3 and 4 with a description of the irreversible strains using the
concept of over-stress visco-plasticity (Perzyna, 1966). In Chapter 2
restriction is made to so-called secondary creep as relevant for high
stresses. In Chapter 3 the formulations are extended to include so-called
primary creep relevant for relatively low stresses. To include primary creep,
a hardening law is used. In Chapter 4 a great deal of experimental evidence
is put forward for the existence of a unique hardening curve. This hardening
curve appears to be independent of, for instance, the rate of deformation,
temperature and confining pressure. In this chapter attention is also focused

on the behaviour under low compressive and tensile stresses.

In Chapter 5 visco-elasticity is discussed. The reversible visco-elastic
strains are described using a chain of Kelvin-Voigt elements. Test results
involving cyclic loading are considered and compared to results for
loading-unloading tests. It appears that the results from cyclic tests and
loading-unloading tests can be combined to give a consistent whole which can

be described using a series of Kelvin-Voigt elements.



Temperature plays an important role in the deformation of bituminous
concrete. In Chapter 6 the influence of temperature on the model parameters
is investigated. It has been found that temperature-dependent model parameter

can be derived using rather simple formulas.

Whereas the model equations are derived for uniaxial and triaxial testing
situations in Chapters 2 to 6, Chapter 7 describes the model for general
three~dimensional states of stress and strain. In this chapter material
parameters, both visco-elastic and visco-plastic, for Delft bituminous

concrete are listed.

In Chapter 8 attention is focused on time integration of the model equations.
In the previous chapters, model equations were derived using strain rates.
For calculations one has to use finite time increments. One therefore needs
incremental relations for stress and strain. Attention is also focused on the
convergence and accuracy of the time integration. Two test types are

simulated using a program for homogeneous states of stress and strain.

In Chapter 9 the equations for a boundary value problem are stated including
some acceleration techniques. A problem involving a visco-elastic layer is

treated to validate the finite element implementation.

Chapter 10 deals with the analysis of a revetment under hydraulic uplift
pressures. For the problem of uplift of a revetment, results from a
time-dependent ground water flow calculation are presented. These results are
used to calculate deformations and the safety of a revetment. The safety is

compared to the uplift criterion in the Dutch guidelines.

Chapter 11 deals with permanent deformations in roads. A simplified problem
for rut formation due to heavy traffic is considered. Instead of moving
loads, as in practice, a non-moving load 1is considered and attention is
focused on the permanent deformations and the mechanisms that occur during a

number of load pulses.

Chapter 12 contains some general considerations on the subject. In this
chapter several suggestions are given for future research on the behaviour of

the material and the application to practical problems.



1.3 Notation

The derivation of the model equations is primarily based on uniaxial and
triaxial states of stress and strain. Therefore, we use practical variables
for the description on the model. Later, from Chapter 7 where the model is
generalized for three dimensional states of stress and strain, we use
matrix-vector notation. A single underscore is used to identify a vector and
a matrix is indicated by a double underscore. A global list of symbols is not
included because several symbols have more than one meaning. Instead, symbols

are defined when they first appear.



2. SECONDARY CREEP BEHAVIOUR

In this chapter attention is focused on secondary creep behaviour. A model is
developed within the framework of Perzyna’s (1966) over-stress theory. Four
material parameters are used to characterize the creep mechanism; two of them
are temperature dependent. The validity of the model is demonstrated using

triaxial testing data.

2.1 General formulas for secondary creep in uniaxial tests

Creep tests on bituminous concrete give results as also found for metals at
high temperatures (Odqvist, 1966; Hult, 1966). In general we can distinguish
three stages of creep as illustrated in Fig. 2.1. In the first stage of
so-called primary creep we observe a decreasing strain rate. In the second
stage of so-called secondary creep, the creep strain rate is approximately
constant. In the third stage of tertiary creep, the creep strain rate
increases.

In Fig. 2.2a typical results from creep tests on bituminous concrete are
shown. The lower curves represent data at low stress levels, the upper curves
show data for higher stress levels. Creep tests at very low stress levels
show only primary creep, i.e. the creep strain rate gradually decreases to
zero and the total strain reaches a distinct final value. Hence, at a very

low stress level, the secondary creep strain rate is simply equal to zero.

Strain

Strain rate

Time t Time t

Fig. 2.1. Strain and strain rate in uniaxial creep test. Three
different stages: primary creep, secondary creep and

tertiary creep.
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Fig. 2.2. (a) Typical creep data for different constant stresses.
(b) Secondary creep strain rates as a function of stress

level.

Creep tests at relatively high stress levels show primary creep first, in the
sense that the creep strain rate decreases with time. After this first stage
of primary creep a stage of secondary creep follows. During secondary creep
the strain rate remains constant. The constant secondary creep strain rate
depends on the applied stress, for higher stress values higher values of the
secondary creep strain rate will be found. Below a particular secondary-
creep-threshold stress no secondary creep is observed. On evaluating the
secondary creep strain rate from testing data for various different stress

levels, one can obtain a curve as shown in Fig. 2.2b.

Instead of using creep tests with constant stress level, one may also perform
tests with different constant strain rates. During such a test the stress
will increase up to a particular value, which depends on the applied rate of
deformation as illustrated in Fig. 2.3. The pre-peak strains in this figure
result from primary creep and elasticity. The post-peak strain consists of
secondary creep only. From such data we can obtain the curve of Fig. 2.2b. In
fact the curve of Fig. 2.2b was obtained by evaluating data from constant
strain rate tests on bituminous concrete as published by Di Benedetto (1987).

It relates to uniaxial compression tests at a temperature of 23 °c.

In literature, various functions are used to model secondary creep, for
instance the power law as proposed by Norton (1929) and Bailey (1929} and the
hyperbolic sine function as proposed by Prandtl (1928}. From this hyperbolic
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Fig. 2.3. Typical results for uniaxial compression tests with

different constant rates of deformation.

sine function, a simpler exponential function can be derived as proposed by
Soderberg (1936). Hence we have different options for the secondary creep

strain rate (a rate is indicated by a superimposed dot):

VP = -l—(o—o )B for ¢ > o
T sct sct

e'P = -}—sinh (Bo-Bo ) for ¢ > o (2.1)
T sct sct

ct
for ¢ > o
sct

. 1 Blo-c )
e'P = ——-[ e s -1 J
T

Tt stands for the secondary-creep-threshold stress. The parameter Tt depends
sC

heavily on temperature (see Section 6.4). To some extent all the above
functions can be used to describe test data, but in the following we will use

the power law.

2.2 Constant strain rate in standard triaxial tests

In addition to uniaxial tests, Di Benedetto (1987) performed constant strain
rate tests at various different confining pressures. In fact, standard
triaxial tests were performed with o, =0, = constant. From his data we
derived lines of constant secondary creep strain rates as shown in Fig. 2.4.

In this figure p and g are defined as
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Fig. 2.4. Results from constant strain rate triaxial tests for various
different confining pressures and deformation rates after

Di Benedetto.
1
p = §(¢1 + 203] ) q=c0 o (2.2)

where 01 is the axial stress and o, is the confining pressure. Note that
pressure is considered positive. The markers in the figure represent stress

combinations from actual tests.

Interpreting the data, we found that parallel lines can be used to fit the
data. Each line in the figure is found for a particular value of the applied
rate of deformation. At the end of the constant strain rate tests, after
which the maximum stress was to remain constant, further strain was blocked
by Di Benedetto; i.e. the strain rate was set equal to zero. After this the
stresses were found to decrease in time until a final constant value was
reached. We have used these post-relaxation stresses to evaluate the
secondary-creep-threshold locus in the p-g-plane. From the data in Fig. 2.4
it follows that the secondary-creep-threshold value depends on the applied
confining pressure or, more generally, on the isotropic stress p. As for the
loci of constant creep rate we find a straight line. In fact all lines are

parallel and they give a very consistent whole.



Similar to failure of soils and other granular materials, the secondary-
creep-threshold can be described using a friction angle and a cohesion. They
will be denoted as ¢sct and csct respectively. From the testing data by
Di Benedetto we find ¢Sd’= 39° and csct = 150 kPa, at least for a
temperature of 23 °C. Di Benedetto did not introduce the concept of a
secondary-creep-threshold, but by considering his data, it appears that this
concept can be used. Considering his data, it is found that ¢sct hardly
depends on temperature (see also Section 6.4). Indeed, within a range of 35
degrees Celsius very little variation of ¢sct is observed as indicated in

Table 2.1. On the contrary, the cohesive threshold rapidly decreases when

temperature is increasing.

To be able to find values for B and T we need to extend the power law (2.1a)
from uniaxial stress to general states of stress. For stress states as met in

triaxial tests this formula can be extended to obtain

*vp 1 q_qsct B
& ?[____] , q, = 1 MPa (2.3)

9
Formally the parameter q0 can be chosen freely, but we will always use a
value of 1 MPa. The value of q_. is the secondary creep threshold of the
s
deviatoric stress g. Note that this value depends on the isotropic stress and
can be calculated using the friction angle ¢ N and the cohesion threshold
sC

value ¢ (Fig. 2.5).
sct

£
H

(p + asct) Msct (2.4)

6 sin ¢ .
. M_, = - s (2.5)
3 - sin ¢
sct

W
n

c cotg ¢
SC

sct sct t

Using equation (2.3) we found values of the creep exponent B and the time
parameter t. From Table 2.1 we also observe that the creep exponent B shows
little variation for different temperatures. The parameter t varies strongly
with temperature; see Section 6.4 for details. Also, caution is necessary
because T will depend on the value of the creep exponent B and it is

difficult to compare values of T when a different value of B is found.
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Fig. 2.5. Parameters Msct and a . for triaxial compression tests.
sC

Table 2.1. Material parameters for equation (2.3) from constant strain

rate triaxial tests performed by Di Benedetto.

T(°Cl | ¢ c {kPa] T [s] B
sct sct
5 37 320 320000 | 4.5
23 39 150 3300 | 3.4
11 39 90 200 | 4.1

Not all bituminous concrete mixtures give secondary creep thresholds as high
as the ones presented in Table 2.1. From tests on a different bituminous
concrete we obtained ¢sct = 15° and Cop T 55 kPa, at least for a temperature
of 28 °C. The differences in the friction angle and the cohesion between the
tests performed by Di Benedetto and tests performed in Delft can be explained
by considering the different mixtures. Di Benedetto tested a well-graded
bituminous concrete with a bitumen content of 7.3 per cent which is commonly
used in road engineering. We tested a gap-graded bituminous concrete with a
bitumen content of 6.2 per cent for application in hydraulic engineering. For
details the reader is referred to the Appendix. It is an extremely loose
skeleton of fairly coarse gravel. Such a loose granular skeleton will

obviously yield a very low friction angle.

10



2.3 Two options for secondary creep

In Section 2.1 a number of formulations are given for the creep behaviour in
uniaxial tests. Properly applied, the power law, the sine hyperbolic law and
the exponential law {(eq. 2.1) all give a reasonable description of the
secondary creep; in fact, test results can be described with all three
formulations. The power law is definitely effective, but this option is not

compulsory because the other formulations also give good results.

Also when extending the power law of uniaxial state of stress to triaxial

state of stress, there are several other possibilities, for example

B
. *
&P = l[ a - Py } (2.6)
T qo qo sct
B
cvp _ 1 q _
£ = ?[ p* Msct ] (27)

in which p* = p + a_ .- The first option is in accordance with equation (2.3)
and in this case all contours for constant & are parallel to the Coulomb
line q=p*Mﬁi. The second option according to equation (2.7) does not show
parallel contour lines but a fan of lines through the point p*=0.

In view of the test results in Fig. 2.4, the parallel contour lines according
to equation (2.6) appear somewhat better than the rotating contour lines in
equation (2.7), but data from other researchers may possibly indicate
otherwise. For the practical application of a bituminous concrete model, both
formulas are, however, acceptable, because bituminous concrete is seldom used
with high mean stresses p. These are usually a dyke surface or a road surface
with stresses in the ringed area in Figures 2.6a and 2.6b. As can be seen in
the figure, there is in this limited stress area hardly any difference
between parallel and rotating contour lines. For this reason the choice

between equations (2.6} and (2.7) also becomes less important.

11
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3. PRIMARY CREEP BEHAVIOUR

In the previous chapter attention was focused on secondary creep. In this
chapter attention is focused on extending the formulation for secondary creep

to include the primary creep.

3.1 Primary creep in uniaxial compression tests

In the previous chapter an over-stress model was used; this means that
continued creep is only possible when the stress is above a certain value.
The formulas of equation (2.1) only apply if 0>Gsct' At lower stress no
continued straining will take place. However, some limited irreversible
straining may take place. A possible adjustment to the previously used

power-law (2.1a) is the formulation:

e'’? = -%-[{;—— hie'?) ]B for {;— > h(e'®) (3.1)
o o

where h(e'?) is a yet unknown hardening function, 8 is the creep exponent and
T is a creep time constant. The constant o, can be chosen more or less
arbitrarily. Obviously a change in % will require a change in the function h
and the creep time constant 7. Both the hardening function h(e'™®) and the
coefficients B and T should be determined using test data. The determination
of a hardening function will be discussed in Chapter 4. Here we will, for the
time being, assume a monotonically increasing function which increases to a
limiting value of a;ct/vo. When this limiting value is reached, formula (3.1)

is equivalent to the power-law formulation (2.1a).

To show the behaviour of equation (3.1), we will consider a creep test at a
low stress level. For a low stress level, and thus small creep strains, we
use a linearization of the hardening function to obtain

h(e'?) = Hee'? (3.2)

where H = dh/de'". Introducing this linearization in equation (3.1} we obtain

13



. B
eV]) = i [ 0'—_ - HCVP ] [3. 3)
T 0‘0

This differential equation can be solved to obtain:

e® = HL[ 1-(1+at)® ] (3. 4a)
0.0

where for B # 1:

_H ., 0 Bl 1
a = T(B 1)(—0—_—-) ) b= —— (3.4b)

o]

For comparing these equations with test data, it should be realized that
bituminous concrete exhibits not only creep strains but also an elastic

strain component. Hence the general equation reads
€ =€ +¢€ (3.5)

The elastic behaviour will, for the time being, be modelled using the

simplified formulation
€ 8 = (3.6)

where E is Young’'s modulus. For Delft bituminous concrete as described in the
Appendix, Young’s modulus was found to be 300 MPa, at least at a temperature
of T = 28 °C and for long periods of loading. On using equations (3.4a),

(3.5) and (3.6), the total strain can be written as

€ E -b
P =1 - m—— (1 + at) (373)
max [4]
where
_ o
Smax = f + He (3.7b)

The analytical solutions for different values of the creep exponent B are
shown in Fig. 3.1. For this figure, the ratio of E over Hvo was chosen to be

9, so that e is 10 per cent of the total strain emax. Furthermore, a

14



Normalized time t/tgo

Fig. 3.1. Analytical solutions for different values of B.

normalized time is used by introducing t9o' This is the elapsed time up to 90
per cent of the total creep strain. The concept of t90 is introduced simply
as a convenient factor of normalization. Curves are plotted for different
values of the exponent B. Just after loading, a high creep rate is observed,
at least for B = 2, bul the creep rate gradually decreases. In fact a very
long time, well beyond tgo , 1s needed for the entire creep process.
Considering for instance the particular case of B8=3, the time to reach 95 per
cent of the total creep strain will take 4 times as long as it takes to reach

90 per cent.

The analytical solution (3.7) is very important for interpreting test data.
Due to the linearization (3.2), it would seem that its application is
restricted to small loads. However, relatively large values of c/co can be
considered when using the mean value theorem. Then H is not defined as

dh/de’® but

h(e;‘;x) - h{0)

H= ————M (3«8]
e'P
max

3.2 Primary creep in triaxial compression tests

In this section the formula for primary creep will be extended to triaxial
conditions with 02 = 03 # 0. Hence, instead of uniaxial states we consider a
confining pressure o, =0, Suitable stress measurements for a triaxial test

are defined as

1S



1
= - * =
q=oc o, p 3(01 + 203) ta_, (3.9)

where a_ . is defined by equation (2.5).
C

Primary creep and secondary creep can now be combined into the single

formula:

e? = %[%,— - h(e™) ]B (3.10)
The difference with equation (3.1) is that 6/00 is replaced by g/p*. The
function h 1increases monotonically up to a 1limiting value of M;ct as
illustrated in Fig. 3.2. Hence, up to h(e'?) = Msct we have primary creep and
we have secondary creep as soon as h(e'’) has reached the value of MsCt

For verification and determination of material parameters, we performed
special creep tests: the so-called multiple-step creep tests. In these tests
various different stress levels were applied. For each step, a constant
stress level is maintained until the (creep) strains have reached an ultimate
value and no longer change. This implies that the hardening function has
reached the value of g/p* as applied for the loading step considered. After
this, the stress is increased to the next level. This procedure is depicted
in Fig. 3.3. Hence it is assumed that the value of the hardening function at

the end of a particular step is equal to the ratio gq/p*.

A q/p*

h(eVvP) "
sct

evP

Fig. 3.2. Hardening function; first monotonically increasing then

constant for h(eP)=M .
sct
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Fig. 3.3. Schematic representation of multiple-step creep test.

3.3 Analytical solution for multiple-step creep tests
For multiple-step creep tests we can also derive an analytical solution. To
this end we consider a particular step. During this step we linearize the
hardening function to obtain

h(e™) = h(e ") + Hae"" (3.11)

where

hie'™® ) - h(e™)
max 0

ae’® = ™ - €77, H = (3.12)
o] vp
Ae
max
€'? is the creep strain at the end of the step considered, and e;p is the
max

creep strain at the end of the previous step. A diagram of the procedure to
determine the average hardening modulus H for a particular step is given in
Fig. 3.4. Here we have plotted the creep strain on the horizontal axis and
the stress ratio g/p* on the vertical axis. For each particular step, the
value of H is determined by dividing the stress ratio increment A(g/p*) by

the creep strain increment as illustrated in Fig. 3.4.

17
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vp
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vp vp vp
o € max €

Fig. 3.4. Determination of average hardening modulus H for a particular

step.

Using the linearization (3.11) to solve differential equation (3.10), we

obtain for a particular step:

v 1 -b
2e™? = FM%.—)[l—(l+aAt} ] (3.13)
where
_OH . q \B-1 _ 1
a = T(B 1) A( o* ) , b = (3.14)

Note that At is the elapsed time for the loading step considered. The total

strain increment is given by

Ae _ . E+-A(q/p*) -b
= =1 - TEgiEalqpe) (Lt a8t (3.15)

max

3.4 Verification by data from multiple-step creep tests

To be able to perform comparisons with test data, we performed a test where
A(g/p*) is approximately equal for each step. The values of H for each step
are given in Table 3.1. In the table we used Ae® = Aq/E for the elastic
strains, with E = 300 MPa and asct = 200 kPa.

18



Table 3.1. Characteristics of multiple-step creep test, o, = 300 kPa.

* * * vp
Step| g p q/p* A(g/p*) € . Acmax Acmax H
kPa %
1 49 516 0.095 0.095 0.125 0.125 0.108 87
2 99 533 0.186 0.091 0.261 0.136 0.119 76
3 149 550 0.271 0.085 0. 456 0.195 0.178 48
4 199 566 0.351 0.080 0.700 0.244 0.227 35

For equal values of A(g/p*) it is possible to present test data in the
following way: On the horizontal axis we plot HAt and on the vertical axis we

plot a normalized incremental strain Ae/Ae N with
ma.
pe = 22 4+ lacd (3.16)

This is done in Fig. 3.5. The solid lines represent test data. The dashed
line uses equation (3.15) with g = 2.5. From Fig. 3.5 it can be seen that
this curve for B = 2.5 exhibits close agreement between the test data and the
analytical solution. Using the particular value of a/H corresponding to this

curve we calculate T = 1200 s from the equation

AOE/AERax

testing data

_______ numerical for = 2.5

0 100 200 300 400
HAt

Fig. 3.5. Comparison of test data and analytical solution for a
multiple-step creep test, o, = 300 kPa, temperature 28 °c.

Time in hours.
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H -1
T = —(B-1) A(g—,.,)’3 (3.17)

The above values of B and T were used to predict test data for a different
confining pressure of 100 kPa. For each step of the multiple-step creep test
the value of the hardening modulus H was determined as shown in Table 3.2.
When all values of B, T, H, g and p* are known it is possible to make Fig.
3.6. On the horizontal axis we plot the normalized time aAt where a is
defined in (3.14), on the vertical axis we plot the normalized incremental
strain Ae/Aemax. Again it is found that we have close agreement between the

test data and the analytical solution for B = 2.5 and T = 1200 s. This

supports the present model.

Table 3.2. Characteristics of multiple-step creep test for

o, = 100 kPa.

Step| q p* | a/p* A(a/p*)| ¢ Ae Ae’? H

max max max
kPa %

28 309 0.091 0.091 0.217 217 0. 207 44
50 317 | 0.158 0.067 | 0.340 123 0.116 | 58
70 323 | 0.216 0.058 | 0.484 144 0.138 | 42

100 333 | 0.300 0.084 | 0.716 232 0.222 | 38

B W N =
cooo

0 10 20 30 40 50
Normalized time aAt

Fig. 3.6. Comparison of test data and analytical solution for a
multiple-step creep test, o, = 100 kPa, temperature 28 °Cc.

Graph made using creep parameters from Fig. 3.5.
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4. VERIFICATION OF HARDENING CONCEPT FOR PRIMARY CREEP

In Section 3.2 the hardening curve in Fig. 3.2 was determined on the basis of
two multiple-step creep tests. Considering the limited number of tests, the
idea of a hardening curve can, however, hardly be verified on the basis of
test results. For this reason this concept will be examined extensively in
this section, against the test results. Instead of multiple-step creep tests
(Fig. 3.3) the results from stress-relaxation tests will be considered (Fig.
4.1). Considering the convex form of the hardening curve, stress-relaxation

tests are most suited to the determination of this curve.

4.1 Determination of hardening function from stress relaxation tests

In stress-relaxation tests, at a constant deformation rate, a certain
deformation is imposed. When this deformation has been reached, further
deformation is inhibited. When applying the deformation, the stress will
increase rapidly. If the deformation is kept constant, the stress will then
decrease again until a certain constant value has been reached. If the stress
is more or less constant, the procedure 1is repeated for successive
deformation levels. The test is ended when the stress following relaxation is
lower than in the previous step, because this is an indication of failure. A
relaxation curve results from the stresses following relaxation; the dashed

line in Fig. 4.1. This figure shows the process of a stress-relaxation test.

When applying deformation the stresses will increase rapidly. During the
application, elastic strain in particular will occur and, to a lesser extent,
visco-plastic creep. As soon as the deformation has been fixed the
visco-plastic creep will continue to develop at the expense of the elastic
strain. Total strain, therefore, remains constant, but an exchange takes
place between the elastic contribution and the visco-plastic contribution.
Because the elastic strain decreases, the stress will also decrease. At the
end of this process, when the stress is constant, the elastic strain rate and
therefore the visco-plastic strain rate will both have reached zero. Every
stress-relaxation test produces several values for the stress following
relaxation; relaxation takes place for various deformation levels. By

interpolation we obtain a relaxation curve.
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Fig. 4.1. Characteristic stress-relaxation test. (a) strain-time

(input), (b) stress-strain and (c) stress-time.

The majority of stress-relaxation tests are carried out at a relatively high
temperature of 28 °C, because the relaxation process then takes place
rapidly. In order to give an indication of the times required, we can state
that in the test shown in Fig. 4.1 each step took about 10 to 15 hours. The

total time involved in the test amounted to a good 110 hours.

4.2 Reproducibility of relaxation tests

First of all, the reproducibility of the tests is examined. It has to be
borne in mind here that the samples of bituminous concrete were taken from an
existing dyke surface, with a thickness of 20 to 25 cm, taken from
West-Kapelle in the South West of the Netherlands. These are samples that are
200 mm in height and 100 mm in diameter. This bituminous concrete comprises
approximately 50 % gravel, two thirds of which with a diameter of more than
8 mm (see also the Appendix). Because this diameter is not small in relation
to the diameter of the sample, a wide range in composition and in properties
of the various samples is to be expected. This contrasts with samples created
in the laboratory, where, for example, finer aggregate materials can be used

(Di Benedetto, 1987).
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Fig. 4.2. Stress-relaxation tests. Temperature of 28 °C, confining
pressure of 100 kPa and a deformation rate of 2.5:107> s .
(a) Measured relaxation curves, (b) corrected relaxation

curves.

Fig. 4.2 shows the relaxation curves for 3 identical tests. These are 3 tests
with the same test temperature of 28 °C and a confining pressure of 100 kPa.
The rate at which the deformation is applied is 2.5-10_3 per second. This
corresponds to a strain rate of 15 % per minute. It can be seen in Fig. 4.2a
that the relaxation curves, apart from a limited starting phase, show the
same characteristics; the slope and the maximum of the relaxation curves are

approximately the same.

The discrepancies in the more or less concave starting range may have a
number of causes. For instance, because the end faces are not entirely
plan-parallel, whereby one side of the sample is, at the start, more heavily
loaded. Another possibility is that initial cracks are pressed closed during
the starting phase of the test. A correction was made for this discrepancy in
the start-up phase; a new zero point for vertical strain was calculated.
After correction of the data in Fig. 4.2a the curves in Fig. 4.2b result. We
can see here that the relaxation curves for identical tests are, to a
reasonable extent, in agreement. Considering the heterogeneity within the

range of samples as mentioned above, this can be called good reproducibility.

23



q 9 [kPa)
200 - s
P s
2 -
(4
a4
] %
<2
/,’
: e
100 - ,gg
v, -7
a
Y RN ¢=4.210757t
,ug" é=25103 s
%
0 . . r — . -
0 1 2 3
€ [¥]

Fig. 4.3. Stress-relaxation tests. Temperature of 28 °C, confining
pressure of 100 kPa and two deformation rates of 2.5+107° and
-5 -1
4.2+10 " s .

4.3 Influence of deformation rate on relaxation curve

The deformation rate has a great influence on the development of stresses
before and during relaxation. With rapid deformation an almost exclusively
elastic strain is created in the first instance (Ac®) and therefore a high
peak stress, because Ac = EAe®. With slow deformation there is time for the
development of creep (Ac'P) and proportionally less elastic strain will occur
and therefore less stress will be built up. For an extremely slow deformation
rate, one can expect the relaxation curve to be followed without any

additional peak stresses and stress relaxation as shown in Fig. 4.1.

Fig. 4.3 shows the relaxation curves for tests in which different deformation
rates have been used. This figure also shows approximately the same slope and
maximum values for the relaxation curves. The solid lines in Fig. 4.3 are in
accordance with those in Fig. 4.2a. The dashed lines in Fig. 4.3 were found
for tests with a deformation rate of 4.2-10_5 per second, in other words, a
deformation rate that is sixty times smaller. Other tests, at a confining
pressure of 300 kPa, hardly show any influence of the deformation rate on the
relaxation curve. This means that the relaxation curve is not influenced by

the rate at which the deformation is applied. In spite of very large
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differences in the peak stresses before relaxation, it would appear that the

deformation rate has no perceptible influence on the relaxation curve.

4.4 Influence of confining pressure on relaxation curve

Confining pressure has an obvious influence on the relaxation curves. With
higher confining pressure the relaxation curve is steeper and the maximum is
higher, at least if we plot the deviatoric stress g = c, 0, against the axial
strain €. This can be seen from the results of measurements for triaxial
tests at various confining pressures o, Fig. 4.4 shows the results of tests
with o, = 100, 300 and S00 kPa. From the various relaxation curves stresses
can be determined that all give the same deformation and this has been done

in Fig. 4.4 for three strain levels.

Data in Fig. 4.4 indicate that there 1is a relationship between the
deformation level and the stress ratio g/p*, where p* = p + a_ . with a_ .
constant for all tests. The pseudo stress a_ . has already been covered in
Sections 2.2 and 3.2. The relationship between € and g/p* was also introduced

earlier under the name hardening function (eq. 3.11) or hardening curve.

q
4 ¢3= 500 kPa
£ =15%
300
100 €=1.0%
e =05%
a p

<=

Fig. 4.4. Contours of deviatoric stresses after relaxation for
different confining pressures of 100, 300 and 500 kPa and

different deformation levels.
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4.5 Formulation of hardening curve

Fig. 4.5 shows the normalized relaxation curves for relaxation tests with
various confining pressures, in other words the measured relaxation curves
have been normalized by dividing by p*=p+ayﬁ. In fact several tests were
carried out per confining pressure in order to assess reproducibility, but
Fig. 4.5 shows, for each confining pressure, only one average curve, because
the figure would otherwise become illegible. In total, 5 curves are shown, 2
of which relate to deformation rates of 4‘2-10_5 st (confining pressures of
100, and 300 kPa). Three curves in Fig 4.5 are generated from the range of
tests with a deformation rate of 2.5+10° s ' (confining pressures 100, 300
and 500 kPa). The relaxation curves have been normalized by incorporating a
value of 200 kPa for a_ . in order to evaluate p*. As can be seen from the
figure, this normalization is a good way to describe a hardening curve. The

formulation for equation (3.10) then follows:

P = L4 - ne™ ° ; *=p+a (4.1)
€ = T pF ’ P P sct :
where asct = 200 kPa.
a/ (p+agey) a9/ (P+a3gcy )
0.6 1 0.6 4 Creep
tests
~,
1} 41 0.4
0.21 0.2-‘
0 — T T 1 0 —T T T —
0 1 2 3 0 i 2 3
& (%] € [%]

Fig. 4.5. Normalized relaxation curves or hardening curves; 2 curves
for 03 = 100, 2 curves for 03 = 300 and 1 curve for
o, = 500 kPa. (a) From stress-relaxation tests and

(b) includes measured data from multiple-step creep tests.
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On the basis of relaxation tests we find practically the same hardening curve
as with the multiple-step creep tests described in Section 3.2 . In Fig. 4.5b
the creep-test curves are located a little above the relaxation test curves,
but this is probably caused by the application of somewhat too short creep

times in the 2 creep tests.

In order to obtain a complete constitutive model, a formulation for the data
in Fig. 4.5 needs to be found. The curves in Fig. 4.5 can be described by
various functions. In Section 3.2 the relaxation curves were applied multi-

linearly. A smooth curve is suggested here:

vp

h(e®) = M exp( 1 - e"p/es ) (4.2)

sct € ct

sct
This exponential function has two parameters: the maximum value of the stress
ratio (M t) to be achieved and the parameter € . indicates at which creep
SC {of
strain the maximum is to be found. Hardening curves can be described well by

M ¢ 0.55 and ¢ it 0.03. These parameters were used for producing
sC s

Fig. 4.6 where the formula (4.2) is compared with the test results. Formula
(4.2) shows a decline after the peak. This decline is, however, only slight;

for P = 2¢ ¢ approximately 75 % of the maximum value Msct still follows.
scC

10/ {pragey )
0.6
1 s o \
0.4 - A
P AL
“I‘,"
4 )
f Msct
6
0.24 f
/
4 f
0 ————— —
0 1 2 3 4 5 3
& (%]

Fig. 4.6. Comparison of hardening function (4.2) and test data.
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4.6 Results of extension relaxation tests

In Section 4.5, a formulation for the hardening curve was given. This
formulation is based on triaxial compression tests; in other words 01202=c3
as has been considered until now. For extension tests with 01502=03, the
hardening function found earlier cannot be used without problem, as will be
shown in this section.

In order to formulate a generally applicable model, it is necessary also to
be able to describe extension tests. Therefore, extension tests were also
carried out within the scope of this investigation. To this end, an extension

of the sample is imposed after applying the cell pressure.

For triaxial compression tests, the axial pressure 01 is greater than the
radial pressure and therefore 012¢2=a3 applies, at least if compression
stresses are taken positive. The deviatoric stress g = T, described in
Section 2.2 is positive here. However, for triaxial extension tests, 015¢2=03

applies. The result is, therefore, a negative deviatoric stress, q.

The relaxation curves for a number of triaxial extension tests were
determined, as described in Section 4.1 for compression tests. They are set
out in Fig. 4.7. The stress ratio q/(p+ayx) and the strain have both been
negatively plotted to indicate that extension tests are involved here. It can
be seen in the figure that the shape of these curves is different from the
shape of the relaxation curves from the compression tests (Fig. 4.5). After
an initial rise in the relaxation curves, there is a flatter characteristic
to the curves for the tests with a confining pressure of 100 kPa. These
samples, therefore, fail at relatively modest "extension" stresses. Following
an initial strong hardening, the tests with a confining pressure of 300 kPa
show a fairly rapid softening, after a strain of approximately 0.5 % has been
reached. At a relatively low stress ratio, failure is found again; in this
case brittle failure, i.e. considerable softening. Generally speaking, this
brittle behaviour would be expected at a more modest confining pressure of

100 kPa and not at this high confining pressure of 300 kPa.
A curve (thick line) has been plotted in Fig. 4.7 which makes use of formula

(4.2), but then with a special value for M o Compression tests on Delft
sC

bituminous concrete gave a value M . 0.55, which amounts to a friction
sSC
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Fig. 4.7. Normalized relaxation curves from extension tests.

Normalization using a__, = 200 kPa, T = 28 °c.

angle of approximately 15°. Based on this MSCt value, the bold curve in
Fig. 4.7 should give a peak value of 0.55. Of course with this value there is
hardly any agreement with the measured results. Compression states and
extension states of stress will, for that reason, not be dealt with in the

same manner.

. *vp 1 v
Compression: € = 1;—[ g* - h(e™) ]
(4.3}
. B
Extension: |eP| = %[ 2—%1— - h(e™®) ]
in which
vP
ne™ =M 181 a1 - |e"P|7e_ ) (4.4)
sct Csct sct

Contrary to equation (4.3a), the absolute value of the strain rate évP is

used in equation (4.3b). The most important difference between the
compression state and the extension state of stress concerns the factor 2 for
the stress ratio. It will be shown in Section 7.4 that an isotropic model can
be described with the equations (4.3). For a factor higher than 2 in equation

(4.3b), it is no longer possible to describe an isotropic model.
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A possible explanation for the modest strength in extension tests in Fig. 4.7
is that homogeneous stresses and deformation are assumed. This is perhaps not
an acceptable assumption for extension tests. In the first instance, it may
occur that with a non-homogeneous stress distribution at micro level, tensile
stresses occur, whereas on average a compression stress dominates. These
local tensile stresses may give rise to micro cracks whereby part of the
surface is no longer involved. In the second instance, the effect of the
weakest link applies here. If a particular section is weaker or becomes
weaker than the rest, the strain can be concentrated. This can be compared to
the occurrence of necking in a tension test on steel. When carrying out the
tests, the strain is determined by dividing the total extension by the height
of the sample, whereby any localisation of strain will not be apparent in the
measured results. Non-uniform deformation can only be measured by means of
local strain measurements in a number of locations in the sample, which is

something that did not take place.

It appears from the measured relaxation curves in Fig. 4.7 that the extension
tests are poorly reproducible. This is in contrast to the compression tests
dealt with in earlier sections. Just as with the modest strength, this may
perhaps be related to the occurrence of micro cracks at an early stage in an

extension test, but there are no conclusive indications of this.

4.7 Relaxation tests without confining pressure

In Section 4.5, a formulation was given for the hardening curve. This
function is based on triaxial compression tests with confining pressure.
However, in compression tests without confining pressure, lower relaxation
stresses are found; not only absolutely lower stresses, but also following
normalization. N.B. in normalization, deviatoric stress 1is divided by
p*=p+asct, where the same value of a_. is taken for extension states of
stress as described in Section 4.6 and for compression states of stress with
and without confining pressure. This is shown in Fig. 4.8 where both the
results of compression tests with confining pressure as well as results of

compression tests without confining pressure are plotted.
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Fig. 4.8. Normalized relaxation curves from compression tests with

different confining pressures; aSct = 200 kPa, T = 28 °C.

It can be seen in the figure that the shape of the curves with and without
confining pressure is the same, but the tests without confining pressure show
a maximum value for the hardening function which is approximately two thirds

of the maximum value from the tests with confining pressure.

Therefore, the uniaxial compression tests with °é=03=0 cannot be described
with equation (4.2) and this formulation needs, therefore, to be adapted. We

continue to assume the equations

*vp 1 q vp B
Compression: € = —?—[ = h(e ", p) ]
(4.5)
. B
Extension: CVP| = %[ Zj%l— - h(e"?,p) ]
vp
h(e'P,p) = M* de7] exp( 1 - )st|/s ) (4.6)
sct € sct
sct
But in contrast to equation (4.4) we now define M*‘ct as
S
-(p+p,)/p,
M*¥ =M [ 1 -e ] (4.7)
sct sct
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The term with P, and p, is new. For high values of p this term loses its
influence and we find M:ct = an. But for low values of p there is a clear
influence.

In the p-q plane, the formulation according to equations (4.5) to (4.7)

results in curved lines for e® = 0. We find a series of flow areas for

s V)
various values of e'F.

The failure surface for Delft bituminous concrete is
shown in Fig. 4.9. The curved lines are in accordance with equations (4.5) to
(4.7); the straight dashed lines give the original Mohr-Coulomb lines without
the adjustment according to equation (4.7). The points in the figure give the
maximum relaxation stresses for the compression tests and for the extension
tests. As commented earlier, the strength of the extension tests with
confining pressure is overestimated.

The failure surface of Fig. 4.9 can be found with e? = e i In this case
n(e'®, p) reduces to M:ct and with &"P=0 gives equation (4.5a) for compression

states of stress

for &P=0, "¢ (4.8)
sct

-(p+p )/p, ]

I =M =M [ 1-e
p sct sct

oV

Fig. 4.9. Comparison of test data and adapted yield function according
to equations (4.5)-(4.7).
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The parameter p, determines the point of intersection of this curved surface
with the p-axis. The parameter p2 determines the extent of curvature for low
stresses. The values of the parameters p1 and p2 follow by fitting the test

results. It is first of all assumed for this that M:ct 2 Ms applies to the

compression tests with high confining pressure. The coe;tt”icients can be
determined on the basis of the tests without confining pressure. On the
compression side (g>0 in Fig. 4.9) we have a result available from the
uniaxial compression tests. On the extension side (g<0 in Fig. 4.9) data from

uniaxial extension tests are available.

On the basis of these two data, two stress combinations follow to which

formula (4.7) should conform. These stress points in Fig. 4.9 are
1 1 .

(p,q) = (Sa*c, U‘c) and ( o O‘t) where o, and o, are the maximum (absolute)

relaxation stresses of compression and extension tests without confining

pressure, respectively. The values of P, and p, can be expressed in the

values ot and ¢ . On the basis of the values for crt and ¢ , values for M*
Cc [~ S

ct
. t . . . c . .
can be calculated; i.e. M . for uniaxial extension and M N for uniaxial
sC sC
compression.
¢ 60
Uniaxial tension: M*¥ =M =
sct sct 3a -0
sct t
30
(o] c

Uniaxial compression: M¥* M = =
sct sct 3a +0

1 ot
c
P, =3 . (4.9)
1n Msct - Msct
M - M
sct sct
and
Mt
P, =-p, 1n[1— scc]-‘-%;o*L (4.10)
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In order to calculate P, and P, sufficient data should be available and the
value for a in particular is necessary for determining M and M° and
sct sct sc

then the value for M . is used to determine P, and p,
sC

At a temperature of 28 °C we measure for Delft bituminous concrete

o = 80 kPa, o, = 18 kPa,
c

a = 200 kPa, M = 0.55,
sct sct

€ = 0.03
sct

By using equations (4.9) and (4.10) it then follows that
p, = 28 kPa, p, = 53 kPa.

By using these values it appears that for the compression tests with a
confining pressure o, = 100 kPa we find with equation (4.8) that

M* e = 0.98 M . is obtained. The term with p1 and p2 in equation (4.8) has,
sC scC
therefore, hardly any influence at all on the confining pressures of 100 kPa

and higher.

In Fig. 4.10 the hardening function according to equations (4.6) and (4.7) is
plotted for compression tests with the parameters of Delft bituminous
concrete as stated above. The thin continuous lines give the test results for
uniaxial compression tests. For the tests it is not the relaxation stress

q/p* that has been plotted as a function of €', but the stress function

*
q9/p (4.11)
1 - exp( —(p+p1)/p2)

The thick continuous line follows directly from equation (4.6) with
M:ct = H;ct' The dashed 1lines give the results of compression tests with
confining pressure. As can be seen in this figure, the results of compression
tests can now be described well using the hardening formulation according to

equations (4.6) and (4.7).
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