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. De beschrijving van niet-lineair elastisch materiaalgedrag met behulp van een elastische
potentiaal, waarin de secant stijfheid een machtsfunktie is van het spanningsniveau,
degenereert in het algemeen als de exponent gelijk aan 1 wordt genomen, zoals o0.a. te
zien is in de modellen van Vermeer (1980) en Molenkamp (1988). Het model beschreven
in paragraaf 2.4 van dit proefschrift, dat nauw aansluit bij het model van Molenkamp,
vormt een uitzondering op deze regel.

Vermeer P.A (1980), Formulation and Analysis of Sand Deformation Problems.
Proefschrift. Technische Universiteit Delfi.

Molenkamp F. (1988), A simple model for isotropic non-linear elasticity of frictional
materials. Int. J. Num. Anal. Meth. Geomech. Vol. 12, pp. 467-475.

. Bij numericke analyses van geotechnische constructies leidt het gebruik van
gecompliceerde materiaalmodellen die het gedrag van grond zeer goed beschrijven niet
altijd tot betere resultaten dan het gebruik van eenvoudige modellen die het grondgedrag
minder goed benaderen. De analyse met een gecompliceerd model is alleen effectief als
er grondonderzoek van bijpassende omvang en precisie wordt uitgevoerd.

. Bij toepassing van het Modified Cam-Clay model wordt de helling van de Critical State
Line M in het algemeen bepaald op basis van de inwendige wrijving van het te
modelleren materiaal. Een dergelijke keuze van M leidt bij simulaties van één-
dimensionale samendrukking tot een te hoge coéfficiént van laterale gronddruk.

. Met name in situaties waarin het spanningsverloop in plaats of tijd sterk van karakter
verschilt, of in het geval van pseudo-ééndimensionale samendrukking, leidt het gebruik
van cap-hardening modellen tot een betere voorspelling van deformaties dan elastisch
perfect-plastische modellen.

. In de numerieke mechanica heeft de volledige Newton-Raphson methode voor het
oplossen van een stelsel van niet-lineaire vergelijkingen op basis van een tangent-
stijfheidsmatrix een aanzienlijk kleinere convergentieradius dan een gemodificeerde
Newton-Raphson methode op basis van een elastische stijfheidsmatrix. Het gebruik van
laatstgenoemde methode verdient derhalve de voorkeur bij praktische toepassingen.

Stricklin J.A., Haisler W.E. (1977), Formulations and solution procedures for
nonlinear structural analysis. Computers & Structures, Vol. 7, pp. 125-136.




10.

11.

12.

. Het toepassen van conventionele softening modellen in numerieke analyses leidt niet

alleen tot mesh-afhankelijke resultaten, maar ook tot slechte convergentie van het
evenwicht-iteratieproces.

De gedachte dat een non-local formulering van constitutieve relaties zich niet leent voor
wiskundige bewerkingen en analytische oplossingen, is onjuist.

Hoofdstuk 8 van dit proefschrift.

Bij het verrichten van wetenschappelijk onderzoek is het noodzakelijk om de praktische
toepasbaarheid van de onderzoekresultaten voor ogen te houden en vroegtijdig aandacht
te besteden aan de operationalisatie.

Het psychologische effect dat uitgaat van veiligheid-verhogende technieken in
automobielen, zoals ABS en airbag, leidt bij sommige automobilisten tot een verhoging
van de gemiddelde rijsnelheid, waardoor het beoogde veiligheidseffect wordt
geneutraliseerd.

Met name in de ochtendspits vertoont de snetheid van het verkeer op een continu trajekt
van een autosnelweg veelal lokaal een sterke terugval. Verreweg de belangrijkste
oorzaak van dit lokalizatie-fenomeen is een in-het-oog-springende aktiviteit op de
aanliggende vluchtstrook. De oplossing hiervan dient gezocht te worden in de sfeer van
verkeersregularizatie.

De gemiddelde bezetting van een rijdende personenauto bedraagt op dit moment 1.63
personen. In de ochtendspits is de bezetting echter beduidend lager. Het optimaliseren
van de vervoerscapaciteit door carpooling is derhalve een zeer efficiénte oplossing van
het fileprobleem, welke is te prefereren boven infrastructurele maatregelen.

Bron: CBS, februari 1994.

Het roken van tabaksartikelen zou moeten worden beperkt tot speciale daarvoor
aangewezen hermetisch afgesloten ruimten.
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1 INTRODUCTION

Since 1960, researchers have been working on constitutive models for geomaterials, i.e. soil
and rock. In later years such models have been applied in finite element codes, in particular
the simple elastoplastic Mohr-Coulomb model. More refined models exist, but they are not
easily applied in practical geotechnical engineering. Even well-known Cam-Clay type models
are, as yet, not generally applied for clays, and are subject to criticism. From a practical
point of view, the criticism concerns among other things the prediction of lateral stresses in
soil layers. From a theoretical point of view, the quite general use of non-conservative
elasticity laws is not justified. In fact, a proper potential for the elastic strain-energy is
missing. This study is among other things aimed at improving this situation, and some
improvements of existing constitutive models are proposed.

Another quite different part of this study concerns a new topic of geomechanics, namely non-
local material softening. Dense clays and rock show material softening, i.e. negativeness of
the second-order work, but classical softening models lead to ill-posed formulations.
Numerical calculations with such models produce unreliable results. Recently, some
researchers have put forward new ideas for arriving at well-posedness of boundary value
problems. Stimulated by some pioneering work in this field, a so-called non-local approach
is put into operation.

1.1  Aims and scope of this research project

In this study it is aimed to analyse constitutive models for geomaterials from the viewpoint
of practical applicability and to formulate a robust method for the numerical analysis of
softening behaviour.

In order to describe the behaviour of geomaterials in a constitutive model, a distinction can
be made between elasticity, perfect-plasticity, hardening and softening behaviour. A very
detailed geomaterial model will contain all these aspects, but simpler models can be
formulated by adopting only elasticity or by simple combinations of elasticity and plasticity.
Such models are reviewed with the aim of analysing shortcomings and limitations and of
finding improvements.

On considering elasticity, it is clear that non-linearity is required, but for elastic clay
behaviour in particular, proper strain-energy functions would appear to be missing. For this
reason, attention will be focused on strain-energy functions. Another topic in this study is
the use of hardening plasticity, in particular cap-hardening, of which the Modified Cam-Clay
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model is a well-known example. Although Cam-Clay type models are, in principle,
appropriate for practical applications, there is the shortcoming that these models do not give
the correct lateral stress in one-dimensional compression. Therefore this will be studied here.
A proper numerical integration of the Cam-Clay model was recently proposed by Borja &
Lee (1990), but the numerical treatment of yield vertices has not yet obtained full attention.
Yield vertices become important when implementing, for instance, the Advanced Cam-Clay
model, as described by Atkinson & Bransby (1978). In this model, a yield vertex is present
at the intersection of the Hvorslev surface and the yield cap. For this reason the topic of
numerical modelling will be given attention.

Cam-Clay models do not only involve hardening plasticity, but softening plasticity as well.
Unfortunately, softening models cannot be used straightforwardly in numerical simulations
because of mesh-sensitivity. Near failure, all deformation tends to concentrate in the
narrowest shear-band that can be resolved by the mesh, i.e. a shear-band thickness of about
one element. Hence, upon mesh refinement, shear-bands become narrower and computed
load-displacement curves will change considerably. From an engineering point of view,
element size dependency is solved by using a technique as proposed by Pietruszczak & Mroz
(1981), in which the softening is scaled according to the element size and the desired shear-
band thickness. However, an influence of mesh alignment remains. Moreover, scaling
techniques as proposed by Pietruszczak & Mroz do not solve the problem of numerical
instability, as associated with classical softening models. New fundamental methods, which
are called regularizations, were introduced to solve the problems related to the use of
softening models. One type of regularization involves non-local theories, for which
pioneering work has been done by Bazant et al. (1984). Another regularization, which can
be seen as a derivation from non-local theories, is the strain-gradient theory. Extensive
contributions in this area were recently made by De Borst and co-workers (1991, 1992). In
1986, Miihlhaus was among the first researchers who successfully applied the old Cosserat
theory as a regularization for shear-banding problems. In the field of complex regularization
methods, which are generally not easy to apply in practice, this study is aimed to develop
one of the basic theories in order to obtain a robust regularization method with a high degree
of practical applicability.

1.2 QOutline of the thesis

As mentioned above, this thesis can be divided into two parts. The first part is on well-
known fields of geotechnical research, i.e. constitutive modelling and non-linear finite
element analyses. The second part concerns a new topic of geomechanics, namely, the non-
local approach to the modelling of softening phenomena.
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Chapter 2 deals with elastic and pseudo-elastic soil models. An analysis is carried out into
the extent to which some non-linear models can be used to simulate the (elastic) behaviour
of geomaterials. Special attention is given here to strain-energy functions. The
complementary strain-energy function as presented by Molenkamp (1988) is extended to
account for a linear relationship between stiffnesses and stress level. Chapter 3 gives a
description of perfectly-plastic models. Aspects of vertex yielding are discussed in relation
to the Mohr-Coulomb model and simple extensions of this model are proposed for practical
applications. In plane strain situations, an elaboration is given as to how Drucker-Prager
model parameters for dilatant materials should be related to well-known soil properties in
order to arrive at the more accurate Mohr-Coulomb failure level. Chapter 4 deals with a
particular form of hardening plasticity: Cap hardening. As an example of cap hardening, the
Modified Cam-Clay model is described. For this model the relation is analysed between
model parameters and the development of lateral stresses in one-dimensional compression and
it is concluded that Kj-values tend to be overpredicted. In order to account for this
shortcoming of the Modified Cam-Clay model, a slightly different model is introduced,
named the Plaxis Cap model. An analysis is made of how the stiffness behaviour in cap
models varies for different stress paths. Chapter 5 contains the general equations for the
solution of the boundary value problem by means of the finite element method. A detailed
description is given of various aspects of stress integration with respect to time, including the
numerical treatment of yield vertices in the Plaxis Cap model. In Chapter 6 this model is
used for some practical applications. In each application a comparison is made between the
new model and a well known perfectly-plastic model. This is done in order to investigate
under which conditions the use of hardening plasticity is required.

Chapter 7 deals with softening plasticity. After some softening models have been described
according to the classical (local) plasticity theory, it is shown that such models suffer from
specific problems when used in numerical applications. Apart from mesh-dependency, as
reported by several other researchers, the phenomenon of poor convergence is discussed,
which was not mentioned in former studies. Chapter 8 gives a description of so-called
regularization techniques, which were developed to overcome the numerical problems related
to the use of softening models. A new non-local regularization method is introduced, named
the Modified Non-local Method. In one-dimensional form, this model allows for an analytical
solution for necking in a tension bar. The analytical solution proves the effectiveness of the
current non-local method and, at the same time, the non-effectiveness of existing non-local
models for one-dimensional applications. Numerical calculations are performed in order to
validate the new theory. In Chapter 9 the modified non-local method is extended to general
three-dimensional situations and applied to previously formulated softening models.
Verification of proper functioning is done by a recalculation of the numerical applications of
Chapter 7. A practical solution is presented to avoid the use of extremely small elements.
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The final chapter, Chapter 10, contains the general conclusions that were drawn from the
work described in this thesis, and some recommendations and topics for further research are
proposed.
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2 ELASTIC AND PSEUDO-ELASTIC SOIL MODELS

In this chapter a selection of elastic and pseudo-elastic models is considered. Elasticity is
associated with reversibility of strains upon unloading. A truly elastic model, or hyper-elastic
model, is defined as a model that does not allow for generation or dissipation of energy in
closed stress loops. Such models involve a so-called strain-energy function, as for instance
considered by Fung (1965). Pseudo-elastic models are models based on elasticity theory, but
they do not satisfy the basic criterion of reversibility. Moreover, the pseudo-elastic models
will most generally not satisfy the above energy criterion. The latter type of models is more
interesting for practical applications rather than for scientific purposes. However, because
the aim of this study is to form a balance between science and practical applicability, both
types are considered here. The beginning of this chapter is devoted to some preliminary
relations, which are used throughout the thesis.

2.1  Preliminaries of constitutive modelling

In the relationship between rates of stress and rates of strain, as considered in this study,
restriction is made to either a truly linear relation or a multi-linear relation. A truly linear
relation is, for example, obtained for truly elastic materials. For elastoplastic models the
relationship is usually bilinear to distinguish between loading and unloading, but other forms
of multi-linearity exist (Koiter, 1953). Another bilinear relationship is implied by the pseudo-
elastic Duncan-Chang model (Duncan & Chang, 1970) as considered in Section 2.5. The
multi-linear relationship between rates of stress and rates of strain is written in the form:

™
I
5y

a or 2.1

5

1l
I=

15

In this equation the stress and strain tensor are written in vector notation, which involves all
the six Cartesian components:

¥ (2.2a)

I

= (Eyy o Eyys 875 Vay > Yyz 0 Vx

T
0 = (04, Oy s Oy s Oy » Oy O) (2.2b)

Positive normal stresses are considered to represent tension, whereas negative normal stresses
relate to pressure. Similarly, positive normal strains relate to extension whereas negative
normal strains relate to compression.



CHAPTER 2 PAGE 6

It is often useful to transform the Cartesian stress components into principal stresses. For the
general three-dimensional case, three principal stresses (o) , 0, , 03) exist, which
correspond to the three principal stress directions. The orthogonal basis formed by the three
principal stress axes is referred to as the principal stress space. States of stress can be plotted
as points in the principal stress space and changes of stress can be represented by stress
paths.

Another way of representing stresses is by means of the invariants p, g and §, defined

as:
p= 10 +0y*03) (2.32)
9 =\J Lo =0 + (0 - 0P + (03 - 00 (2.3b)
0= % arcsin —; (o, +p) (o ;p) (o3 +P) (2.3c)
q

In this form, p is the isotropic stress or mean stress, ¢ is the equivalent shear stress, and
6 is referred to as Lode’s angle. The equivalent shear stress is a composition of deviatoric
stress components. Under triaxial stress conditions where o, = o3, ¢ is just the principal
stress difference: ¢ = |6, - 03] .

Strains are often presented as principle strains (g, , & , &3) as well. Other strain measures
that are frequently used in this study are the invariants &, and g, defined respectively as:

g, = —(g + & +&) (2.4a)

2 2 2 2
& =\J 3 ((a1 - &) + (& ~ &) + (& — &) ) (2.4b)
The volumetric strain &, is considered positive for compression. The equivalent shear strain
&, is under triaxial strain conditions where &, = &3, equal to two thirds of the principle
strain difference: & = /3 | & - & | .

The matrix C in Equation 2.1 is the material compliance matrix and M is the material
stiffness matrix. The coefficients of these matrices will generally be functions of the actual
state of stress and strain to account for non-linear material behaviour. For elastoplastic
models, the matrices C and M also depend on the increments of stress and strain. Indeed,
in classical plasticity as, for instance, considered by Hill (1950), a distinction is made
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between loading and unloading. For loading, M is an elastoplastic stiffness matrix and for

unloading M is a much stiffer elasticity matrix. Hence, the differential equation is not linear
as suggested by Equation 2.1, but the relationship is bilinear. A further step in this direction
is to distinguish between different types of loading and thus different types of plasticity
(Koiter, 1953). In this manner one obtains a multi-linear differential equation.

The simplest form of the material stiffness matrix M in Equation 2.1 is that given by the
generalized form of Hooke’s law, which represents isotropic linear elastic behaviour. Only
two elastic parameters are required: In engineering practice mostly taken as Young’s modulus
E, and Poisson’s ratio ».

Foxx T I 1-v v v 0 0 0 _1 —Sxx W

Oyy v 1-» 0 0 0 Eyy

‘.izz _ E v v 1-» O 0 0 z:;zz 2.5)
Ty (I+»)(1-2v) | 0 0 0 %-» 0 O Yxy

&, 0 0 0 0 % O Yy

Oz | 0 0 0 0 0 %y _*raj

The elastic material stiffness matrix according to Hooke'’s law is referred to as D°. The
equivalence of Equation 2.5 in terms of the invariants of stress and strain, as defined above,
can simply be formulated as:

p K 0 &y
|- . 2.6)
q 0 3G &g
in which K is the bulk modulus and G is the shear modulus. In Hooke’s law K, G and
E are interchangeable:

E E
= _ G=  ~ __ 2.
K 3(1-2v») 2 (1+vw) @7

Because of the non-linear soil behaviour it is difficult to choose a proper stiffness modulus
in this model. In fact, the stiffness changes as a function of stress and strain. Moreover, a
clear distinction should be made between drained conditions where parameters (E°, »’)
relate to effective stresses ¢, and undrained conditions where parameters (E,, »,) relate
to total stresses g. The shear modulus G is unaffected by such conditions. It simply relates

both sets of parameters in the following way:




CHAPTER 2 PAGE 8

E, E

=2G,=2G = 2.9)

1+p 1+p

u

Hence, G, = G’. This is one of the reasons why it is preferred to use the shear modulus
as a model parameter for soil rather than Young’s modulus. In the remainder of this thesis
the apostrophe (’) will conveniently be omitted when considering effective model parameters
and effective stresses.

2.2 Pseudo-elastic power law model

In addition to Terzaghi’s logarithmic compression law (Terzaghi, 1925) it was Ohde (1939)
who formulated the compressibility of materials in a general form by defining the stiffness
modulus as a power function of the "load" p. In a later period, researchers such as Schultze
and Moussa (1961) showed, by experimental studies, that a tangent modulus of one-

dimensional compression E_,, for dry sandy materials can be written as a power function

oed
of the stress p:

1
Epg = — = o p” 2.9)

v

where o and m are model parameters which can be obtained from oedometer tests by
plotting the logarithm of the axial stress against the logarithm of the axial strain. Schultze
and Moussa (1961) found that the power m ranges from 0.3 for dense sand to 0.8 for
loose sand.

For general states of stress, the idea of stress-dependency can be included in Hooke’s law
by formulating a tangential stiffness modulus as a stress-dependent quantity obeying a power
law:

m
P
p ref

G, = Gref (2.10)

Correspondingly, the tangent Young’s modulus E, or the tangent bulk modulus X, can also
be formulated by such a power law. The superscript ref denotes a particular reference
value. The power m is supposed to be a material constant, ranging from 0.0 to 1.0. For
sand and overconsolidated clay the average of the power is about 0.5, whereas for normally
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and near-normally consolidated clay it is approximately 1.0. In the latter case (m = 1) the
volumetric strain rate is given by:

ref
Ly=P_ P @2.11)

8V=Ep=KrefE

Integration of this equation gives a logarithmic stress-strain relation, similar to Terzaghi’s
logarithmic compression law (Terzaghi, 1925).

(2.12)

ref
g, - 88 =2 ﬂo
Kref p

In this relation the ratio p™® / K¢ can be considered as a compression index.

The current power law model is very easy to implement in numerical procedures. However,
It should be noted that a straightforward use of a tangent shear modulus, as defined by
Equation 2.10, does not lead to a truly elastic model in the sense that strains are fully
recovered when returning to the initial stress level. Another anomaly relates to energy. A
sound constitutive model should not allow for the generation of energy for any form of cyclic
loading. In order to get a fully proper elasticity model the formulation must involve a strain-
energy function, as mentioned in the introduction of this chapter.

2.3 Elastic power law model by Vermeer

On improving the previous elastic model, a complementary strain-energy function W, is
introduced. This implies that the strains and strain rates are respectively given by:

AW *w
e = c & = ) (2.13)
N dg dd°

Various strain-energy functions exist in literature. In this section a complementary strain-
energy function according to Vermeer (1980) is analysed. Note that the formulation in
Equation 2.14 is fully equivalent to the more complex formulation given by Vermeer.

(2.14)
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In this function », is a constant secant Poisson’s ratio, G, is a non-constant secant shear
modulus and o is a particular stress measure as defined by Vermeer (1980).

2 l+y 2
=pJ1+§12351_ (2.15)
2, p
m
— e 4
G, =G v (2.16)

G and m are model parameters. Similar to the tangent shear modulus as defined in
Equation 2.10, the above secant modulus obeys a power law.

In the following, the above strain-energy function will be examined to assess its suitability
for the modelling of soil behaviour. The model is subject to oedometer test conditions in
order to evaluate the behaviour in constant stress ratio paths. In addition, the model is subject
to triaxial test conditions for which the development of tangential moduli is evaluated. For
constant strain ratio paths it is sufficient to derive the (full) strains, as defined by the first
part of Equation 2.13. In order to evaluate tangential moduli one also needs the rates of
strain, as defined by the second part of Equation 2.13.

In the current model the strains are given by:

3y

g-—38p

L+pg

(2.17)

where 6§ = (1,1, 1,0, 0, 0)I. Equation 2.17 is identical to Hooke’s law for isotropic
material behaviour and all non-linearity is contained in Equation 2.16 for the secant shear
modulus. For the special case of »; = 0 the rates of strain are given by:

—_
IS
Q

~

I~

*
1

i = b-m_— > — v, = 0) (2.18)

where f = diag(1, 1, 1, 2, 2, 2). The behaviour of the model under special axi-symmetric
conditions (0, = 05 , & = &;), as obtained in oedometer tests and triaxial tests, can easily
be analysed by considering the invariants of stress and strain, as defined in Section 2.1. The

invariants of strain can be elaborated as:




CHAPTER 2 PAGE 11

p (2.19a)

@
=

(2.19b)

249
s dq 3G

DA

The approximation in Equation 2.19a is exact for isotropic compression. More generally, for
constant stress ratio paths (g / p = constant), as for instance observed in an oedometer test
on normally consolidated soil, the volumetric strain is proportional to p'™. Experimental
evidence for this proportionality with respect to sandy material (m about 0.5) was already
mentioned by Vermeer (1980). In the limiting case of m = 1, i.e. for normally consolidated
clay, the volumetric strain becomes independent from the mean stress. This is associated with
full incompressibility which is not relevant for effective soil behaviour. Moreover, full
incompressibility leads to numerical problems when implementing such a model in a
computer code. In order to use the current model to simulate the behaviour of clay, the
power m might be taken slightly below 1.0.

On taking the quotient of Equations 2.19a and 2.19b, it can be seen that a constant stress
ratio path results in a constant strain ratio path. Herewith, the model complies with one of
the basic model requirements. On imposing the conditions for oedometer testing (e, / g, =
3 /2) one can evaluate the stress ratio (g / p);. The relation with the coefficient of lateral
earth pressure for normally consolidated soils, K, is given by:

|

Substitution of this relation and elaboration leads to the usual expression:

(0 = 03) (2.20)

ASEEN

_3(1 - Ky
]O [+ 2K,

K= —° (2.21)

Note that this relationship is only valid in the absence of plastic strain, i.e. when modelling
soil as purely elastic material or when extending the model to include perfect plasticity as
described in Chapter 3. Hence, only when using the current elasticity model as a solitary
model or when using it in combination with perfect plasticity, the value of K, only depends
on the secant Poisson’s ratio »,. In order to produce realistic values of K}, say around 0.5
as usual in normally consolidated soil, », should be about 1/3. In combination with

hardening plasticity, as for instance covered in Chapter 4, K, is dominated by plasticity
parameters. In that case the value of », hardly influences K.
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For a further examination of the model, attention is focused on a stress path for a standard
drained triaxial loading test. The soil sample is assumed to collapse at a vertical stress of
four times the confining pressure p®. Hence, the stress state ranges from p = r°
and g =0to p=2 pu and ¢ =3 pO. From Equations 2.15 and 2.16 it can be evaluated
that during loading the secant shear modulus increases by a factor 1.57 for » = 0 and
m = 0.5 and by a factor 2.45 for », = 0 and m = 1. If the current model were to be
used solitarily or in combination with perfect plasticity, the stiffness behaviour would be in
contradiction with what is generally observed in triaxial loading tests. Hardening plasticity
can improve this anomaly. For unloading behaviour, the development of the stiffness is
qualitatively correct.

Attention is now focused on the evolution of the tangent Poisson’s ratio. Considering

standard triaxial test conditions with ¢, = 03 and ¢, = ¢; = 0, it can be derived that:

£,/ - 3
VW= T — T T o= (2.22)
& &/, +3

The rates of the strain invariants are given by:

3 de, 2 1-2
b= SO Sy Lopt 9 C |l p-mig| @m0
ap dq 3G, 2 |2 1+ | p? p
3 3 2
S0y sy Lyl a-m & vm|l al @230
s ap ag 3G, & p p?

£, 9 -2y gz_—m -m 4 p
R B U g (2.24)
3G, &£ '
& -m4 (1-m)£2 +m 9
. L p L
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It can be seen that for isotropic stress states (¢ = 0 and ¢ = p) and m = 1 the
determinant of the above material matrix is zero, which means that the matrix has become
singular. Hence, the case m = 1 cannot be used in incremental numerical procedures,
because of possible matrix singularity. Singularity certainly does not occur for m < 1
because ¢ = p.

The strain ratio as required in Equation 2.22 for the tangent Poisson’s ratio yields:

v (2.25)

A

~~
—
|
R
~
+
3
N’
K

In a standard drained triaxial test the stress ratio ¢ / p is equal to 3. Substitution of this
ratio into the above relation and successively into Equation 2.22 yields for the tangent
Poisson’s ratio:

1-2 1+ 2
(Q-m) 22 1-m48 20 (1-m)y 5| 4
1+y, 3 p 9 -2, pZ
v, = - (2.26)
1-2 2
(-m) 2 w2 -2 mq 2 1200-m) — 2| &
1+ 3 4 9 “2v { p?
For the special case of y, = 0 the above expression reduces to:
2
m ll + % q - % _2]
p P
v, = 5 v, =0 .27
G-m)-3md.29 3-2m)
3 P 9 P2

On defining the principal stress ratio R = o, / 03, the ratio g/ p under axi-symmetric
conditions can be formulated as:

% - i_g%‘z_” (0, = 03) (2.28)
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Substitution of this relation into Equation 2.27 gives a very simple expression for the tangent
Poisson’s ratio:

m

(1-m)R + 2/R vy =0, 03 =03) (2.29)

vy =

Taking m = 0.5 as an average for sand, », varies between 0.20 and 0.25. This agrees
well with general findings for unloading / reloading, as for instance published by Lade
(1977). Hence, this elastic model with m = 0.5 and p, = 0 is of interest in combination
with hardening plasticity; the elastic strains will be of import for unloading / reloading and
the plastic strains will be of import for primary loading.

On using a value of » larger than zero, as needed in combination with perfect plasticity to
obtain a realistic Kj, the tangent Poisson’s ratio yields relatively large values which are not

realistic.

Taking m slightly below 1 to simulate the behaviour of normally consolidated clay and
v, equal to zero, then it is found that v, =~ R /2, as can be seen from Equation 2.29. This
means that soon after the onset of loading the current model shows an increasing amount of
dilatancy, which is highly unrealistic for loading behaviour of normally consolidated clay.
On using a value of », larger than zero, the dilatancy effect is even larger.

From the above considerations it can be concluded that the power law model with a
complementary strain-energy function as defined in this section is well applicable to model
the behaviour of sand in the elastic range using a power m of about 0.5 and »; equal to
zero. In order to simulate the behaviour of sand in different stress paths accurately, the
model should be used in combination with hardening plasticity, as done for instance by
Vermeer (1980). If the model is combined with perfect plasticity, the secant Poisson’s ratio
should be based on K, which will give a value of », between 0.3 and 0.4. However, in
this case the behaviour as observed in triaxial loading tests is not accurately predicted.

Using a power of exactly 1 may lead to singularity of the material matrix. Therefore the
model cannot be used for modelling normally consolidated clays with m = 1. On taking
m slightly below 1, the model gives dilatancy in triaxial loading tests, which is unrealistic
for normally consolidated clay. Moreover, for unloading / reloading under oedometer test
conditions, the model predicts highly unrealistic stress paths.
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2.4  Elastic power law model by Molenkamp

In this section another non-linear elastic model is evaluated. An essential difference with the
previous model is that the non-linearity is not only contained in the secant shear modulus,
but in other parts of the model as well. Notwithstanding the non-linearity, a Hookean
structure is still present in the relationship between stresses and strains. The model was
originally proposed by Molenkamp (1988). However, model parameters are chosen here to
be basically different from the proposal by Molenkamp for reasons discussed later in this
section. The model is given here by the following complementary strain-energy function:

W= 1

‘G

S p2 . q2
Ty a=m ?] (2.30)

In this function G, is again a secant shear modulus which obeys a power law:

G, = G

m
p
;r?f] (2.31)

This power law with reference stiffness G, reference pressure p¢ and power m is
similar to that in the previous model. However, in the current model the secant stiffness only
depends on the mean stress p and not on g¢. The parameter S in the above
complementary strain-energy function represents the tangential stiffness ratio, defined as:

S = G (2.32)
= = .

For isotropic stress conditions (¢ = 0) the parameter § relates to the tangent Poisson’s
ratio v

(g=0) (2.33)

The current model will also be examined based on the invariants of stress and strain, as
defined in Section 2.1, under special axi-symmetric conditions (o, = 03). Special attention
is given to the case of m equal to 1 to simulate the behaviour of normally consolidated
clay. The strain invariants &, and & are evaluated from the above complementary strain-
energy function according to the first part of Equation 2.13:
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2
S .nm q_z (2.342)
6 p

(2.34b)

On taking the quotient of Equation 2.34a and 2.34b it follows that a constant stress ratio path
results in a constant strain ratio path. Hence, the model complies with one of the basic model
requirements.

Imposing the conditions for oedometer testing (g, / &, = 3/2) and using Equation 2.20 for
the relation between the stress ratio ¢ / p and K, leads to a quadratic expression for the
coefficient of lateral earth pressure K

AK; +BEKy+C=0 (2.35)

in which the factors A, B and C are given by:

A=88S+31-m)(2-m) (2.36a)
B=8S-3(1-m)(1-2m) (2.36b)
C=28-3(1-m(1+m) (2.36¢)

On using the current model solitarily or in combination with perfect plasticity, K, is
influenced by the parameter S as well as by the power m. Taking m = 0.5 to simulate
the behaviour of sand, S should be taken of the order of 0.2 in order to find a realistic
value of K, around 0.5. For a given K, the required value of S can be obtained by
reformulating Equation 2.35:

1-Ky) (1+2K, +m -
s= 3 (1-m LK) (172K v m-mE) 2.37)
2 (1 +2K,)?

On taking m equal to 1 to simulate the behaviour of normally consolidated clay, the
resulting K, is always equal to -0.5, independent from the value of §, which is highly
unrealistic. However, on combining the current strain-energy function with hardening
plasticity, the value of § and m hardly influence K,.
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From Equations 2.30 and 2.34a it can be seen that the complementary strain-energy function
and the volumetric strain are not even defined for the particular case m = 1. However,
with the particular choice of model parameters as made in this study, the model does not
degenerate when considering the stress-strain relation in rate form. Note that the formulation
by Molenkamp (1988) is not defined at all for m = 1. Evaluation of the rates of the strain
invariants from the complementary strain-energy function gives:

. 1 m q2 . q .
= 38+ — (1 2 -ml .
£, 3G, ‘ + > (1+m) e p-m » q (2.38a)
. 1 q . .
&, = -mip+ 2.38b
7 3G, » p (1] ( )

From these relations it can be seen that even for the case m = 1 the material matrix
remains regular under all stress conditions. Hence, when implementing the current model in
incremental form, there is no numerical objection to using m = 1.

Considering a drained triaxial test in which the soil sample is supposed to collapse at a
vertical stress of four times the confining pressure, it follows from Equation 2.31 that the
secant stiffness increases by a factor 1.41 for m = 0.5 and by a factor 2 for m = 1.
Hence, the increase of stiffness is less than in the previous model, which is considered to be
a slight advantage.

The tangent Poisson’s ratio is evaluated from Equation 2.22 on the conditions of a standard

drained triaxial test. From Equations 2.38 it follows that the strain ratio &, / & is given

by:

9
p

RSEENY

2
3S+E(1+m)q_—m
) 2
P (2.39)

s -m +

4
p

RSN

Taking the ratio of invariant stress rates ¢ / p equal to 3 and substitution of Equation 2.39
into 2.22 leads to:
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Figure 2.1 Tangent Poisson’s ratio as a function of the stress ratio g/ p

2
2S—3-m2+ﬂ(1+m)_q_2

3
y, = - P P . (2.40)
2awm L

3 p

The tangent Poisson’s ratio is plotted in Figure 2.1 as a function of the stress ratio g/ p
for different values of S and m. At the beginning of a triaxial test, the stress state is
isotropic. As a result, the tangent Poisson’s ratio relates here to the stiffness ratio S as
formulated in Equation 2.33. During loading, », gradually increases and finally decreases
when the stress ratio g / p approaches 1.5. The power m has a minor influence on the
results and realistic values for », of the order of 0.2 can be obtained for m = 0.5 as well
as for m = 1 by choosing S around 1.0.

From the above considerations it can be concluded that the current power law model can very
well be used to simulate the behaviour of sand in the elastic range using a power m of 0.5
and a value of S of about 1.0. When combining the model with perfect plasticity, the
parameter S should be based on K;, which will give a value of S around 0.2. The proper
value can be evaluated from Equation 2.37.

For the simulation of the behaviour of normally consolidated clay in incremental numerical
applications, the case m = 1 can be used exactly. This is due to the particular choice of
model parameters in the current formulation. The case m = 1 is impossible in the original
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proposal by Molenkamp. The value of S should be just above 1.0 in order to find realistic
stress paths for unloading / reloading both in triaxial tests and in oedometer tests. However,
when using the current model solitarily or in combination with perfect-plasticity and taking
m = 1 it is impossible to simulate a correct stress path for primary loading in oedometer
tests. Hence, for clay it is highly recommended that the model be used in combination with
hardening plasticity.

2.5  Hyperbolic Duncan-Chang model

The third type of non-linear elastic model is the adoption of a hyperbolic representation of
stress-strain curves as obtained from triaxial tests. The original idea to approximate such
curves by a hyperbola stems from Kondner (1963). Based on results from undrained triaxial
tests he proposed an equation of the form:

oy - 03] = (2.41)

In this equation E® represents the initial stiffness of the primary loading curve, which
corresponds to the initial Young’s modulus. Kondner already mentioned that in standard
drained triaxial tests the initial stiffness modulus depends on several conditions among which
the confining pressure. This idea was extended by Duncan and Chang (1970). Under the
convention that the principal stresses are ordered in such a way that o) < 0, < 03, they
formulated the initial Young’s modulus E asa power function of o3, in accordance with
the idea of Ohde (1939).

ult

lo,- o,

€

Figure 2.2 Hyperbolic approximation of a standard drained triaxial test
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m
E® = E'Y { ﬂ] (2.42)
Pq
It should be noted that o5 is, in an absolute sense, the minimum principal stress, which
equals the confining pressure in the case of a standard drained triaxial loading test. E™¢ is
a reference Young’s modulus corresponding to the atmospheric pressure p,. In Equation
2.41 q,, represents the asymptotic value of the principle stress difference. This value can
be expressed in terms of a friction angle and a cohesion according to Coulomb’s friction law.

1 2ccoseg - 2 0, sing

el 2.43
Rf 1 - sing ( )

Dy =

Ry is the failure ratio. Duncan and Chang report that for a number of different soils, values
of R, were found in the range from 0.75 to 1.00.

In order to apply the hyperbolic model in incremental form, a tangent stiffness modulus must
be utilized. From Hooke’s law one can formulate the tangent Young’s modulus E, as:

1 de,
- = — (2.44)
E, do,
Reformulation of Equation 2.41 and elaboration gives:
m 2
E = E los | loy ~ 03] - qu (2.45)
Pa Tyt

The tangent Young’s modulus, as defined in Equation 2.45, is applicable to general states
of stress, provided that the ordering of principal stresses is taken into account.

For unloading and reloading, the stiffness is supposed to depend only on the minimum
principle stress and not on the principle stress difference. This results in linear elastic
behaviour for unloading and reloading in a standard drained triaxial test.

m

(2.46)

| o3 (
E =EY
ur ur Pa
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The unloading / reloading Young’s modulus £,
Equation 2.42 for the initial Young’s modulus in primary loading. The only difference is in

the reference stiffness, which is substantially higher for unloading / reloading than for

as defined in Equation 2.46, is similar to

primary loading.

The hyperbolic model is capable of describing specific soil characteristics such as the effect
of stress-dependent stiffness, typical unloading / reloading behaviour and failure. However,
there are still some major drawbacks.

The first point of discussion, as already indicated by Duncan and Chang themselves, is the
role of Poisson’s ratio, which is taken as a constant. They evaluated the tangent Poisson’s
ratio for a standard drained triaxial test on dense silica sand and found a range from 0.11
to 0.65. The large value of 0.65 represents the effect of dilatancy, which is often observed
in dense sands beyond the elastic range. However, on using Hooke’s law in incremental form
as a basis of this non-linear elastic model, Poisson’s ratio has an upper limit of 0.5. As a
result, the model is not capable of describing effects like dilatancy.

The second drawback of the hyperbolic model is the inconsistency with respect to neutral
loading. For loading, a low stiffness modulus E, is used, whereas a much higher modulus
E,, is used for unloading. Loading is defined by the condition d(s;/03) > O and unioading
is defined as d(o;/03) < 0. Hence, neutral loading is defined as a constant stress ratio path
without change of o, / o3. This type of stress path is, for instance, obtained in an
oedometer test where oy / 03 = 1 / K. For such stress paths, the hyperbolic model is
inconsistent. Indeed, E, might be used for d(o;/0;) = 0, but a near-constant stress ratio
path with d(o,/03) just slightly negative would get the high E,, modulus. Hence two nearly

identical stress paths will give an entirely different strain response.
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3 ELASTIC PERFECTLY-PLASTIC SOIL MODELS

In this chapter two basic elastic perfectly-plastic models are considered to set out the basis
of plasticity theory. Some extensions of the well-known Mohr-Coulomb model are proposed
for practical applicatibity. Finally it is shown how the Drucker-Prager model can match the
Mohr-Coulomb model for dilating materials in plane strain situations.

3.1  The Drucker-Prager model

The Drucker-Prager model (Drucker & Prager, 1952) is well-known in soil mechanics and
is operational in several computer codes. The basic idea of the model is adopted in other soil
models. It is presented here as an introduction to more complex models and to establish the
basis of plasticity theory.

The basic principle of elastoplastic models is that strains and strain rates are divided into an
elastic part and a plastic part (Hill, 1950).

+ g &= 8%+ &P 3.1

Hooke’s law (Equation 2.5) is used to relate the stress rates to the elastic strain rates.
Together with Equation 3.1 this gives:

S}
il
IIUN
to:
1l
IS

e (§ — §P) (32)

The elastic parameters G and », as used in the matrix D, are taken as constants. A yield
function f indicates whether or not plastic strain rates occur. The yield function for the
Drucker-Prager model can conveniently be formulated in terms of p and g¢:

f=4q - o{p +ccoty) (3.3)

This yield function represents a cone in principle stress space as shown in Figure 3.1. The
term ¢ coty is related with the distance from the apex of the cone to the origin of the
principle stress space. The coefficient « relates to the friction angle ¢, and determines the
steepness of the cone. In the particular case of zero friction the term « p vanishes, but
the term « ¢ cote does not vanish. In this case the Drucker-Prager model reduces to the
Von Mises model, which is often used in metal plasticity.
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Figure 3.1 Drucker-Prager yield surface in principle stress space

According to the classical theory of plasticity (Hill, 1950), the plastic strain rates are
proportional to the derivative of the yield function with respect to the stresses. This means
that the plastic strain rates can be represented as a vector perpendicular to the yield surface.
This classical definition of plastic strain rates is referred to as associated plasticity. However,
for geomaterials, the classical definition leads to an overprediction of dilatancy. Therefore,
in addition to the yield function, a plastic potential function g is introduced. The plastic
potential function can also be represented as a surface in principal stress space. The case
g # f is denoted as non-associated plasticity. For the Drucker-Prager model the plastic
potential function can be defined as:

g8=4q9-Bp 3.4)

The coefficient 8 relates to the dilation angle y, and determines the direction of the plastic
strain rates. In general, § is smaller than «, which implies non-associated plasticity. The
plastic strain rates can be written as:

g =98 (3.5)
da

In which A is the rate form of the so-called plastic multiplier. This is just a multiplier that
does not have a direct physical meaning. In the case of purely elastic behaviour A\ is zero

whereas in the case of plastic behaviour A is positive.
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D¢ <0 (Elasticity) (3.6a)

D¢ >0 (Plasticity) (3.6b)

In order to evaluate the rate of the plastic multiplier, Prager’s consistency condition for
plastic flow is utilized, which reflects the principle that a material point remains in plastic
state. Considering only perfect plasticity this condition can be formulated as:

s —0 3.7)

Substitution of Equations 3.2 and 3.5 into Equation 3.7 enables solution of the rate of the
plastic multiplier in terms of the (total) strain rate.

. T
A = ;11 g D¢ & (3.8)
5 2
where
T
d= % D¢ % (3.9)

Back-substitution of this expression gives the general elastoplastic relation between stress
rates and (total) strain rates. The second term in brackets in Equation 3.10 is absent in the
case of elastic behaviour as defined in 3.6a.

g=|D*-Labl)e (3.10)
where
T
a=pl8 b7 = 3 pe (3.11)

The Drucker-Prager model is mathematically simple and easy to implement in a computer
code. However, the model is not accurate for general stress paths, especially for highly
frictional soil. A better elastoplastic model is to be considered in the next section.
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3.2  The Mohr-Coulomb model

The most widely used elastic perfectly-plastic model for soil is the Mohr-Coulomb model
(see among others Smith & Griffith, 1982). In addition to two elasticity parameters, it
requires three plasticity parameters, namely the cohesion ¢, the friction angle ¢, and the
dilation angle . The latter parameter is less well known in engineering practice than the
friction angle and the cohesion, but it can easily be determined from standard drained triaxial
test results.

The Mohr-Coulomb yield condition is an extension of Coulomb’s friction law to general
states of stress. In fact, this condition ensures that Coulomb’s friction law is obeyed in any
plane within a continuum. The full Mohr-Coulomb yield condition can conveniently be
formulated in terms of principle stresses and involves three yield functions:

A= % oy - o3| + % (0, + 03) sing - ¢ cose (3.12a)
h= 1 loy - ol 5 (05 +0p) sing - ccosg (3.12b)
L= % loy - oy] + % (0, + 0y) sing - ¢ cosep (3.12¢)

All yield functions together represent a hexagonal cone in principal stress space as shown in
Figure 3.2. In the presence of cohesion, the distance between the apex of the cone and the
origin of the principal stress space is equal to V3 ¢ cote.

Figure 3.2 Mohr-Coulomb yield surface in principle stress space
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Crossing the Mohr-Coulomb yield surface with a w-plane (g; + ¢, + 03 = constant) gives
a hexagon. For a zero friction angle the hexagon is regular. This particular case is also
known as the Tresca yield condition. For larger friction angles, the shape of the hexagon
is heading towards a triangle. A regular triangle is obtained for the hypothetical case of
¢ = 90°. Researchers have indicated by means of true-triaxial tests that stress combinations
causing failure in real soil samples agree quite well with the hexagonal shape of the Mohr-
Coulomb yield surface (Goldscheider, 1984).

Plasticity models that involve more than one yield function require a special treatment of the
so-called yield vertices, i.e. the crossing area of yield surfaces. According to Koiter’s
singular surface plasticity theory (1960) and Mandel’s generalization (1965), the plastic strain
rate can in general be written as the sum of contributions from all yield functions.

. 3g1 . ag2 . ag3
P = N, —— Ny — = + Ay 2 3.13
& | Jg t A P A3 3g (3.13)

The direction of the plastic strain rate is a linear combination of the vectors perpendicular
to the corresponding plastic potential surfaces. For yield functions that do not contribute to
plasticity as defined in 3.6b, the corresponding rates of plastic multipliers are zero according
to the definition in 3.6a. The remaining unknown rates of plastic multipliers can be solved
by applying Prager’s consistency condition to all yield functions that do contribute to plastic
straining. Should all three yield functions give plasticity, one obtains three equations with
three unknowns:

T
De

D
~

3. . g
E-Y N o
i=1

=0 (for j=1,2,3) (3.14)

gl
1Q

The solution can be written in the form:

T
D¢ (for i=1,2,3 and j=1,2,3) (3.15

>

Il

[
QD
1Q |\\

where A4 contains all combinations of dj;:

dyy dp dis
dy) dy; dy

D¢ > (3.16)
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Figure 3.3 Projection of plastic strain vectors on a w-plane (¢ = 30° ; = 0°)

The singular surface plasticity theory results in a fan of possible plastic strain vectors starting
in the yield vertices. For the Mohr-Coulomb model the orientation of plastic strain vectors
can very well be visualized by projection on a w-plane as shown in Figure 3.3.

The usual procedure for deriving the elastoplastic stress-strain relation is to solve the set of
three equations analytically. Implementation of such an approach in a computer code
requires, in general, a distinct treatment for different combinations of yield functions that
contribute to plastic straining. A more convenient approach is presented below for
establishing the full elastoplastic stress-strain relation by means of a repetitive procedure,
which can easily be implemented in a computer code. The example is demonstrated for the
case that all three yield functions of the Mohr-Coulomb model contribute to plasticity.
However, the procedure can be used for any case where one or more yield functions
contribute to plastic straining.

First an auxiliary strain tensor is defined as:
J . 3.
i =E-Y N b (3.17)

For j =3 oneget ¢ = &€ and for j =0 & =& Similarly, an auxiliary matrix M
=j

is introduced in such a way that ¢ = M &.. Hence, M = D® and M = M. Starting
=j = =3 = =0 =

with j = 3 the normal procedure, as given in Section 3.1, can be followed.
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. . . 0g
&, =M [gz - Ny a—;] (3.18)

Prager’s consistency condition for j = 3 yields:

ofT 083 1 BT
— M & - N —]| =0 = M= = M ¢ .19
where
afy T ag,
din = 2 M 22 3.20
33 dg =3 do ( )

Back-substitution of Equation 3.19 into Equation 3.18 gives:

ag, of,T
=M - Ly %8yl —ye 3.21)
=3 dy; =3 9o dg 3| 2 =272

Hence, M, can simply be obtained from M; by means of the usual procedure for one yield

function. Continuing with j = 2, M; can be obtained from M, and finally for j = 1 one
obtains M, from M;. M, is the required elastoplastic material stiffness matrix M.

3.3  Improvements to the Mohr-Coulomb model

From an engineering point of view, the Mohr-Coulomb model is reasonably well suited to
simulate the behaviour of most geomaterials. However, because of the stress-dependency in
true soil behaviour, special attention should be paid to the determination of the (constant)
elastic stiffness parameter in the Mohr-Coulomb model. Another point of discussion is the
fact that the tensile strength is overpredicted for highly cohesive materials. Moreover, it
should be realized that after large distortion the material arrives in a state of maximum
porosity where dilatancy has come to an end. The final point of discussion is the absence of
a yield surface for compressive stress paths. Using the Mohr-Coulomb model, compression
does not lead to irrecoverable strain, which is particularly unrealistic for soft materials such
as normally consolidated clay and peat.
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The basic Mohr-Coulomb model can be extended to improve some of the limitations as
formulated before. A first improvement is the introduction of a stress-dependent stiffness
relation. This can be achieved by formulating a tangent shear modulus as a power function
of the stress level (Section 2.2) or by using a secant shear modulus in combination with a
strain-energy function (Section 2.3 or 2.4). Instead of just using the mean stress p as a
stress level, it is realistic to include a cohesion term as well. In the simplest case of a tangent
shear modulus this gives:

m
— ref | P *
G =G p—,ef] (3.22)
where
p* = —% (0, +0,+03) + C cotep (3.23)

In the absence of the cohesion terms, the stiffness becomes zero at the surface level of a non-
loaded soil body where p = 0. In reality, materials that either show effective or apparent
cohesion still have strength and stiffness for p = 0, so inclusion of the cohesion term seems
logical. The value c cote relates to the distance from the apex of the Mohr-Coulomb yield
surface to the origin of the principle stress space.

A second improvement is the limitation of the tensile strength by means of a so-called tension
cut-off. Therefore, three additional yield surfaces are introduced,

Ja= o0 -0 (3.24a)
fs = 0, - ¢, (3.24b)
Jo = 03 - g (3.24c¢)

in which o, is the tensile strength of the material, usually taken zero. For the additional
yield functions as defined in Equation 3.24 it is sufficient to adopt an associated flow rule.
The new vertices that arise can be treated according to the singular surface plasticity theory
as explained in the previous section.

Another improvement to the Mohr-Coulomb model is achieved by a dilatancy cut-off. To this
end the initial dilation angle ,,;, the initial void ratio e,,,, and the maximum void ratio
€4, Of the material are entered as model parameters. As soon as the volume change results
in a state of maximum void, the dilation angle  is automatically set back to zero.
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V= Vi for e<e (3.25a)
vy =20 for e=ce (3.25b)

The void ratio is related to the volumetric strain by:

0 _ l+e]| _ e~ el

g, — ¢, = ln[1+eo] = 152 (3.26)
or in rate form:

&, = - lie (3.27)

The Mohr-Coulomb model with the extensions as described in this section is referred to as
the Advanced Mohr-Coulomb model.

The importance of the dilatancy cut-off is limited to some special applications in engineering
practice. As an example, the tension pile problem of Figure 3.4 is considered, which is based
on a scale mode] test by Boulon & Foray (1986). A model pile was installed in a cylindrical
container before it was filled with sand. The container has a diameter of 1.5 m and a depth
of 2.0 m. The pile has a length of 1.6 m and a diameter of 55 mm. The model test was
performed with dense and loose sand. In the present analysis only the case with dense sand
is considered. In contrast to the model test where the pile was pulled by cyclic loading, the
present analysis concerns one-way loading.

An axi-symmetric finite element mesh, containing 30 15-noded cubic strain elements with
12-point Gaussian integration, was used to model the geometry. This type of element
performs particularly well in failure analyses of axi-symmetric configurations (Sloan &
Randolph, 1982). Special compatible 10-noded interface elements (Van Langen, 1991) were
used to model the soil-structure interaction, indicated with dashed lines in Figure 3.4. The
Advanced Mohr-Coulomb model was used to model the sand behaviour in the volume
elements as well as in the interface elements. The behaviour of the pile was modelled by
Hooke’s law of elasticity. The model parameters of the sand are based on data as given by
Boulon & Foray (1986).
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F Sand
1 Soil weight vy =167 kN/m’
; I Shear modulus G = 15000 kPa
| | @7 = 100 kPa)
; Power mo. =05 :
Poisson’s ratio v =03
g g Cohesion ¢ =1 kPa
8 “Friction angle @ = 45°
— § Dilation angle v =15°
) Initial void ratio e, = 0.59
3 ‘Max. void ratio e = 0.72
/ Interface
d =55 mm | Friction angle ¢ =39°
075 m i Dilation angle ¥, =9°

Figure 3.4 Tension pile geometry, finite element schematization and model parameters
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Figure 3.5 Force-displacement curves from tension pile problem
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After installation of the initial stresses in the soil mass, a small vertical load of 1 kPa was
applied on top of the sand to initialize the proper contact forces between the sand and the
pile. In addition, the tension force at the top of the pile was applied until the pile was pulled
out of the sand. The same calculation was repeated for the case that the sand was modelled
with the conventional Mohr-Coulomb model, both with and without dilatancy. In these cases
the constant shear modulus was chosen to be 7500 kPa. The force-displacement curves that
followed from the three calculations are given in Figure 3.5.

It can be seen from Figure 3.5 that the conventional Mohr-Coulomb model without the
dilatancy cut-off does not show an ultimate force. The continuously increasing dilatancy
promotes the lateral stress in the sand, which gives a continuously increasing shear strength
along the pile. In the case without dilatancy, the ultimate force is relatively low and the
horizontal stress in the sand hardly increases. The curve from the Advanced Mohr-Coulomb
model indeed shows a failure load as soon as the material along the pile has arrived in a state
of maximum void. The ultimate force is about 10 kN, which agrees quite well with the
observations from the model test. It should be mentioned that the uiltimate force is very
sensitive with respect to the width of the shear zone along the pile, i.e. the interface
thickness. In the present calculation the (virtual) interface thickness was taken as 3 mm.

The influence of the stress-dependent stiffness is difficult to examine from the force-
displacement curves. The mean stress increases because of the increasing lateral stress in the
sand. This will increase the elastic stiffness according to Equation 3.22. However, the
stiffening effect is eliminated by the weakening effect of points that lose their dilatancy.

3.4  Matching Drucker-Prager and Mohr-Coulomb for plane strain

The major point of discussion on using the Drucker-Prager model is the determination of a
proper value for the friction parameter «. If o« is chosen such that the model correctly
reflects the material strength for triaxial compression states of stress (0, < 0, = 0¢3) then
it overpredicts the strength for other stress states (Chen, 1975; Owen & Hinton, 1980). It
should be realized that different stress states can occur simultaneously in a three-dimensional
soil body, which makes it difficult to choose a proper value for «. In the particular case
of a plane strain configuration (g, = ¢, = &,, = 0) a realistic choice of o can be made,
as will be demonstrated below. In the derivation it is assumed that the principle stresses are
ordered such that oy < 0, < g5, where the intermediate principle stress is supposed to be
the out-of-plane stress (o, = ¢,,). From the plane strain condition it follows that:
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=% 98 _p (3.28)

On substituting the derivative of the Drucker-Prager plastic potential function towards o,
and assuming that the rate of the plastic multiplier is non-zero, one obtains:

o - 2q8 (3.29)

Elaboration of p and g gives:

p=-1 a0+ —03)w§ (3.30a)
g= (0 -0y w (3.30b)
where
w3 (3.31)
_ 1 g2
1-1g

Note that (o + o05) / 2 is the centre of Mohr’s stress circle and - (o; - 03) / 2 is the
radius of Mohr’s stress circle. On substituting the above expression in the Drucker-Prager
yield condition (Equation 3.3 ; f = 0) one obtains:

Lo -0 - Loy +05) 219 - ccoty 2/¢ =0 (3.32)
2 g 1-28 - 28
5 5

Equation 3.32 is formally identical to the Mohr-Coulomb yield condition (3.12b). Both yield
conditions become fully identical when using

o = w sing (3.33)
1+ g w sing

Note that the value of « also depends on the dilatancy parameter (. For a dilation angle
of zero (¢ =0; B =0; w="73) the above expression reduces to the formula given by
Chen (1975). The general case of ¢ # 0 cannot be found in literature and will be further
elaborated below.
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Dilatancy is related to the plastic strain rates, as defined below for plane strain conditions:

. & +&f
siny = (3.34)
e - &f
The required plastic strain rates, as obtained from the Drucker-Prager model, are:
. |26, -0y -0
P 1 2 3 1
&1 A — 2 * 3 B] (3.35a)
|- - 20
e? = A "% %, 1 5b
& 74 3 8 (3.35b)
Substitution into Equation 3.34 and elaboration gives:
/3 8
siny = 2946 : (3.36)

30, -~ 03) r——l_%ﬁz

Reformulation of the latter identity in Equation 3.36 gives an expression for § in terms of

the dilation angle .

g = V3 siny (3.37)

1+ % sinZgI/

Based on the friction angle ¢ and the dilation angle i and with help of Equations 3.31,
3.33 and 3.37, the Drucker-Prager model can predict realistic failure behaviour for plane
strain configurations. However, as mentioned before, for general states of stress in a three-
dimensional continuum the Drucker-Prager model does not predict failure accurately.
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4 HARDENING PLASTICITY

In contrast to perfect plasticity, the yield surface for hardening and softening plasticity
models has no fixed position in stress space. Hardening is associated with an expanding yield
surface, whereas softening is associated with a shrinking yield surface. As an example of
hardening models, the Modified Cam-Clay model is discussed in this chapter. Attention is
given to parameters that determine the coefficient of lateral earth pressure in one-dimensional
compression. A simple cap model is presented based on the Modified Cam-Clay model. The
stiffness behaviour of the model is analysed for different stress paths.

4.1  The Modified Cam-Clay model

The Cam-Clay model was developed in the sixties at Cambridge University (Schofield &
Wroth, 1968). This so-called Critical State model was originally meant to simulate the
behaviour of (near-) normally consolidated clays under triaxial compression test conditions
(Roscoe & Burland, 1968). Shortly after the introduction of the original Cam-Clay model
(Roscoe, Schofield & Thurairajah, 1965), a modified flow rule was proposed by Burland
(1965, 1967). Accordingly, the yield function changed from a logarithmic expression to a
function that represents an ellipse in (p,q)-plane. The latter model is well known under the
name Modified Cam-Clay. Roscoe and Burland (1968) showed how this model could be
applied to general three-dimensional states of stress and strain. In the Cam-Clay model (both
the original and modified form) it was primarily assumed that volumetric strains could be
divided into an elastic and a plastic part, whereas deviatoric strains were assumed to be fully
plastic. In later publications (Wroth & Zytynski, 1978) the generalized form of Hooke’s law
was used for stress paths in the elastic domain. So far most attention was paid to the wez side
of the model (the hardening part). Considering the dry side of the model (the softening part),
which is of interest for overconsolidated clays, it was observed that the softening behaviour
was strongly overpredicted. Improvement on this point was achieved by the introduction of
another yield surface for the dry side, known as the Hvorslev surface (Atkinson & Bransby,
1978). Since the introduction of Cam-Clay, many researchers have used this model as a basis
for more complicated soil models (e.g. Adachi & Oka, 1982).

One of the basic assumptions of the Modified Cam-Clay model is that there is a logarithmic
relation between the mean stress p and the void ratio e for isotropic stress paths. This
relation is visualized by the solid line on the bottom plane in Figure 4.1, which is called the
Normal Consolidation Line (NCL). The ultimate stress level ever reached on this line is
called the isotropic preconsolidation stress p.. During unloading and reloading up to the
preconsolidation stress, a different line is followed.
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Figure 4.1 State boundary surface

When using a logarithmic scale for the p-axis, the NCL is a straight line with inclination
N\, whereas the unloading / reloading line is a straight line with inclination «. In fact, an
infinite number of parallel unloading / reloading lines exist in  (p,e)-plane, each
corresponding to a particular value of p,.

e-e2=-AIn £0 = -Aln P_[c) virgin isotropic compression (4.1a)
p De

e -e9 = -k n io isotropic untoading / reloading (4.1b)
4

The parameters A and « are denoted as the compression index and the swelling index
respectively. Differences in void ratio can be related to differences in volumetric strain, as
already formulated in Equation 3.26. In general, changes in void ratio are quite small. In this
study it is assumed that \ / (1+¢) is a constant, named \* (modified compression index).
Indeed, there is some experimental evidence that \* is a constant, as many compression
tests on clay show a linear relation between the logarithm of the stress and the relative
settlement as a percentage of the original sample height. Similarly, for unloading / reloading
the modified swelling index «" is introduced. Obviously, the ratio A*/x” is equal to the
compression ratio Nk as used in some textbooks on critical state soil mechanics. On using
the constants A* and «*, Equations 4.1 can be rewritten as:
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e, -6 =N I|{L| =2 Pe virgin isotropic compression 4.2a
v T8 5 - pic comp

p P
& -l =« m| L2 isotropic unloading / reloadin, (4.2b)
14 v 0 p g g

P

Unloading / reloading is considered as elastic behaviour, which explains the superscript e
on the volumetric strains in Equation 4.2b. In rate form the above relationships yield:

A* virgin isotropic compression (4.3a)

o
Il

isotropic unloading / reloading (4.3b)

Y
*

The flow rule of the Modified Cam-Clay model is based on Burland’s assumption that the
ratio of the deviatoric plastic strain rate and the volumetric plastic strain rate in triaxial

testing follows the rule (Burland, 1965):

P
&

S _ _22‘1/P i (4.4)
e M*-(q/p)

According to plasticity theory, plastic strain rates are written as:

&= A g_i (4.52)
P _ 5 98
=h (4.5b)

where N s the rate of the plastic multiplier, which should not be confused with the
compression index A or with the modified compression index A", and g is the plastic
potential function. Burland assumed the concept of associated plasticity. Hence, the yield
function of the Modified Cam-Clay model is equal to the plastic potential function. In order
to arrive at the flow rule of Equation 4.4, f and g are defined as:

2

f=g¢= % +p(p-p) (4.6)
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q - Critical State Line

Figure 4.2 Yield surface of the Modified Cam-Clay model in (p,g)-plane

The yield surface (f = 0) represents an ellipse in (p,q)-plane as visualised in Figure 4.2.
In fact, an infinite number of ellipses exist, each corresponding to a particular value of p,.
All combinations of ultimate stress states, as defined by the yield surface, and related void
ratios, form the so-called state boundary surface as represented in Figure 4.1.

In (p,g)-plane the tops of all ellipses form a line with inclination M through the origin.
This line is denoted as the Critical State Line (CSL). The constant M determines the shape
of the ellipse. In critical state conditions M is the ratio g over p and can thus be
regarded as a friction constant.

The magnitude of the ellipse is determined by the isotropic preconsolidation stress p.. The
value of p, is affected by plastic straining and follows from the hardening relation:

& - =" -« ) Pe @.7
P
In rate form:
&= - Ee or p.= P @.8)
pc )\* - K*

According to the basic principle of elastoplasticity, strain rates are divided into an elastic part
and a plastic part. For general states of stress, the relation between stress rates and elastic
strain rates is assumed to be given by Hooke’s law of elasticity, as formulated in Equation
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2.5. Herewith, one arrives at the stress-strain relation as formulated in Equation 3.2, which
is still valid in the case of hardening plasticity:

GRS ©-2)

Q’:

IS

For the Modified Cam-Clay model, the elastic stiffness modulus G, occurring in the matrix
D¢, is a tangential value that can be related to the swelling index «':

1-2v p (4.9)

The second elastic parameter in D¢, Poisson’s ratio », is assumed to be a constant. Wroth
and Houlsby (1985) report »-values for clays in the range from 0.12 to 0.35.

As the flow rule in the Modified Cam-Clay model is associated, the plastic strain rates can
be written as:

e =39 (4.10)
dg

In the case of fully elastic behaviour, the rate of the plastic multiplier A is zero. In the case
of plastic behaviour, as defined in Equation 3.6b, A is evaluated by applying Prager’s
consistency condition. For hardening models relation 3.7 is not sufficient. For the Modified
Cam-Clay model the consistency condition can be formulated as:

fT . f 5 —p
el L p. = 4.11
30 g+ 3, D 4.11)

Substitution of the hardening relation 4.8 with help of Equation 4.5a gives, after elaboration,
an expression for the rate of the plastic multiplier:

—

4.12)

>
I
QA
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=
Dl Q@
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(ke
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19 I~
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o
| @
1S |'\n

Note that the scalar d is not a constant such as in the Drucker-Prager model and the Mohr-
Coulomb model, but a stress-dependent quantity. The hardening modulus # is in the current
model defined as:
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_ P af of
h = el 4.13)
)\* _I(>‘< ap apc

Back-substitution of Equation 4.12 into Equation 4.10 and successively into Equation 3.2
gives the full stress-strain relation:

s e 1 Tl .
a [2 FEY ab ] ¢ (4.14)
where
T
a=p Y b7 = 3 pe 4.15)

4.2  The coefficient of lateral earth pressure for normally consolidated soil

The coefficient of earth pressure at rest, K,, is mainly determined by the friction angle of
the soil and by the amount of overconsolidation. For a normally consolidated soil, K, can
well be approximated by the experimental formula: K" = 1 - sing (Jaky, 1944).
Simulation of a one-dimensional compression test (oedometer test) using the Modified Cam-
Clay model shows that K, is indeed highly influenced by the friction constant M.
However, on choosing a value of M that gives the correct shearing resistance, the value of
K" will exceed the value resulting from Jaky’s formula. In order to arrive at an appropriate
value, the friction constant should be increased substantially, but in that case the shearing
strength is overpredicted (Brinkgreve & Vermeer, 1992). This is one of the discrepancies of
the Modified Cam-Clay model. In the remainder of this section the superscript nc is omitted
when considering normally consolidated Kj-values.

In order to establish a relation between the friction constant M and the value of K, the
conditions for an oedometer test are further examined. The basic condition is:

g, = &, =0 fy = 0 (4.16)

Moreover, from the model it follows that:
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b0 = 0, = K, 6, gy =0 (4.17a)
Ee = & ey =0 (4.17b)
e =& i =0 (4.17¢c)

Only two relevant stress components, a,, and o, and two relevant strain components,

&, and Eyyn remain. According to Hooke’s law, the elastic strain components can be

written as:

e 1 . .

&y = = [(l—v) O = ¥ ayy] (4.18a)
. 1 . .

by = 5 [727 0x + 3] (4.18b)

Using Equation 4.17a, the horizontal elastic strain rate can be related to the vertical elastic
strain rate:

K, (1-v) - v
. & 0 . e
= 4.19
bxx 1 -2yK, Eyy ¢ )

On the conditions as defined in Equations 4.16 and 4.17 and from Equations 4.3 it follows
respectively that:

-
<

B, _ &y _ 1-L0Ky &, _ >\: @20

(1-2»)(1+2K,) 8;;

™
< 0
X

From the above relations and from the basic principle of elastoplasticity to split strain rates
into an elastic and a plastic component, it follows that:

(1-2»)(1+2K,) »* ..
— &

- 4.21
Sy T-2vK, o » “.2D)
1-29) (1+2Kp) £
= (LUK AT e 4.22)
¥y 1-2/K, T 5]

, , Ky (1-v) - v
Bho= ~&p = - TR &y (4.23)
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Using Equations 4.22 and 4.23, all elastic and plastic strain rate components can be related
to the vertical elastic strain rate. Reformulation in terms of the strain rates as used in the
flow rule 4.4 gives:

, ) . , | (T=20) Q2K )N Ik = (1+9) (1-Kp) |

8= 3k -8y = -3 [ 1-2/K, fy (424
, b (1-2») (1 +2K) (N /x™ - 1) |

e = -28 -8 = - [ Ty &, (4.24b)

Elaboration of the flow rule requires the stress ratio ¢ over p, which can be formulated
under the current conditions as:

3 (1-Kp)
Ip = 4.25
1P = 172K, @25
Substitution of Equations 4.24 and 4.25 into the flow rule gives after elaboration:
1-K,)? 1-Ky) (1-29) (A*/x* -1
M = 3 ( 0) . ( o)( v) ( K ) (4.26)

(1+2K,%  (1+2K,) (1-20)N*/k™ - (1-Kp) (1+)

Apart from the M-value, K, also depends on the compression ratio N*/«" and on
Poisson’s ratio ». Conversely, in order to simulate the proper Ky-value, the compression
ratio and Poisson’s ratio influence the choice of M. Figures 4.3 show the value of M
according to Equation 4.26 for Kj-values ranging from 0.3 t0o 0.9 and for values of NS
ranging from 1.5t0 9.5. From these plots it can be seen that the influence of K, on M
is dominant.

In a previous study, Brinkgreve and Vermeer (1992) proposed a non-linear approximation
for the relation between K, and M, namely M = (1.6-K,) / (0.2 +Ky). However, from
Figures 4.3 it can be seen that, especially in the area of most common values, i.e. for
0.4 < K, < 0.6 and 3.0 < N/«" < 6.0, the relation between M and K; is nearly
linear. In this thesis a new approximation is proposed, which is even more simple and at least
just as accurate as the previous approximation:

M=30-28K, (4.27)
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Ax* A"

Figure 4.3 Visualisation of M as a function of K, and N/x" for different »’s
For N'/k' =5 M, =05, M, =23

The error in M, i.e. the difference between Equation 4.27 and Equation 4.26, is shown in
Figure 4.4 for » = 0.2. From this plot it can be seen that for low values of K, the M-
value is underestimated and thus the resulting K, is too large. For low values of N/k" the
M-value is overestimated and thus the resulting K, is too small. In the area of most
common values, the maximum error in M is 0.1 and the maximum difference in K, is
0.03. From these values it can be concluded that the approximation 4.27 is reasonably
accurate.
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M-error
v=102
TITII777 K
P 15 0

v

A/K

Figure 4.4 Error in M when using the approximation 4.27
Minimum M-error = -0.2, Maximum M-error = 0.3

Consider a material with a friction angle of 20°, N'/k" equal to 5.0 and Poisson’s ratio 0.2.
According to Jaky’s formula, X, is estimated at 0.66. Equation 4.26 yields an M-value of
1.15. In order to simulate fajlure in a triaxial compression stress path correctly, the value of
M should be 6 sing / (3-sing), which gives M = 0.77. With this M-value the resulting
K, is 0.80 and not 0.66 as suggested by the empirical formula. In fact, the Modified Cam-
Clay model predicts relatively large Kj-values. Better Kj-values would be obtained when
using relatively large values of M, but this would result in much too high shearing
strengths. Indeed, it is not possible to simulate both an oedometer stress path and a full
triaxial compression stress path with good accuracy using the same value of M.

4.3  The Plaxis Cap model

The anomaly as described in the previous section can simply be improved by the introduction
of an additional yield function for describing failure. The Modified Cam-Clay yield surface
is retained, but only used as a cap on the failure surface. The shape of the cap, given by the
M-value, is such that the model predicts a correct Ky-path, whereas the failure surface
ensures a correct shearing strength. In the current model, named the Plaxis Cap model, the

two yield functions are formulated as:
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Yield vertex

- Failure line

c coty V4

Figure 4.5 Yield surface of the Plaxis Cap model in (p,g)-plane

2 *
h= 54—2 +p" (" -p.) (hardening cap) (4.28a)
h=q-ap’ (failure cone) (4.28b)
where
p* =p +cocoty p. =P, +ccote (4.29)

The full yield criterion in (p,g)-plane is visualised in Figure 4.5. The M-line must be
steeper than the o-line, which corresponds with the general finding as discussed in the
previous section.

The flow rule for cap yielding remains associated, whereas a non-associated flow rule is
adopted for failure. The plastic potential functions are defined as respectively:

& = (4.302)

&=q9-8p" (4.30b)

The parameter (3 in the latter function is a dilatancy coefficient. For a particular value of
p. the two yield functions intersect in the point:
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p. - (?1M?) ¢ coty a (p, + ¢ cote)

, (4.31)
1 + o?/M? 1+ o2/ M?

.9 =

It should be noted that the inclusion of a cohesion term (¢ > 0) does not lead to a constant
stress ratio g / p in one-dimensional compression, but to a constant ratio g / p* instead.

Besides the introduction of a second yield function, the logarithmic swelling law is
generalized to a power law as introduced in Section 2.2. Therefore, the formulation of the
tangential stiffness modulus, as expressed in Equation 2.10, is utilized and repeated here for
convenience in terms of the bulk modulus:

m

P

P (4.32)

Kt — Kref

In this expression K™ is a reference bulk modulus for a particular stress level p'® (usually
100 kPa). For a power m equal to 1.0, the logarithmic compression law is retrieved. In that
case:

ref
K _ 1 (m = 1.0) 4.33)
pref K

In any other case (m = 1) the meaning of «* is lost. However, the compression ratio
N/«" has still a physical meaning, as it reflects the ratio of total volumetric strain over
reversible volumetric strain in isotropic compression.

The hardening relation of the Plaxis Cap model is defined in rate form by:

m

D, (4.34)

& — ANkt -1 [prd
T |

In the special case of m = 1 and ¢ = 0, the current hardening relation is equal to that of
the Modified Cam-Clay model, as defined in Equation 4.8.

For a further treatment of the model, the reader is referred to Section 5.4, where the time
integration is extensively discussed, and to Chapter 6, where the model is applied to practical
problems. In the following section, the stiffness behaviour is analysed for different stress

paths.
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4.4  Comparison of tangential shear moduli for different stress paths

In order to evaluate the stiffness behaviour of the Plaxis Cap model for a normally K-
consolidated material in different stress paths, a tangential shear modulus is introduced,
defined as (Brinkgreve et al., 1994):

* 1|"71"'73]

G = 7 ——m 4.35
' 2 Jé - &l (@39

Note that the current tangential shear modulus is not an elastic parameter such as defined in
Equation 4.9, but an equivalent elastoplastic shear modulus. For the material as introduced
at the end of the Section 4.2, the value of G,* is evaluated for six different stress paths,
which are listed below and plotted in Figure 4.6a. A complete set of model parameters is

listed in Table 4.1. Except for the cohesion, the model parameters are based on the practical
application as described in Section 6.3.

1. Oedometer loading & =& =0 G, = 110 kPa
2. Drained axial loading 0, =03 =0 G = 270 kPa
3. Undrained axial loading &, =0 G, = 902 kPa
4. Constant stress ratio unloading d(o/a3) =0 G = 1933 kPa
5. Drained axial unloading 0, =63 =0 G,” = 1933 kPa
6. Radial loading o =0 G, = 1933 kPa

Table 4.1. Model parameters of material under consideration

Parameter Symbol Value Unit
Soil weight v 14.0 KN/m?
Swelling index K 0.03 -
Compression index N 0.15 -
Poisson’s ratio v 0.2 -
Friction angle @ 20 °
Cohesion c 1.0 kPa
Coef. lateral earth press. K, 0.66 -
Tangent of CSL M 1.1 -
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Figure 4.6 Continuing stress paths from K, consolidated material
a. Stress paths b. Stress-strain curves

Figure 4.7 Stress-path dependent tangential shear moduli obtained from Plaxis Cap model

The development of the stiffness along the stress paths can be seen from Figure 4.6b. A full
fan of tangential shear moduli is presented in Figure 4.7. In this graph G,* is plotted
radially from the starting stress point in (p,q)-plane. From this plot it can be concluded that
the stiffness differences can be very large. In general, compressive stress paths give a lower
stiffness than deviatoric stress paths. For all stress paths into the elastic domain, the
tangential stiffness is the same.
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From the analysis it is concluded that the Plaxis Cap model, or a hardening model in general,
shows a stiffness behaviour that is very different from, for example, elastic models (Section
2.2 to 2.4) or the Duncan-Chang model (Section 2.5) or the Mohr-Coulomb model (Section
3.2), at least when considering a normally consolidated material. A non-cap-hardening model
may show a stress-dependent stiffness behaviour, such as in the Duncan-Chang model, but
for a given stress state the stiffness is constant and independent of the stress path that is
followed. Using a hardening model, the stiffness can vary a lot for a given stress state,
depending on the stress path that is followed.

4.5 Overconsolidated stress states

The amount of overconsolidation is the difference between the preconsolidation stress and
the current stress state. In geotechnical engineering practice it is more appropriate to use the
vertical preconsolidation stress ¢, than the isotropic preconsolidation stress p,. For the
Modified Cam-Clay model or the Plaxis Cap model without cohesion, the relation between
these two types of preconsolidation stress is easy to derive, assuming that at the stress level
of preconsolidation the soil is normally K, consolidated. In that case p. can be evaluated
from the condition f = 0 (Equation 4.6), which gives:

pe=p+ 2 (4.36)

Oy = O, o, =0, =K, 0, “4.37)
Or in terms of p and ¢:
p=-5(1+2Ky) 0, g=-(1-Ky) o, (4.38)
Substitution into Equation 4.36 and elaboration gives the required relation:
M? (1 +2K,
0, = - ¢ o) p (4.39)

2 ME (12K + 3 (1-Kp)
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In overconsolidated soils the coefficient of lateral earth pressure is larger than for normally
consolidated soils. This effect can well be simulated with Cam-Clay type models. Consider
an oedometer test, preloaded to oy, = o, and subsequently unloaded to Oy = oyyo. During
unloading the sample behaves elastically and the incremental stress ratio is, according to

Hooke’s law, given by:

0 0 _ 0
Ao, _ Ky, o, - 0, _ Ky OCR oy, - 0y, _ v (4.40)
Aay, o, - oy, (OCR-1) d, 1-»

where K, is the stress ratio in normal consolidation and OCR is the overconsolidation
ratio, defined as:

OCR = o,/ oy, (4.41)

Hence, the stress ratio of the overconsolidated soil sample is given by:

NN

~

= K, OCR - 1” (OCR-1) (4.42)

4

2

Note that Equation 4.42 is only valid in the elastic domain, because the formula was derived
from elasticity theory. If a soil sample is drastically unloaded, resulting in a high degree of
overconsolidation, the stress ratio will be influenced by plasticity. Other formulas for the
stress ratio in overconsolidated soils were proposed in the past based on experimental results,
such as the empirical formula by Schmidt (1966):

0
(¢
gx — Ko OCRm (4.43)

Oyy

On reviewing this formula, Ladd et al. (1977) report values of m of about 0.4. Comparison
of formulas 4.42 and 4.43 with m = 0.4 shows that similar overconsolidated stress ratios
are obtained when using a Poisson’s ratio » of the order of 0.3. A small variation is
obtained in the sense that a larger friction angle (and thus a smaller K;) or a smaller
overconsolidation ratio gives a slightly smaller Poisson’s ratio, and vice versa. The order of
0.3 is relatively large when considering the range 0.12 < » < 0.35 as put forward by
Wroth & Houlsby (1985). Further data on this matter would be needed in order to arrive at
definite conclusions with respect to the most appropriate value of ».
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5 FORMULATION AND SOLUTION OF THE BOUNDARY VALUE PROBLEM

In this chapter the basic equations for the quasi-static deformation of a soil body are
formulated according to the theory of continuum mechanics. A restriction is made in the
sense that deformations are considered to be small. This enables a description with reference
to the original undeformed geometry. The continuum description is discretized according to
the finite element method. The major part of this chapter is devoted to the integration of
stress rates with respect to time.

5.1  General equations of continuum theory
The static equilibrium of a continuum can be formulated as:

T

[1E~

g+p =20

0 (.1
This equation relates the spatial derivatives of the six stress components, assembled in vector
g, to the three components of the body forces, assembled in vector p. L,T is the transpose
of a differential operator, defined as:

| % 0 0 aiy 0 %1
L7 = 0%0%{%0 5.2)
|0 0 > 0 a;"’y 2 |
In addition to the equilibrium equation, the kinematic relation can be formulated as:
e=Lu (5.3)

This equation expresses the six strain components, assembled in vector ¢, as the spatial

derivatives of the three displacement components, assembled in vector , using the
previously defined differential operator L. The link between Equation 5.1 and 5.3 is formed
by a constitutive relation representing the material behaviour. Constitutive relations, i.c.
relations between rates of stress and strain, were extensively discussed in Chapters 2 to 4.

The general relation is repeated here for completeness.
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5.4

g:

=
1.

The combination of Equations 5.1, 5.3 and 5.4 would lead to a second-order partial
differential equation in the displacements . However, instead of a direct combination, the
equilibrium equation is reformulated in a weak form according to Galerkin’s variation
principle (see among others Zienkiewicz, 1971).

JBET(QTQ +p)dv =20 (5.5)

In this formulation 6éu represents a kinematically admissible variation of displacements.
Applying Green’s theorem for partial integration on the first term in Equation 5.5 leads to:

Jagfg av = ja_fg dv + fang ds (5.6)

This introduces a boundary integral in which the boundary traction appears. The three
components of the boundary traction are assembled in the vector . Equation 5.6 is referred
to as the virtual work equation.

The development of the stress state ¢ can be regarded as an incremental process:
o = ol + Ag Ag = Jg dr (5.7)

In this relation ¢’ represents the actual state of stress which is unknown and ¢! represents

the previous state of stress which is known. The stress increment Ag is the stress rate
integrated over a small time increment.

If Equation 5.6 is considered for the actual state i, the unknown stresses ¢ can be
eliminated using Equation 5.7:

j&gT Ag dV = Jang" dv + §ayT i ds - [5gT ol av (5.8)

It should be noted that all quantities appearing in the Equations 5.1 to 5.8 are functions of
the position in three-dimensional space.
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5.2  Finite element discretization

According to the finite element method a continuum is divided into a number of (volume)
elements. Each element consists of a number of nodes. Each node has a number of degrees-
of-freedom that correspond to discrete values of the unknowns in the boundary value problem
to be solved. In the present case of deformation theory the degrees-of-freedom correspond
to the displacement components. Within an element the displacement field # is obtained
from the discrete nodal values in a vector v using interpolation functions assembled in
matrix NV

u=4NYy (5.9

=

The interpolation functions in matrix N are often denoted as shape functions. Substitution
of Equation 5.9 in the kinematic relation 5.3 gives:

oo
il
It~
=
i<
Il
s}
<

(5.10)

In this relation B is the strain interpolation matrix and contains the spatial derivatives of the
interpolation functions. Equations 5.9 and 5.10 can be used in variational, incremental and
rate form as well.

Equation 5.8 can now be reformulated in discretized form as:

[@owTagav = [@Won'p dV + g onT ' ds - [B o o v
(5.11)

The discrete displacements can be placed outside the integral:

svT jBT Ag dV = 8T lﬂTgi av + svl fM i ds - svT JQT Jdlav
(5.12)

Provided that Equation 5.12 holds for any kinematically admissible displacement variation
6v!, the equation can be written as:

JQT Ag dV = Ig’g’ av + §NT ¢ as - IET dtdv (5.13)

The above equation is the elaborated equilibrium condition in discretized form. The first term
at the right-hand side together with the second term represent the current external force
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vector and the last term represents the internal reaction vector from the previous step. A
difference between the external force vector and the internal reaction vector should be
balanced by a stress increment Ag.

The relation between stress increments and strain increments is usually non-linear. As a
result, strain increments can generally not be calculated directly, and global iterative
procedures are required to satisfy the equilibrium condition 5.13 for all material points.
Global iterative procedures are described later in Section 5.5, but the attention is first focused
on the (local) integration of stresses.

5.3  Implicit integration of differential plasticity models

The stress increments Ag are obtained by integration of the stress rates according to
Equation 5.7. For differential plasticity models the stress increments can generally be written
as:

Ag = D° (Ag - AgP) (5.14)

In this relation D° represents the elastic material matrix for the current stress increment.
For material models containing a non-linear elastic part, such as described in Section 2.2 to
2.4, the matrix D¢ depends on the new, and yet unknown, stress state. As a result, the
stress increment cannot directly be obtained from the strain increment, as suggested by
Equation 5.14, and involves a more extended procedure. The stress integration of non-linear
elastic models is treated in more detail in the Section 5.4.1.

The strain increments Ag in the above relation are obtained from the displacement
increments Ay using the strain interpolation matrix B, similar to Equation 5.10. For
elastic material behaviour as defined by Equation 3.6a, the plastic strain increment AgP is
zero. For plastic material behaviour, as defined by Equation 3.6b, the plastic strain increment
can be written, according to Vermeer (1979), as:

g

i-1 i
Ag? = ax | (1 - o) [28]7 + 0 (98 (5.15)
do ad
In this equation AN is the increment of the plastic multiplier and « is a parameter
indicating the type of time integration. For « = 0 the integration is called explicit and for
w = 1 the integration is called implicit.
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Vermeer (1979) has shown that the use of implicit integration (w = 1) has some major
advantages, as it overcomes the requirement to update the stress to the yield surface in the
case of a transition from elastic to elastoplastic behaviour. Moreover, it can be proven that
implicit integration, under certain conditions, leads to a symmetric and positive differential
matrix d¢g/do, which has a positive influence on iterative procedures. Because of these
major advantages, restriction is made in this study to implicit integration and no attention is
given to other types of time integration.

Hence, for w = 1 Equation 5.15 reduces to:

Ag? = AX [E]' (5.16)
da

Substitution of Equation 5.16 into 5.14 and successively into Equation 5.7 gives:

o = ot + D Ag (5.17)
do =

) i
o = " - A\ D* [%]
In this relation ¢” is an auxiliary stress vector, referred to as the elastic stresses or trial
stresses, which is the new stress state when considering purely linear elastic material
behaviour.

The increment of the plastic multiplier AA, as used in Equation 5.17, can be solved from
the condition that the new stress state has to satisfy the yield condition:

fah =0 (5.18)

For perfectly-plastic and linear hardening models the increment of the plastic multiplier can
be written as:

it (5.19)

AN
d+h

where

d= [ﬂ]ﬂ"gf [%]i (5.20)
do = |do
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The symbol 4 denotes the hardening parameter, which is zero for perfectly-plastic models
and constant for linear hardening models. In the latter case the new stress state can be
formulated as:

S {r@n)
- - d+h

)

¢ [ag]i (5.21)

EL:

The <) -brackets are referred to as McCauley brackets, which have the following

convention:
{xy =0 for x<0
)y =x for x>0

Note that for general non-linear hardening models the scalars 4 and A are stress-
dependent. In that case evaluation of Equation 5.19 based on the trial stresses gives only an
approximated value for the increment of the plastic multiplier. A proper solution is obtained
by performing a local iteration process on AN in order to satisfy the yield condition
according to Equation 5.18. Such a process is described in Section 5.4.2.

5.4  Solving non-linear stress-strain relations

The solution of highly non-linear stress-strain relations, as for instance formulated in the
Plaxis Cap model, involves extensions of the general procedure as described in the previous
section. In the following sub-sections some aspects of stress integration for such models are
considered. The description is based on the Plaxis Cap model, but the procedures can be used
for some other models as well. Distinction is made between the non-linear elastic part, the
non-linear hardening part and the point of combined yielding, i.e. the yield vertex that
appears when both yield functions contribute to plastic straining.

In the Plaxis Cap model, the isotropic stress components include a cohesion term ¢ cote,
indicated with the superscript *. For clarity the * is omitted in the remainder of this
chapter. It should be noted that any reference to p or p, is intended to include the term
¢ cote as well.
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5.4.1  The non-linear elastic part

The elastic stiffness in the Plaxis Cap model depends on the mean stress p. The time
integration of the mean stress can be formulated as:

Ip dr = [K, & dr (5.22)

In case of elasticity the elastic strain rates are equal to the total strain rates. Substitution of
the tangential (stress dependent) bulk modulus as defined in Equation 4.32 and reformulation

leads to:
. ref
I_E”; dr = J Kfmé:vd'r (5.23)
p (™)

Evaluation of the integrals for time-step i and elaboration gives:

1
pi= | (O™ (1-m) T (5.24)
(pH"
Reformulated in terms of the strain increment gives:
1 refym e . _
ASV = (P ) [(pl)l m o _ (pl 1)1 m] (525)

1-m gre

In the limiting case of m = 1 the above relation turns into the logarithmic expression of
Equation 2.12. From Equation 5.24 or 5.25 (or in case m = 1 the corresponding
logarithmic expressions) a representative bulk modulus can be formulated:

i _ i1
K* =P _~P (5.26)
Aeg,

This bulk modulus, which differs from the tangential bulk modulus K,, is to be used in the
elastic material matrix D° to calculate the new Cartesian stresses.

Only one of the formulations 5.24 or 5.25 will actually be used. Equation 5.24 relates to the
initial stress method where the strain increment is iteratively adapted to the stress. Equation
5.25 relates to the initial strain method where the stress is adapted to the strain increment.
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Figure 5.1 Initial strain method versus initial stress method
a. Initial strain b. Initial stress

In case of increasing material stiffness, e.g. for elastic compression problems, the initial
strain method is preferred because a better control of the iteration process is obtained than
in case of the initial stress method. For a similar reason, in case of decreasing material
stiffness, e.g. for unloading problems, the initial stress method is preferable to the initial
strain method. Both methods are schematically represented in Figure 5.1.

5.4.2  The cap hardening

The integration of the hardening part of the Plaxis cap model can conveniently be formulated
in terms of the mean stress p and the deviatoric stress ¢, starting from the simplified form
of Hooke’s law as formulated in Equation 2.6. The tangential elastic stiffness parameters
K, and G, as updated at the beginning of a time-step, are considered to be constant in that
step. In that case the integration of stresses in time-step i can be written as:

pl = pil v+ K (Ae, - AE) = p" - K, A& (5.27a)
g = ¢ + 3G, (Ag, - AE)) = ¢" - 3G, A€ (5.27b)

s
In this equation p” and g" are the trial stresses, calculated according to Equations 2.3
from the Cartesian trial stresses ¢” as formulated in Equation 5.17. Adopting an implicit
integration scheme, the direction of the plastic strain increments is evaluated at the end of
time-step i, i.e. for the new (unknown) stress state:
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4 AN 2p' - p) (5.28a)

B>

X
Il
D>
>
|
1

6p]
af’ 2q!
A = AN [ 2L = AN ZZL :
& A [Bq] 8 (5.28b)

Substitution of Equations 5.28 into Equations 5.27 and elaboration leads to:

o i
; p" + ANK, p,
= '°¢ 5.2
P [ +2ANK, (5:29)

. r
gl = q (5.29b)
1 +6ANG,/ M?

The new stresses are formulated in terms of known quantities and the unknown increment
of the plastic multiplier AX. The new preconsolidation stress p. is evaluated from the
hardening relation 4.34. Integration of this relation gives:

id-m
_ 1 ) )
A = oa-m | i 1 (5.30)

where ¢ is supposed to be a constant within a time-step. This auxiliary parameter is defined
as:

i-1 m-1

(. ) K

(5.31)
NIk -1 (prh”

On substituting the volumetric plastic strain increment, as formulated in Equation 5.28a, into
Equation 5.30, one obtains an expression from which pci can only be solved iteratively for
arbitrary values of m, provided that A\ and p' are known. Such an iteration process will
make the stress integration procedure time-consuming.

Instead of the exact hardening relation 4.34, an approximation is introduced here, given by:

p _ NIk -1 (prh" .1 P,
& = ' mimt 1 Pe T g3
r.) p Pc

c

(5.32)
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For m = 1, Equation 5.32 is equal to the exact hardening relation 4.34 and similar to the
hardening relation of the Modified Cam-Clay model (Equation 4.8). In that case § is just
1/ (\*«"). In any other case (m < 1) the approximation is still quite good as long as pci
is close to p.!, i.e. when the step-size is relatively small.

Analytical integration of the approximation of the hardening rule as formulated in Equation
5.32 leads to the following expression:

pl = p exp(9 ALY = pit exp(aN 6 (2p7 - p)) (5.33)

Again, this equation can only be solved iteratively. As an alternative, Equation 5.32 is
integrated by means of numerical trapezoidal integration. The original idea comes from Borja
and Lee (1990) who applied trapezoidal integration to the hardening relation of the Modified
Cam-Clay model.

Ipc dr = J() p. &b dr (5.34)

P (1-w) 0 p 7t AL + w0 pl A (5.35)

-]
[
I

1+ (1-w) 6 AL |

> (5.36)
1 -wfAeg,

S
8-
Il

Cc

The type of numerical integration may vary from explicit (w = 0) to implicit (w = 1).
Further on in this section the consequences of a particular choice of « are discussed in
more detail.

Substitution of the volumetric plastic strain increment as formulated in Equation 5.28a gives:

(5.37)

i1 e -0 AN @pl-p) | i
pC: . l pC
l—wﬁA)\(Zp’—PC)

Substitution of the expression for P (Equation 5.29a) leads to a quadratic relation for p c[
based on the known quantities and the unknown increment of the plastic multiplier AN.

AP +Bp.+C=0 (5.38)
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with
= w6 AN (5.39)
=1+2ANK, -200ANp” + (1-w) 8 AN p.”' (5.39b)
C=-pt (1 +2ANK, +2(1-0) 6 AN p¥) (5.39)

The solution of the above equation can simply be formulated as:

pl=-B + L yB2-4uc (5.40)

2A 24

It should be noted that a second solution (with a minus sign in front of the second term) is
not relevant as it gives a value less than or equal to zero. Moreover, for w = 0 (explicit
method) Equation 5.38 is no longer quadratic and the above solution cannot be used. In that
case the solution is given by:

i 1+2A)\Kt+2A>\0ptr i-1

pl = — (@ = 0) (5.41)
1+2ANK, + AN O p.

Four calculation methods for p,, as discussed above, were implemented in a computer code
and the performances were apalysed for m = 1. The first method is the analytical
integration of the approximation of the hardening rule (Equation 5.33), in which a Newton-
Raphson iteration process is utilized. The second one is the explicit numerical method (w
= 0) in which p, is directly obtained from Equation 5.41. The third one is a midpoint rule
(w = 0.5) and the fourth one is the implicit method (w = 1). From the analysis the
following conclusions were drawn:

The analytical method is very slow compared with the other methods and is not interesting
considering implementation in a finite element program. The number of iterations required
for an accuracy of 1019 was, in the present analysis, found to be rather small (only 4
iterations). The slow performance is also due to the evaluation of the exponential function,
which is time-consuming compared with ordinary floating point operations. The accuracy of
the analytical method is perfect. The explicit numerical method is the fastest of all four
methods. In this case no square root needs to be evaluated. However, the accuracy is low;
the value of p,. is generally too low. The midpoint rule is reasonably fast. The accuracy is
much better than when using the explicit or the implicit method and approaches the analytical
solution. The implicit method is about as fast as the midpoint rule. The accuracy is low; the
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value of p, is generally too high. Based on this analysis the midpoint rule is considered to
be the best method to calculate p.. The results are summarized in Table 5.1.

Table 5.1 Results from analysis on calculation methods for D,

Analytical: - Explicit Midpoint Implicit

Speed ciina 44 % +
Accuracy + ¥ —— + —

Now all new stresses (¢, q’ and pci) are formulated in terms of trial stresses and stresses
at the end of the previous time-step. The only unknown is the increment of the plastic
multiplier AN, which follows from the condition that the yield function is zero for the new
state of stress. Because of the highly non-linear character of the equations, a local iteration
process is inevitable.

Applying a Newton-Raphson iteration scheme, the iteration process can be formulated as:

P -1 f
AN AN __—df/ FIONN) (5.42)

The derivative of the yield function towards AN can be split into derivatives towards the
different stress components:

af __ o apt , of dq'  of e (5.43)
d(AN) api d(AN) aqi d(AN) apci d(AN)

The derivatives of the yield function are straightforward. Elaboration of the derivatives of
the stress measures towards the plastic multiplier is based on the expressions for p, ¢ and
pci (Equation 5.29a, 5.29b and 5.40 respectively), which gives:

dp _ K AN dp. K 2p'-p)

(5.44a)
d(AN) 1+2K AN d(AN) 1+ 2K, AN
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dq q
= — (5.44b
d(AN) AN + M2 )
6G
1 i 1 i i-1
dp, _ 3 0Qp" -p)(p; +p) 5,440

AN 12K AN-LOAN(L+2K, AN (2P -p) + LOANp: +p )

In general, only a few iterations are required to make the yield function zero within a small
tolerance.

Once the proper AN has been obtained, the new stresses follow from Equation 5.29 and the
new preconsolidation stress follows from Equation 5.40. Transformation of p and g back
into Cartesian stress components can be done according to:

z=-p§+q\§ s (5.45)

where 6 =(1 1100 O)T and s is a normalized stress direction vector based on the
trial stresses:

Y3/2 [ LG S S r o P ]T (5.46)

po T TP Oy TP

The full process for the determination of the new stresses at the yield cap is summarized in
the scheme on the next page. The procedure is very robust. Note that for non-linear yield
surfaces the use of implicit integration may lead to deviations in plastic strains when large
load steps are taken. In that case, sub-stepping can be used to improve the results.
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glr — gj—l

i-1
Pc = P

end of if

i = pi

p

calculate gi from Pi, q

+28A§

calculate p”, q" and s from o

p”‘ — ptf + CCOtd)

+ ccoto

calculate f(p", q", p,)

if f> 0 then
AN =0
error = 2 x tolerance
while error > tolerance

calculate f(p, q, p.)
calculate df | d(AN)

- - f
AN = A dfTd(AN)

calculate p,

calculate p

calculate q

2
pl=p+ 1
M
f_
error = | be pCI

[

end of while

- ccoty

pe = pi - cooty

(Equation 2.3 / 5.46)

(Equation 4.28a)

(Equation 4.28a)

(Equation 5.43)

(Equation 5.42)

(Equation 5.40)

(Equation 5.29a)
(Equation 5.29b)

(Equation 5.45)
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5.4.3  The point of combined yielding
The point of combined yielding in the Plaxis Cap model is the point where the Cam-Clay cap

and the Drucker-Prager cone intersect. At this point the new stresses are such that both yield
functions as defined in Equation 4.28 are zero:

2
[‘I_] spipi-phy =0 (5.47a)

—api=0 g' /1 pl =« (5.47b)
Equation 5.47b gives a direct relation between the deviatoric stress and the mean stress. On

combining both conditions, a relation between the preconsolidation stress and the mean stress
can be obtained as well, which gives:

pl = [1 + %] P! (5.48)

Both yield functions contribute to plastic straining. In line with Equations 5.27 the new
stresses can be formulated for this case as:

pl=pr - K, (Ad); + A€)) (5.49a)
g\ = 0" - 3G, (Ady + Ay (.49

The subscript 1 relates to the cap yield function and the subscript 2 relates to the cone
yield function. One of the characteristics of the Plaxis Cap model is that at the point of
intersection the direction of plastic straining for each individual yield function, defined by
the corresponding flow rules, is constant and predefined. Hence, a direct coupling between
the individual deviatoric plastic strain increments and volumetric plastic strain increments can

be made:
o iy
ad, = OBl = _2AUPT Ap - 20 ad, (5.502)
k 33‘5] M2 _ (qt/pz)Z M2 _ al
ae
Ad, = 22 ag, = - Lag, (5.50b)
e, g
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The latter part of Equation 5.50a is obtained by substitution of Equation 5.47b. The
deviatoric stress is now reformulated in terms of volumetric plastic strain increments:

2o 1
i

¢ = q" - 3G, (5.51)

w|

Substitution of the expressions for the new stresses (Equation 5.49a and Equation 5.51) into
Equation 5.47b gives a linear relation between both volumetric plastic strain increments:

6aG, 3G,

oK, - + Ad, |aK, + + g7 - ap” =0 (5.52)

The preconsolidation stress p, is obtained by integration of the hardening relation. In the
case of combined yielding it is also very convenient to use the numerical trapezoidal
integration scheme as proposed in the previous section (Equation 5.35), because this enables
a direct solution as will be shown below. It should be noted that hardening is only related
with plastic straining according to cap yielding. Hence, a change in the preconsolidation
stress is only induced by a plastic strain increment that follows from the cap yield function.
In line with Equation 5.36 it follows that:

: 1 +(1- 6 A i
P = (170) 0 a5, pi! (5.53)

1 -w0Ad,

Combination of Equations 5.48, 5.49a, 5.52 and 5.53 gives after some manipulation a
quadratic expression for the first volumetric plastic strain increment:

AU +BAL, +C =0 (5.54)
where

A=0wbC G (5.55a)

B=-C C-wbC C-(l-w)0p" (5.55b)

c=c¢ G -p! (5.55¢)
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aZ
G=1+2 (5.55d)
8 K, 6 a G,
C =K o K, - (5.55€)
2 t dz ! M2 _ a2
3G B K
C, = Loptr __t tr 5.55
3 7 Z q (5.55%)
dy=afK +3G, (5.559)

The solution to Equation 5.54 is given by:

_ -B 1 2 6 G,
Ad, = >4 ﬂ\/B 44cC for K, < —T 3 (5.56a)
- 6 G
ad, = 28+ L B2-aac for K, > ' (5.56b)
24 24 M2 - o2

Having obtained the first volumetric plastic strain increment, the other plastic strain
increments follow from Equations 5.52 and 5.50 respectively, after which the new stresses
are obtained from Equations 5.49 and 5.53. Transformation of stresses into Cartesian
components follows from the procedure as already formulated at the end of the previous
section.

Hence, no local iterative procedure is required to calculate the new stresses in this particular
case. Note that other ways of integrating the hardening rule lead to a highly non-linear
relation that can only be solved iteratively, which is less attractive.
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5.5  Global iterative procedures

Substitution of the relationship between stress increments and strain increments into the
equilibrium equation 5.13 leads to:

o
Kav =1 -f, (5.57)

In this equation K is a stiffness matrix, Ay is the incremental displacement vector, f,, is
the external force vector and f;, is the internal reaction vector. The superscript i refers
to the step number. However, because the relation between stress increments and strain
increments is generally non-linear, the stiffness matrix cannot be formulated exactly
beforehand. Hence, a global iterative procedure is required to satisfy both the equilibrium

condition and the constitutive relation. The global iteration process can be written as:
ioewW = fi - f7]
Koy =1 -1 (5.58)

The superscript j refers to the iteration number. v is a vector containing sub-incremental
displacements, which contribute to the displacement increments of step i

avi =Y ov (5.59)
j=1

where n is the number of iterations within step ¢. The stiffness matrix X, as used in
Equation 5.58, represents the material behaviour in an approximated manner. The more
accurate the stiffness matrix, the fewer iterations are required to obtain equilibrium within
a certain tolerance.

In its simplest form K represents a linear-elastic response. In this case the stiffness matrix

can be formulated as:

-

where D° is the elastic material matrix and B is the strain interpolation matrix. The use
of an elastic stiffness matrix in combination with the initial stress method as described in
Section 5.4.1 gives a very robust iterative procedure as long as the material stiffness does
not increase, even when using non-associated plasticity models. Special techniques such as
arc-length control (Riks, 1979), over-relaxation and extrapolation (Vermeer & Van Langen,
1989) can be used to improve the iteration process. Moreover, the automatic step size

av (elastic stiffness matrix) (5.60)
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procedure, as introduced by Van Langen & Vermeer (1990), can be used to improve the
practical applicability. For material models with linear behaviour in the elastic domain, the
use of an elastic stiffness matrix is particularly favourable, as the stiffness matrix needs only
be formed and decomposed before the very first calculation step. For material models in
which the elastic behaviour is non-linear, the current method is still competitive. A minor
disadvantage is that the failure load may be slightly overpredicted, but the overprediction can
be kept small by utilizing a small tolerated equilibrium error.

A stiffness matrix that resembles the material response more accurately is obtained by
including plasticity. In this case the stiffness matrix can be formulated as:

-]

where M is the elastoplastic material matrix based on the current state of stress:

av (tangent stiffness matrix) (5.61)
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M can be obtained from the procedure as described at the end of Section 3.2. The use of a
tangent stiffness matrix reduces the number of iterations required for convergence, but
according to the author’s experience, the procedure is not as robust as using an elastic
stiffness matrix, particularly when failure approaches. The range of load step for which
proper convergence is obtained is much smaller than for an elastic stiffness matrix. On using
a tangent stiffness matrix, distinction should be made between a Full Newton-Raphson
procedure, where the matrix is updated each iteration, and a Modified Newton-Raphson
procedure, where the matrix is updated only once per step. The latter case proved to be less
robust than the former case, especially when relatively large stress rotations occur within a
step.

The use of an implicit integration scheme, as formulated in Equation 5.17, leads to an
additional term compared with the original constitutive relation when taking the time
derivative:
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The additional term can simply be transferred to the left-hand side. Hence, in order to obtain
a tangent stiffness matrix that is consistent with the implicit integration scheme, the elastic
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material matrix D¢, that is used for the composition of M, should be exchanged by a
matrix D° which is defined as:

9’g l
gs Qe (5.64)

in which [ is the identity matrix. Note that the second derivative of the plastic potential
function towards the stresses represents a symmetric matrix. For the Drucker-Prager model
and the Modified Cam-Clay model the terms in this matrix are given in the appendix at the
end of this chapter.

The resulting global matrix is a consistent tangent stiffness matrix, and was firstly
formulated in this form by Crisfield (1987). In the current study it was observed that in
general the convergence indeed improves compared with the conventional tangent stiffness
matrix in a full Newton-Raphson procedure, but the robustness appeared to be less,
particularly when failure approaches.

Another minor disadvantage of a tangent stiffness is the problem that it may become singular
as soon as a failure mechanism is fully developed. However, this problem can simply be
avoided by multiplying the plastic contribution in the elastoplastic material matrix with a
reduction factor R slightly less than 1.0:

(5.65)
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By doing so, one should realize that the resulting matrix is no longer a full tangent stiffness
matrix, and that the convergence speed of equilibrium iterations is reduced.
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Appendix
Formulation of second derivatives of plastic potential function towards stress components for
Drucker-Prager model and Modified Cam-Clay model. These terms are required in a

consistent tangent stiffness matrix (see Equation 5.64).

Drucker-Prager:
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Modified Cam-Clay:
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6 APPLICATIONS OF THE PLAXIS CAP MODEL

In this chapter the Plaxis Cap model will be used in a few examples to assess the
applicability of the model in practical situations. Comparison will be made with perfectly-
plastic models in order to evaluate the need for hardening plasticity. It will be shown that
some problems may as well be analysed by perfectly-plastic models, whereas other problems
require hardening plasticity for good accuracy.

6.1  Plate loading test

In this section a comparison is made between the Plaxis Cap model and the perfectly-plastic
Drucker-Prager model. The latter model was chosen because failure in the Drucker-Prager
model is equivalent to failure in the Plaxis Cap model. For this application the Drucker-
Prager model was extended with a power law on the elastic stiffness, similar to the Plaxis
Cap model. The main difference between both models is the hardening plasticity.

The application is the back-analysis of a scale model test as schematically represented in
Figure 6.1. The test concerns the indentation of a circular footing as reported by Labanieh
(1984). The container in which the test was performed has a depth of 2 m and a diameter
of 1.5 m. The diameter of the footing is 0.4 m. The material involved is loose Hostun sand
with a medium grain size Ds, of 0.63 mm, an initial void ratio ¢, of 0.74 and a dry
weight of 15.3 kN/m’.

Model parameters, as listed in Table 6.1, are mainly based on triaxial test results as plotted

in Figure 6.2, in particular the triaxial test curves for o3 = 100 kPa and o5 = 200 kPa,
because these pressures are representative for the plate loading test.

Table 6.1 Model parameters for plate loading test

Parameter Symbol Plaxis Cap Drucker-Prager  Unit
Reference stiffpess lesl 30000 5000 kPa
Power m 0.5 0.5 -
Poisson’s ratio v 0.1 0.33 -
Compression ratio NS 3.0 - -
Friction parameter fol 1.15 1.15 -
Tangent of CSL M 1.5 - -

Coeff. lateral earth pres. K, 0.5 0.5 -
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Figure 6.1 Geometry of plate loading test and finite element schematization
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Figure 6.2 Triaxial test results for loose Hostun sand by Labanieh (1984)
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As a rule for sand, the power m is taken as 0.5. Young’s modulus is determined in a
numerical simulation of triaxial tests by matching the curves of Figure 6.2. The result is an
E™ of 66000 kPa for p¥ = 100 kPa. Taking Poisson’s ratio » = 0.1 givesa G'¢ of
30000 kPa. The ratio A'/x", i.e. the ratio of total volumetric strain over recoverable
volumetric strain in isotropic compression, cannot be obtained from the available test data.
Published test data on similar loose sands show that A*/k* = 3.0 is quite realistic.

The friction angle ¢ follows from the triaxial test results as plotted in Figure 6.2, which
gives an average of 32°. The dilation angle can also be obtained from triaxial test results
when plotting the vertical strain against the volumetric strain. However, such accurate data
were not available. Therefore the dilation angle was chosen to be the friction angle minus
30°, which gives ¥ = 2°. The coefficient of lateral earth pressure, K, for the initial
stress state is estimated at 0.5. This value of K; can also be utilized to determine the
constant M using Equation 4.26, which gives a value of 1.5.

The friction parameter « is related with the friction angle ¢, as used in the Mohr-
Coulomb model. From the condition that the failure load should be similar to that in the
Mohr-Coulomb model, exact relations between « and ¢ can be obtained for states of
stress in triaxial compression (A) and triaxial extension (B), as given by Chen (1975). A
relation for plane strain situations (C) was derived in Section 3.4 (Equations 3.33 and 3.37).
The relation as meant for (A), i.e. « = 6 sing / (3-sing) giving o = 1.29, was used to
simulate the triaxial tests. However, the plate loading test does not apply to any of the stress
states (A), (B) or (C). A value between those for triaxial compression and plane strain seems
most likely. The selected value for « is 1.15.

For the calculation with the Drucker-Prager model most parameters can be taken the same
as for the Plaxis Cap model, except for the reference shear modulus and Poisson’s ratio.
Using a perfectly-plastic model in primary loading implies that the stiffness is much lower
than the "elastic" stiffness as used in a hardening model, as it should partly account for
plastic strains as well. A realistic approach is to take G” ¢ at 50% of the strength in a
triaxial test and to take » such that a proper value for X, is found in a one-dimensional
compression test. In this case we find G’ = 5000 kPa and » = 1/3.

The geometry is schematized by an axi-symmetric finite element mesh of 15-noded (cubic
strain) elements with 12-point Gaussian integration. It has been shown that these elements
tend to yield highly accurate solutions for axi-symmetric problems (Sloan & Randolph,
1982; De Borst & Vermeer, 1984). A pilot calculation showed that the deformation in the
lower part of the geometry is extremely small compared with the deformations just below the
footing, so that it is justified to model only the upper part of the geometry in a finite element
mesh, as shown in Figure 6.1. Interface elements, indicated in the figure by dashed lines,
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are used to simulate the interaction between the plate and the soil. The interface friction
angle is taken at 28°, a reduction of 15% compared with the soil friction angle. The
boundary conditions are chosen such that the vertical mesh sides are fully smooth and the
bottom of the mesh is fully rough. The top of the mesh is free to move in any direction,
except for the part that is covered by the plate.

After generation of the initial stress state, the indentation of the footing is simulated by
imposing prescribed vertical displacements on top of the mesh at the position of the plate.
Two calculations are performed for each model. The first one is a calculation according to
the generally applied small strain concept, which is a description with reference to the initial
undeformed geometry. The second calculation is an Updated Lagrangean analysis, which
includes changes of the geometry and in which Hill’s objective stress formulation is obeyed
(McMeeking & Rice, 1975). The results of the calculations are presented in Figures 6.3 to
6.5.

Comparison of Figure 6.3 and 6.4 shows that there is hardly any difference between the
calculations with the Drucker-Prager model and the Plaxis Cap model. It should be realized
that, in this application, the sand is only primarily loaded. If the test were to include
unloading, there would be a considerable difference between the two models when using the
same set of model parameters. However, in many applications only primary loading is of
importance, but as yet it cannot be concluded that under such conditions perfectly-plastic
models perform as well as hardening models. It appears that fitting of stiffnesses based on
triaxial test data gives quite good results for both models. Note that for general applications
the friction parameter « cannot be verified by simulating triaxial tests. It seems that in the
current example o was correctly chosen. However, in particular for axi-symmetric or
general three-dimensional applications the choice of « is still a point of discussion.
Therefore it would be better to replace the Drucker-Prager yield criterion in the Plaxis Cap
model by a Mohr-Coulomb type yield criterion.

For displacements over 10 mm, the curves from the small strain calculations deviate from
the test data, but the curves from the updated Lagrangean analyses match the data quite well.
The uplift of the soil beside the plate acts like an overburden load, which has a positive
influence on the bearing capacity. This effect is not taken into account when performing
calculations according to small strain theory.

Consider the situation with a force of 10 kN. This force gives an average footing pressure
of 80 kPa. Just underneath the footing the stresses are mainly in a state far from failure,
except at the edge. From this observation it can be concluded that there is hardly any sliding
between the plate and the sand.
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Figure 6.3 Force-Displacement curve for plate loading test using Plaxis Cap model

20
Force [kN] Updated Lagrange
15+
10+ ‘ 2" Small strain theory
51
¢ Test data
0 1 1 1 1
0 10 20 30 40

Vertical displacement [mm]

Figure 6.4 Force-Displacement curve for plate loading test using Drucker-Prager model
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Figure 6.5 Principal stress distribution corresponding to a footing force of 10 kN.
Maximum principal stress under the plate is about 110 kPa.
a. Plaxis Cap model b. Drucker-Prager model

At the bottom of the mesh, i.e. half the height of the sand container, the principal stress
direction hardly differs from the initial principal stress direction, as can be evaluated from
Figure 6.5. At this level the footing force has almost fully spread over the cross section. This
application does not show advantages of the Plaxis Cap hardening model compared with a
perfectly-plastic model with stress-dependent stiffness.

6.2 Almere trial embankment

On a location near Almere, The Netherlands, a large scale test was performed to investigate
the influence of a geotextile reinforcement on the stability of an embankment (Brakel et al.,
1982). Two trial embankments were constructed, one with a geotextile reinforcement and
another without geotextile. The embankments were back-filled with sand until large
deformations were observed. The height of the back-fill at which the large deformations
occur is representative for the stability of the embankment. The geometry of the test is
plotted in Figure 6.6.

The upper soil layer consists of a lightly overconsolidated clay. Below this layer there is a
sand layer. For the reinforced case a geotextile is installed on the clay layer. The
embankment is constructed on the clay layer up to a height of 2 m. The material involved
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Figure 6.6 Geometry of reinforced trial embankment

is taken from the clay layer, so that a ditch is formed in front of the embankment. After
construction, the embankment is back-filled with medium coarse sand.

In this section calculational results are presented for the reinforced trial embankment. In one
calculation the clay layer is modelled by the Plaxis Cap model and another calculation is
performed in which the clay is modelled by a non-linear elastic perfectly-plastic Drucker-
Prager model, as already mentioned in the previous section. In the analysis, attention is
focused on the deformations due to the undrained back-filling of the embankment followed
by the decrease of excess pore pressures down to zero. The behaviour of the sand-fill is of
minor interest. This material is modelled, in both calculations, by the Mohr-Coulomb model.

As a rule for clay, the power m in the Plaxis Cap model is taken as 1.0, which gives a
logarithmic relation between the volumetric strain and the mean stress. The reference shear
modulus is estimated as G'¢ = 6250 kPa for a reference stress p’¥ = 100 kPa. Poisson’s
ratio is chosen » = 0.1. From these data a corresponding swelling index «* = 0.0175 can
be derived. The average undrained shear strength is C, = 10 kPa, as obtained from cone
penetration tests. In the current model, however, only effective properties can be given, so
that C, must be transformed into ¢ and ¢.

Undrained: Amax = 3 C, (plane strain) (6.1a)
Effective: Gmax = @ (p + ccoty) (6.1b)

Combination of these two equations gives:

_ 3G -ep (6.2)
o COote ’

C
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The friction angle is estimated at 25°. The friction constant « can be evaluated from
Equation 3.33 (8 = 0), which gives o = 0.73. The average mean stress is initially 7 kPa.
On using a Cam-Clay type model for normally consolidated clay, the mean stress reduces a
little during undrained loading. However, in this application, the soil is lightly
overconsolidated. Under these conditions the mean stress will barely change. Evaluation of
Equation 6.2 gives an effective cohesion of 7.8 kPa.

The constant M is evaluated from Equation 4.26, in which, for the normally consolidated
coefficient of lateral earth pressure K, Jaky’s formula (K, = 1 - sing) is substituted. In
fact, the use of Equation 4.26 is not valid in this situation because of the relatively high
cohesion, but it is used in the absence of an altermative. The Kj-value that is used to
generate the initial stresses is taken somewhat higher than the value that follows from Jaky’s
formula, because the clay is lightly overconsolidated. A uniform overconsolidation ratio
OCR = 2.0 is assumed. This results in elastic behaviour during the first part of loading.

For the calculation with the non-linear elastic Drucker-Prager model, the model parameters
are taken equal to the parameters in the Plaxis Cap model. In order to match the behaviour
during undrained loading of the lightly overconsolidated clay, the shear modulus G’ and
Poisson’s ratio » are also taken equal in both models. If the soil were not overconsolidated,
however, it would be more realistic to choose a much smaller shear modulus and a higher
Poisson’s ratio.

An overview of all model parameters is given in Table 6.2. The undrained behaviour of the
clay is simulated by using effective properties and adding a high bulk modulus for the water,
which enables the calculation of excess pore pressures (Chan & Morgenstern, 1989;
Vermeer, 1991).

The deformations in the underlaying sand layer are considered to be small compared with
those in the clay layer. Therefore this layer is not included in the finite element mesh. A total
of 46 triangular cubic strain elements are used to model the geometry. Initially, only the
elements of the clay layer are active (1). After generation of initial stresses, the embankment
is constructed and the ditch is dug by switching the elements involved on and off (2). The
next stage is the back-filling of the embankment by switching on the remaining inactive
elements (3), which corresponds to a situation just before failure. After this stage the clay
is changed into a draining material and excess pore pressures are linearly decreased to zero
(4). This is a simple way to evaluate the deformations after full consolidation. However, in
general, care should be taken with this method, because the development of pore pressures
is basically different from a real consolidation process. The four calculation stages are
presented in Figure 6.7. For completeness it is reported that all calculations are limited to
the small strain concept.



CHAPTER 6 PAGE 83

Table 6.2 Model parameters for Almere trial embankment

Parameter Symbol Plaxis Cap Drucker-Prager - Unit
Soil weight ¥ 13.5 135 kN/m?
Reference stiffness el 6250 6250 kPa
Power » m 1.0 1.0 -
Poisson’s tatio Sy : 0.1 0.1 -
Compression ratio 1 ey 4.0 - -
Friction parameter o 0.73. 0.73 -
Tangent of CSL. Mo 1.35 - -
Coeff, lateral earth pres. Ky 07 0.7 -
Cohesion ¢ 7.8 7.8 kPa
Overconsolidation ratio OCR 2.0 2.0 -

Figure 6.7 Calculation stages for Almere trial embankment

Drucker-Prager

Plaxis Cap

Figure 6.8 Final displacements of reinforced trial embankment using two different models.
Deformations scale is much larger than geometry scale.
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Figure 6.8 shows the deformed meshes of both calculations at the end of the calculation, i.e.
after full consolidation. There is a remarkable difference between the results from the
calculation performed with the Plaxis Cap model and the results from the Drucker-Prager
model. The latter calculation predicts much smaller deformations. Unfortunately, no
deformation measurements of the in situ test are available, so that a comparison between the
calculational results and reality cannot be made.

Figure 6.9 shows a curve with the horizontal and vertical displacements of the embankment
crest point A. The first branch (undrained loading) reflects the displacement during the
back-filling of the embankment. For this part both models show approximately the same
response. The second branch (consolidation) reflects the displacement during reduction of
the excess pore pressures. For this part the responses deviate considerably.

In the first branch, the effective loading is primarily deviatoric because of the undrained
behaviour. The overconsolidated material remains mainly elastic. Plasticity will only
sporadically occur on the Drucker-Prager yield surface, which is present in both models.
Because the model parameters are the same, the response should be the same as well. During
the consolidation process the loading is basically similar to one-dimensional compression. In
this case the Drucker-Prager model gives an elastic response in which the stiffness is
dominated by G. The Plaxis Cap model gives cap yielding, i.e. hardening plasticity, as
soon as the preconsolidation stress has been reached. From this point the stiffness is
dominated by «"/\" times G, which gives a much weaker behaviour.

20 : -
y-displacement [mm] | Undrained loading ——
0 3 :
Dmcker-Prager
20 - : el M ]
40|
60 | |
PIa;Eu's Cap
-80 - . . i
0 10 20 30 40 50

x-displacement {mm]

Figure 6.9 Horizontal versus vertical displacements of embankment crest point A
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Instead of matching the first part of the calculation, the parameters in the Drucker-Prager
model could also be chosen such that the deformations in the second part of the calculation
would match. In that case the undrained loading would show very different results. Apart
from the current example, it is a well-known phenomenon that for normally consolidated clay
there is a remarkable difference in stiffness behaviour between deviatoric loading, as obtained
with undrained soil behaviour, and compression, as obtained with consolidation. Using a non-
hardening model, such as the Drucker-Prager model, one can match the behaviour for one
particular type of loading, but it is not possible to simulate accurately the behaviour for both
loading types, at least not when using a single set of parameters.

6.3  Brienenoord road widening project

In order to investigate new methods for the widening of existing road embankments on soft
soil, some large scale test locations were appointed by the Dutch Ministry of Public Works.
One of those was a test location along the A16 motorway near Rotterdam, which is known
as the Brienenoord Corridor (BriCor). The widening of the road embankment was
constructed in 1988. Settlements and horizontal deformations were measured during
construction and soil samples were taken in order to investigate the soil types and their
properties (Deutekom et al., 1992).

In the BriCor road widening project, the subsoil consists of soft, lightly overconsolidated
clayey and peaty material. Before construction of the old embankment in former times, the
soft soil was partly excavated and replaced by sandy soil. The new embankment, however,
was directly constructed on the soft subsoil, without applying soil-improvement. This resulted
in large settlements of the original surface level of the order of 2.5 m. In order to reduce the
Jateral deformations, the embankment widening was constructed according to the so-called
Gap method. In this method a small embankment is built beside the existing embankment and
the gap in between is filled up successively until the final height is reached.

In a numerical analysis by Couvreur and Vermaut (1992) a comparison was made between
the gap method and the conventional method of constructing the embankment layer-by-layer.
They concluded that the gap method indeed reduces the horizontal deformations, although
the differences are not spectacular. In their calculations the Mohr-Coulomb model was used
to simulate the behaviour of all soil layers. In the current study a comparison is made
between the deformations as predicted by the Mohr-Coulomb model and the Plaxis Cap
model in order to investigate the influence of the constitutive model.
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Figure 6.10 Finite element model of the embankment widening project

Figure 6.10 shows a finite element model of the problem under consideration with an
indication of the different soil types. High-order 15-noded elements were used, as available
in the Plaxis finite element code. The bottom of the mesh corresponds to a layer of stiff
material on which the soft soil layers are situated. In reality, the distinction between the clay
and the peat layer is not too clear. The left side of the plot indicates the old embankment,
consisting of dense sandy material. The new embankment also consists of sandy material.
The overheight of soil is needed to arrive at about the same level as the old embankment
after the extreme settlement of the subsoil.

As most deformation is concentrated in the soft soil layers, these layers are given most
attention. In one calculation, the soft soil layers are modelled by the Mohr-Coulomb model
and in another calculation by the Plaxis Cap model. In both calculations the sandy layers are
modelled by the Mohr-Coulomb model.

Extensive laboratory tests were performed on the soil samples taken from the in-situ soft soil
layers (Van et al., 1991). These results were used to determine the material properties,
from which the model parameters are derived as input for the finite element calculations. An
overview of the parameters is given in Table 6.3. Considering the type of loading and the
purpose of the calculation, attention will be focused in the following on the determination of
the stiffness parameters.

The aim of the calculation is to evaluate the horizontal displacements of the original surface
level 1000 days after construction of the embankment widening. From the available
laboratory test data, an equivalent modified compression index was derived for a time span
of 1000 days. This resulted ina A" of 0.15 for the clay layer and 0.20 for the peat layer.
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Table 6.3. Model parameters for clay and peat layers

Mohr-Coulomb Plaxis Cap
Symbol Clay Peat Clay Peat Unit
Yary 14.0 11.0 14.0 11.0 kN/m?
Yypet 15.5° 12.5 15.5 12.5 kN/m?
K 0.03 0.04 -
A : 0.15 0.20 -
G 155 75 kPa
v 0.40 0.40 0.20 0.20 -
¢ 6.0 5.0 6.0 5.0 kPa
@ 20 23 °
o 0.59 0.68 -
M 1.23 1.38 -

The ratio of compression and swelling index is assumed to be 5.0 for both layers. On
evaluating the average shear modulus to be used in the Mohr-Coulomb model, it was verified
that both models would give the same settlements in one-dimensional compression,
considering a representative column of subsoil. For each layer, the shear modulus was
evaluated from the formula that follows from Hooke’s law for one-dimensional compression:

G= 1-2v A% (6.3)
2-27 As,,

The new embankment comprises 9 m high sandy material with an effective weight of 17
kN/mS3. This gives a vertical load on the subsoil (= Agyv) of 153 kPa. The vertical strain
increment Ag,, can be evaluated from the Terzaghi’s loéaritmic compression law, which
is similar to the logarithmic stress-strain relation as used in the Plaxis Cap model. Note that
the subsoil is lightly overconsolidated, so that, in fact, a part of the load involves reloading,
for which a much stiffer behaviour is observed.

In both calculations the sandy embankment material is modelled by the Mohr-Coulomb model
with a constant shear modulus of 2100 kPa, Poisson’s ratio of 0.33, friction angle of 31°,
a cohesion of 2 kPa and no dilatancy.

It is important to install the proper stress situation at the beginning of the new embankment
construction. Therefore a jump is made to the situation before the old embankment was
present, i.e. a horizontal surface (Figure 6.11 stage 1). The vertical preconsolidation stress
was assumed to be 25 kPa higher than the initial vertical stress. In the Plaxis finite element
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Figure 6.11 Construction stages for BriCor calculation

program this can simply be introduced by prescribing a so-called Pre-Overburden Pressure
POP. For a constant positive POP, the local overconsolidation ratio OCR decreases with
depth. The initial horizontal stress in an overconsolidated soil with horizontal surface can be
estimated by considering one-dimensional elastic unloading from a state of normal

consolidation:
0
oy, = Ky o,, - POP [KO - 12] (6.4)

After installation of the initial stress field, part of the peat layer was replaced by sand
(stage 2) and the old embankment was constructed (stage 3). So far, calculations were
performed using small strain theory. Displacements were reset back to zero after stage 3.
This is the starting point for the construction of the new embankment.

The new embankment was constructed according to the gap method by means of several
construction stages (stage 4 to 10). As considerable deformations were expected, an
Updated Lagrangean analysis was performed in these stages, to account for the changes of
the geometry during the calculation. All calculations were done under drained conditions, as
all excess pore pressures are assumed to have disappeared after 1000 days. The results of
both calculations are shown in Figures 6.12, 6.13 and 6.14.
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Figure 6.12. Deformed mesh (soft soil layers modelled with Plaxis Cap model)
Deformations correspond to mesh scale.
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Figure 6.13. Comparison of vertical displacements at original soil surface
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Figure 6.14. Comparison of horizontal displacements at original soil surface
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Both models give approximately the same vertical settlements as indicated in Figure 6.13.
This validates the choice of the shear modulus in the Mohr-Coulomb modelling from a
viewpoint of one-dimensional compression. However, the horizontal displacements differ
considerably. The calculation using the Plaxis Cap model gives the smallest horizontal
displacements; the Mohr-Coulomb model predicts twice as large horizontal displacements.
Field measurements indicate small horizontal displacements that agree quite well with the
results of the Plaxis Cap model.

The overprediction of horizontal displacements by the Mohr-Coulomb model may be
understood by considering pure shear. Indeed, the present embankment problem is governed
by compression, but, in addition, shearing stresses will occur to promote horizontal
displacements. For pure shearing we have:

Mohr-Coulomb  Avy,,

I

Ady, | Gy (6.52)
Plaxis Cap Avyy = Ady ! Gy, (6.5b)

In this respect reference is made to Section 4.4 were a tangential shear modulus was derived
from the Plaxis Cap model for different stress paths. In the above relations G, is the low
average shear modulus as derived for the Mohr-Coulomb model from one-dimensional
compression. G,; is the high modulus as obtained from a stress path with p = 0, i.e. in
between path 2 and path 3 of Figure 4.6a. The Plaxis Cap response to pure shear is most
accurate as it is based on a more-or-less correct shear modulus. In contrast, the Mohr-
Coulomb model predicts far too much shearing, as it involves the low G;-shear modulus as
needed for a proper prediction of vertical settlements.

For this project it was important to know the horizontal displacements inside the old
embankment as this may cause fissures in the asphalt pavement. In general, horizontal
displacements are very important for neighbouring structures such as piles, foundations,
pipelines, etc. A wrong prediction of horizontal displacements can lead to loss of function
of structures or to unnecessary expense to protect these structures. In such cases it is
important to use a constitutive model that predicts the correct horizontal displacements.



CHAPTER 7 PAGE 91

7 LOCAL SOFTENING PLASTICITY

Rock, concrete and dense soils exhibit material softening under many conditions of loading.
Here a material is said to undergo material softening when the second-order work is negative,

T'¢ < 0 interms of rates of stress and strain. For rock and concrete it is a logical

ie. ¢
phenomenon as the micro-structural response to stress involves fissuring and thus weakening
of the material. The behaviour of densely packed sand beyond peak strength generally shows
a mild softening behaviour, which cannot be explained by cracking, but rather by dilation due
to particle rearrangement. For dense clays, both fissuring and dilation would seem to be the

cause of material softening.

In some soil tests, softening is quite severe, as one observes both material softening and
geometrical softening due to bulging, necking or shear-banding. Indeed, material softening
tends to induce such non-homogeneous deformations and thus geometrical softening. For
general experimental evidence, the reader is referred to Read & Hegemier (1984). Note that
the expression geometrical softening is used here rather than structural softening as for
instance used by Schreyer & Chen (1986). This is because, in the current study, fissuring and
cracking are considered to be material softening. On deriving constitutive models from
experimental data, material softening needs to be isolated from geometrical softening as
otherwise such models would obtain an overdose of material softening.

In geomaterials, softening behaviour is usually accompanied by the forming of a shear-band,
i.e. a narrow band in which high deformation gradients occur. In sands one observes, for
example, shear-bands with a well-defined thickness. Several researchers have reported shear-
band thicknesses of the order of ten times the average grain size; see among others Desrues
(1984) and Miihihaus & Vardoulakis (1987). In clays and rock-like materials, the softening
region is usually initiated by the development of a particular crack pattern, which may finally
result in a shear-band mechanism. In this study the attention is focused rather on shear-band
mechanisms than on crack forming.

From a mechanical point of view, the forming of shear-bands is the result of material
instability. Indeed, material instability is obtained for a negative hardening modulus, as
obtained in a softening model. However, apart from softening behaviour, the use of a non-
associated flow rule may contribute to material instability as well, as clearly indicated by
Rudnicki & Rice (1975).

In this Chapter softening is introduced by means of a Cam-Clay model, which will be
described qualitatively. By focusing the attention on softening rather than hardening, this
Cam-Clay model reduces to the simpler Drucker-Prager softening model. Both the Drucker-
Prager model and the even simpler Von Mises softening model will be described in detail.
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These two relatively simple models will be used in finite element calculations in order to
show the breakdown of the classical approach of local plasticity when softening is introduced
in the constitutive equations.

7.1  The Advanced Cam-Clay model

The Modified Cam-Clay model, as described in Section 4.1, is a model that includes
softening behaviour for particular stress paths. As mentioned in the introduction to Section
4.1, the softening is generally overpredicted in that model. In order to simulate a more
realistic softening behaviour, the so-called Hvorslev surface was introduced, i.e. a Mohr-
Coulomb type yield criterion with a constant friction angle and hardening-softening on the
cohesion. On combining the Hvorslev surface with a Modified Cam-Clay yield cap, one
obtains a modern Cam-Clay model as described by Atkinson & Bransby (1978). Combined
with proper flow rules, as presented in the following, one obtains the Advanced Cam-Clay
model. Note that the addition Advanced has not been used in previous publications, but is
introduced here.

The Advanced Cam-Clay model contains two yield functions and corresponding plastic
potential functions. The first set of functions is valid for stress states where p = % p_, and
the second set of functions is valid for p < % p_. It is obvious that the two yield functions
should intersect at p = % p,.

2
% +p (P -po) g =h for  p=lhp, (7.12)

h

q - a(p +ccoty) £=9-8Bp for p<'hp, (7.1b)

b

The first yield function f;, and its associated plastic potential function g,, relate to the
Modified Cam-Clay model. The second yield function and its non-associated plastic potential
relate to a Drucker-Prager model, i.e. the Hvorslev surface in stress space. Both yield
functions are fully coupled and intersect at the Critical State Line (CSL). The cohesion ¢
is considered to be a state-dependent variable and is directly related to the preconsolidation
pressure p.. It can easily be verified that:

M-«
c= 7.2
2 acotg ¢ (.2)
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Figure 7.1 Yield locus of Advanced Cam-Clay model in (p,q)-plane
for two different preconsolidation stresses

Figure 7.1 shows a plot of the yield locus in (p,g)-plane for two different values of p,. and
corresponding c¢. The parameter M is the tangent of the CSL and relates the ultimate
deviatoric stress ¢ in Critical State to the mean stress p, i.e. when the material has
reached a state of critical density due to plastic deformation. Hence, M can be regarded as
an overall friction constant. It should be noted that the parameter M in the current model
also determines the value of K, that results from the simulation of an oedometer test, but
as in the Modified Cam-Clay model the value of M is based rather on the shear strength
in Critical State than on K,. Hence, the current model has the same shortcomings with
respect to the modelling of one-dimensional compression as mentioned for the Modified Cam-
Clay model in Section 4.2.

The parameter « represents the dependence of the shear strength on the mean stress and
can thus also be regarded as a friction constant. It should be noted that the value of o is
always smaller than the value of M.

The stress-dependent stiffness is formulated by means of a power law as described in Section
2.4 and involves a reference shear modulus G' corresponding to a reference pressure p'¥,
and a power m (Equation 2.31). The hardening / softening rule of the Advanced Cam-Clay
model relates the preconsolidation stress p, to the volumetric plastic strain £7. Similar to
the Plaxis Cap model of Section 4.3, the hardening rule obeys the same power law as the
stress-dependent shear modulus. Note that in the current model the cap is part of an ellipse
that crosses the origin of the stress space. This means that the hardening / softening rule
is formulated in the exact isotropic preconsolidation pressure p. and not in the stress
measure pc* as used in the hardening rule of the Plaxis Cap model.
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In the current model, an increase in the preconsolidation pressure p, is associated with an
increase in cohesion ¢ and vice versa, as can be seen from Equation 7.2. For normally
consolidated materials, stress paths with dominant isotropic loading are accompanied by
compaction, i.e. an increase in volumetric plastic strain. Indeed, compaction is associated
with an increase in cohesion. On the other hand, deviatoric loading on heavily
overconsolidated materials is accompanied by dilation. Hence, the material becomes looser
and this implies a degradation of the cohesive strength. This effect is fundamental for Cam-
Clay type models.

7.2 A Drucker-Prager softening model

When considering deviatoric loading and shear deformation of heavily overconsolidated clays
or rock-like material, the cap-hardening phenomenon is irrelevant, at least when adopting
Cam-Clay type models. According to these models, the yield cap has been shifted far away
by a former overburden pressure and a highly cohesive geomaterial remains. Hence, for
rock-like material including heavily overconsolidated clays, it is sufficient to consider the
softening Hvorslev surface only; the yield-cap plays no role at all.

This study is not meant to describe the softening behaviour of geomaterials in full detail, but
attention is focused rather on the essentials of the softening phenomenon and on the
numerical consequences. For this reason, the Hvorslev yielding is described by a Drucker-
Prager model and not by the more accurate Mohr-Coulomb model.

A further simplification is made in the sense that the power m in the Advanced Cam-Clay
model, similar to in Equations 4.32 and 4.34 of the Plaxis Cap model, is fixed at 0. This
results in a constant stiffness modulus and a linear softening rule. The latter implies a linear
relationship between the dilation and the cohesion softening, which can be formulated in rate
form as:

¢ =n & (7.3)

The softening rule 7.3 describes a linearly decreasing cohesion with decreasing volumetric
plastic strain. Note that the volumetric strain rate is defined as positive for compression (see
Section 2.1) and thus negative for dilation. As the cohesion decreases, the apex of the
Drucker-Prager cone will move towards the origin of the principal stress space. On assuming
a dilatant material with 3 > 0, this model predicts cohesion softening and no hardening at
all.
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For the formulation of the general stress-strain relation, most of the general equations from
Section 3.1 on perfect plasticity are used. In fact, Equations 3.1 to 3.6 remain valid for
softening plasticity. However, the consistency condition 3.7 is now replaced by:

afT . of
- 2L ¢=0 .
g © ac’ 74

Substitution of Equations 3.2 and 3.5 and the softening rule 7.3 into the above relation, gives
an expression for the rate of the plastic multiplier:

—

(1.5)
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The scalar d in this expression is similar to that in Section 3.1 and % is the softening
modulus, which, in the current model, is defined as:

h=h’6g ﬂ=—[x00ﬁp (7.6)
dac ac

Backsubstitution of Equation 7.5 into Equation 3.5 and successively into Equation 3.2 gives
the full stress-strain relation:

=D -_L abT)s (7.7)
g={D°-_——ab

The vectors a and b’ were already defined in Equation 3.11. The above elastoplastic
material matrix is linear, but generally non-symmetric due to the non-associated flow rule.
In the next section attention is focused on the cohesion softening. Friction and dilation are
neglected, so that one arrives at a Von Mises softening model.

7.3 A Von Mises softening model

The Von Mises model can be regarded as a Drucker-Prager model without friction. Indeed,
the shear strength does not depend on the mean stress and is identical for compression and
extension. The Von Mises model originates from metal plasticity, but it is also used to
simulate the undrained behaviour of clay in a total stress analysis. In this section the model
will be extended with linear softening in order to analyse the numerical consequences of

softening.
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The yield function of the Von Mises model can be formulated as:
f=qg-2c (7.8)

Under conditions of a triaxial loading test the above yield criterion predicts the same failure
load as the Tresca yield criterion, i.e. Mohr-Coulomb without friction. In order to obtain the
same failure load as the Tresca yield criterion in a plane strain test, the factor 2 in the
above yield function should be replaced by /3. For a verification of these factors the reader
is referred to Chen (1975) or to Section 3.4 of this thesis.

The flow rule is associated so that the plastic potential function is equal to the yield function.
The Von Mises model is unable to describe plastic volume strain such as compaction and
dilation. All plastic deformation relates to deviatoric straining. Hence, the volumetric plastic
strain &, cannot be used to control the cohesion softening. In order to formulate a proper
softening rule for the current model, Equation 7.3 is reformulated as:

¢ =-Wk (7.9

In this relation « is the hardening parameter, which is generally defined as:

k =J = ((sfx>2+<e§;)2 + (LY + 3 () + 5 ()7 + 5 (YR (7.10)

On evaluating the plastic strain components in the above expression according to the general
formulation of plastic strains (Equation 3.5), it can be verified that, in the current model, the
hardening parameter x is equal to the plastic multiplier A. Elaboration of the consistency
condition and backsubstitution in the general stress-strain relation gives a similar expression
as given in Equation 7.7. However, the hardening modulus #, as used in Equation 7.7, is
defined, for the current model, as:

h=-2nr (7.11)
Again, in order to correspond to the Tresca model under plane strain conditions, the factor

2 in the above relation should be replaced by V3. The current model is used in the next
section to analyse the numerical consequences of softening.
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7.4  Breakdown of the classical approach of local softening plasticity

The models presented in this chapter were derived according to the local plasticity
formulation that is generally used for hardening models. This formulation is, in the current
study, referred to as the classical approach and this term is introduced to emphasise the
difference with new formulations as described in Chapter 8. In previous studies (Bazant,
1976) it has been shown that the use of softening models according to the classical approach
of local plasticity results in severe mesh-dependence. Not only will the size of the elements
influence the results, but also the orientation of the elements (mesh alignment). In this study
it will be shown that there is another inconvenience that results from the use of softening
models according to the classical approach, namely, a poorly converging and unstable
equilibrium iteration process.

Both the Von Mises softening model and the Drucker-Prager softening model, as described
above, were implemented in a finite element program using the implicit integration scheme
of Section 5.3. In the following, some results of finite element calculations are presented.
The calculations are performed with a varying number of high-order 15-noded triangular
elements using 12-point Gaussian integration. Please note that the type of elements does not
affect the consequences resulting from the numerical modelling. In fact, when using, for
instance, 6-noded elements with 3-point Gaussian integration one also obtains mesh-dependent
results and poorly converging equilibrium iterations.

For the equilibrium iterations, an elastic stiffness matrix is used in an accelerated initial
stress procedure (Vermeer & Van Langen, 1989). An automatic load stepping procedure
(Van Langen, 1991) is used throughout the calculations.

7.4.1  Biaxial test problem

The first example is a plane strain uniaxial loading test (biaxial test) on purely cohesive
material, which softens after the ultimate shear strength is reached. The Von Mises softening
model is used to simulate the material behaviour. The sample height is 250 mm and the width
is 100 mm. The interaction at the bottom of the sample is considered to be rough (fully
fixed). The vertical sides are free to move in any direction. An increasing vertical
displacement is imposed at the top side, whilst the reaction force is monitored. The
horizontal displacements at the top of the mesh are coupled in order to simulate the influence
of a rough top platen. The self-weight of the material is ignored. The geometry and model
parameters are shown in Figure 7.2.
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Von Mises softening

Shear modulus G = 1000 kPa
‘Poisson’sratio ¢ = 03
Initial cohesion ¢y = 10kPa
Hardening modulus & = 503 kPa !

Figure 7.2 Model parameters and geometry of biaxial test

The initial cohesion is 10 kPa. In order to trigger a shear-band, a 10% reduced initial
cohesion is applied to one Gauss-point at about a quarter of the height at the right-hand side.
The above geometry was discretized in a finite element mesh with 12, 24, 48 and 96
elements respectively, as shown in Figure 7.3.

During the calculations, it was observed that the iteration process did not run as smoothly
as a non-softening plasticity calculation usually does. As soon as a shear band has developed,
the global stiffness, i.e. the increment of the reaction force divided by the displacement
increment, should be constant because of the linear softening rule. However, the calculations
showed a varying global stiffness. This is partly caused by an unstable failure mechanism in
the sense that the direction and thickness of the shear-band altered during the calculations.

025 m

Figure 7.3 Different finite element meshes for biaxial test on cohesive material
a. 12 elements  b. 24 elements  c. 48 elements  d. 96 elements
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An example of an altering mechanism is shown in Figures 7.4 and 7.5 corresponding to the
24-element mesh. On comparing the plots b and ¢ with the element mesh as shown in
Figure 7.3b, it can be seen that the shear-band thickness is smaller if it coincides with an
element side, and wider if it crosses an element. In the example underneath, the failure
mechanism is indeed triggered by the point with reduced initial cohesion. However, in the
case of the 48-element calculation, the failure mechanism is formed at a place that is different

from the point with reduced cohesion.
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Figure 7.4 Incremental displacements showing alternating mechanism for mesh with 24
elements. a. Step 15 b. Step 20 c. Step 25

£

Figure 7.5 Contour lines of incremental displacements as shown in Figure 7.4
a. Step 15 b. Step 20 c. Step 25
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In order to visualize the problems with the iteration process, a comparison is made in Figure
7.6 between results with the classical approach of softening plasticity and results obtained
with a regularization method, as will be considered in the following chapters. The figure
clearly shows the irregular step size and varying global stiffness obtained with the classical
approach, whereas the second plot shows a much smoother curve with a reduced number of
steps of about equal size. Note that the step size is chosen automatically, depending on the
convergence speed in the iteration process (Van Langen & Vermeer, 1990). From this it can
be concluded that the convergence in the classical approach is much worse than when
applying a regularization.

Figure 7.7 shows the Force-Displacement curves of the four calculations with different
meshes. A marker is drawn for every fifth calculation step. Up to the peak, the curves are
virtually equal, but the behaviour after the peak differs considerably. There is definitely no
convergence towards a particular softening slope when increasing the number of elements.
The highest amount of softening occurs for the smallest shear-band thickness, which is
obtained with the finest mesh. In that case, the Force-Displacement curve shows a so-called
snap-back behaviour.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Vertical displacement [mm] Vertical displacement [mm]

Figure 7.6 Comparison of Force-Displacement curves for biaxial test (24 element mesh)
a. Softening plasticity according to the classical approach
b. Softening plasticity with regularization method
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Force 12 elements

[kN]

>

24 elements

<

48 elements
> 96 elements

T 2 3 4 5 6 1
Vertical displacement [mm]

Figure 7.7 Force-Displacement curves of biaxial test problem for different meshes

7.4.2  Steep embankment slope

The second example is a steep embankment slope in frictional soil with some cohesive
strength. The material behaviour is simulated with the Drucker-Prager softening model.
There is no external load. The applied load is the self-weight of the material, which is
increased as in a centrifuge test. The bottom of the mesh is fixed. The right-hand side can
move in vertical direction and the horizontal direction is fixed because of considerations of
symmetry. The remaining sides are free to move in any direction. The geometry and model
parameters are listed in Figure 7.8.

1.5m

Drucker-Prager softening

vy = 16 kN/m’ =
G = 1000 kPa VR o
y = 04 o
¢ = 10kPa

e = 20° (a=0.58)

v = 10° (8 = 0.30)

h = 200kPa

2.5m

b

Figure 7.8 Model parameters and geometry of embankment
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AT

Figure 7.9 Three finite element meshes for embankment

The geometry is modelled by finite element meshes with 8, 32 and 128 elements respectively
as shown in Figure 7.9. The tolerated global equilibrium error during the iteration process
is 2% of the applied load. The computational results are plotted in Figure 7.10, which shows
the gravity factor against the displacement of the embankment toe. The gravity factor is the
multiplication factor for the material weight.

Apart from the difference in post-failure behaviour, Figure 7.10 clearly shows a difference
in peak load between the three meshes. This means that, even if one is only interested in the
pre-failure behaviour, mesh-dependence makes computational results doubtful. Indeed, on
determining factors of safety on the basis of a peak load, one will be completely misled by
results as indicated in Figure 7.10.

3.0
Gravit O 8 elements
factory 2 32 elements
v 128 elements
2.0 4
1.0
0 .

001 002 003 004 005 006
Displacement at toe [m]

Figure 7.10 Load-displacement curves of embankment for different meshes
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Figure 7.11 Development of plastic points for 32-element mesh

The mesh-dependence of the peak load can be explained by the fact that the localization zone
develops gradually. Figure 7.11 shows that plasticity starts at the toe of the embankment and
develops slantingly upwards to the top. When the plastic zone has just reached the top, the
toe has already been softening for some time. As a result, the actual cohesion in the lower
part may have reduced to the low residual value, whilst the actual cohesion in the upper part
may still have its high initial value. The precise distribution of actual cohesion will depend
on the softening that has occurred during the development of the plastic zone.

In a fine mesh, the deformation gradient across the plastic zone is sharp. This causes a large
dilatancy effect and induces severe softening. As a result, the difference in cohesion between
the top and the toe is considerable. For a coarse mesh it can be argued that the difference
in cohesion is not too much. Hence, when using a fine mesh, integration of the shear strength
along the localization zone gives a lower value than when using a coarse mesh. As a result,
the peak load is lower in a finer mesh. It is mentioned here that in the 128-element mesh the
peak load was passed even before the plastic zone had reached the top, i.e. before a full
failure mechanism had developed.

It should be noted that the difference in peak load is not a result of the particular choice
the of softening model. On choosing the simpler Von Mises softening model instead of
Drucker-Prager softening, a similar effect will occur. In that case, however, the softening
is not induced by dilatancy but by deviatoric plastic straining.

In addition to the mesh-dependence, it was also observed in the current example that,
particularly after peak load, the convergence of equilibrium iterations was very poor. This
is reflected in the curves for the 32-element mesh and the 128-element mesh in Figure 7.10.
In these curves the markers, which indicate the load steps, clearly concentrate at the end.
Hence, the step size decreases more and more towards the end. In fact, for the lower curve
the calculation had to be stopped because of divergence of equilibrium iterations.
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7.5  Conclusions on local softening plasticity

The two examples, one with the simple classical Von Mises softening model and one with
the non-associated Drucker-Prager softening model, show that the computational results are
strongly mesh-dependent. The mesh-dependence is not only manifest in the post-failure
regime, but, for some particular problems, also in the pre-failure regime and the peak load.
Moreover, it was observed that the equilibrium iterations deteriorate as soon as softening
occurs. As yet, the latter phenomenon has not been reported by other researchers and
therefore it merits some further comments. The phenomenon is definitely not related to the
implementation of the model in the computer code, as it was observed that calculations with
a non-negative hardening modulus show perfect convergence. Hence, this phenomenon relates
to the use of softening, at least within the classical approach of local softening plasticity.

From the above observations it is concluded that the classical approach of plasticity is
insufficient when using softening models in numerical applications.
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8 REGULARIZATION TECHNIQUES FOR SOFTENING MODELS

Classical models for softening plasticity suffer from the drawback that any width of the
localization zone is theoretically admissible, whereas experiments show a distinct relationship
with a micro-structural length scale. Application of classical softening models in a numerical
analysis results in severe mesh-dependence, as concluded in the previous chapter. This is due
to the lack of a physical length scale so that this role is taken over by the numerical
discretization. Moreover, it was observed that convergence towards a state of equilibrium
using iterative procedures deteriorates when softening occurs. In the mathematical sense, the
cause of these problems is the fact that the partial differential equation changes type in the
trangition from non-softening to softening, so that the boundary value problem becomes ill-
posed. In the case of a dynamic analysis, wave velocities become imaginary, as already
mentioned by Hadamard (1903). On applying so-called regularization techniques, the
problems related with the use of softening models do not occur. At the beginning of this
chapter an overview is presented of existing regularizations. In the remainder, attention is
focused on a particular type of regularization, the non-local approach. Restriction is made
in this chapter to a one-dimensional description.

8.1 Overview of existing regularization techniques

Classical softening models need to be extended in such a manner that they render a distinct
thickness of shear-bands, rather than any value that happens to be favoured by the particular
mesh being used in a numerical simulation. Such extensions of classical models are called
regularizations.

One way of regularization is to include viscosity in the constitutive model. The use of
viscoplastic (rate dependent) models as a regularization was, among others, discussed by
Sandler & Wright (1984). Indeed, for dynamic problems the inclusion of viscosity might
restore well-posedness. For relatively slow processes, i.e. near-static problems, the amount
of viscosity which is required to retain well-posedness becomes unrealistically high. Hence,
the results of such problems become doubtful, either because of mesh-dependence or because
of the artificial viscosity. For purely static applications the viscoplastic regularization is not
effective at all, so that in the current study, where only static problems are considered, this
type of regularization is not taken into account.

Another way of regularization is based on the Cosserat continuum theory. This theory was
originally introduced by Cosserat & Cosserat (1909). In addition to the displacement degrees-

of-freedom that exist in the classical continuum theory, rotational degrees-of-freedom w;



CHAPTER 8 PAGE 106

appear in the Cosserat theory. The. definition of shear strains is modified and involves the
rotations ;. The spatial derivatives of rotations, i.e. curvatures k. enter the strain vector.
The stress vector is extended with so-called couple-stresses my;. A relationship between the
curvatures and the couple-stresses is included in the material matrix. This relationship
involves an internal length parameter /. In addition to the equilibrium conditions, as
formulated for the classical continuum theory, the Cosserat theory involves conditions for
rotational equilibrium. As a result, extra boundary conditions, either on the rotation or on
the couple-stress, are required to solve the boundary-value problem. In the general case when
the couple-stresses are non-zero, the stress tensor becomes unsymmetric ("xy b "yx)-
After some periods of varying popularity, the Cosserat theory was successfully applied by
Miihlhaus (1986), who indicated its effectiveness as a regularization technique. Since then,
several researchers have investigated the Cosserat theory for softening problems; see, among
others, Vardoulakis (1989) and De Borst (1990). In a recent comparative study by Sluys
(1992) it was concluded that this theory is only effective if shear deformation plays a
dominant role. Besides, when doing finite element analyses, the internal length / must be
large enough with respect to the element size to create a substantial influence of the
"Cosserat-effect” and thus to become an effective regularization.

On reviewing regularizations, Sluys (1992) obtains by far the best results for another type
of regularization: a strain-gradient model. One of the first researchers who included strain-
gradients in the constitutive relation as a regularization method was Aifantis (1984), but the
application of strain-gradients in continuum mechanics had already been described by Mindlin
(1965). In a strain-gradient model higher-order spatial derivatives of strains are added to a
particular part of the constitutive relation. Most of these models include a second-order
gradient of the hardening parameter « in the plasticity model; see among others Vardoulakis
& Aifantis (1989). Some researchers consider a fourth-order gradient term as well (Zbib &
Aifantis, 1989). In the classical theory of plasticity, as described in Section 3.1, one obtains
a direct relationship between rates of stress and strain, i.e. between ¢ and &. On using
a strain-gradient model one obtains a relationship between rates of stress and strain and the

Laplacian of the hardening parameter, i.e. a relationship between ¢, ¢ and V2i. The
fact that the hardening parameter depends on the unknown plastic strain rates forms a serious
difficulty when implementing such a model in a finite element code. Sluys (1992) overcomes
this problem by introducing the hardening parameter « as an extra independent variable in
addition to the displacement components. In fact, the spatial derivatives of « are introduced
as variables as well, which results from the requirement of continuity of the Laplacian. This
gives a significant expansion of degrees-of-freedom in a finite element analysis.

Based on the conclusions of Sluys (1992) it would seem that the strain-gradient method is a
highly attractive regularization method for softening plasticity. However, the numerical
implementation of such a model requires complex extensions of existing finite element codes,
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as described by Sluys (1992). Note that complex procedures can be avoided by adopting
suitable approximations of the hardening parameter in terms of total strains instead of plastic
strains. In this study an attempt was made to arrive at a simplified implementation by means
of a direct calculation of the gradient terms. Indeed, this method is relatively easy to
implement and appears to give proper mesh-independent results for some cases, but the
procedure suffers from numerical scatter and is not robust enough for general applications.

The final type of regularization considered here is the non-local theory, which was not
reviewed by Sluys (1992). In a fully non-local model a relation is established between
average stresses and average strains. In early years, Eringen gave non-local formulations for
elasticity (1972) as well as for plasticity (1981). Later, Bazant et al. (1984) formulated a non-
local theory based on an imbricate model. Pijaudier-Cabot & Bazant (1987) and co-workers
have extensively used the non-local theory in combination with damage models. Instead of
considering a fully non-local stress-strain relationship, it is convenient to consider only a
particular strain measure as non-local, whereas general stresses and strains remain Jocal
(Bazant et al, 1987). This enables a near-local treatment of the constitutive relation. In
plasticity theory, such a model is obtained by formulating the hardening parameter as a non-
local quantity. A disadvantage of such non-local models, as mentioned by De Borst and
Miihthaus (1991), is that elaboration of Prager’s consistency condition for the determination
of the plastic multiplier results in an integro-differential equation. Indeed, this would give
complex numerical procedures, but the procedures can again be simplified by adopting
suitable approximations of the hardening parameter in terms of total strains instead of plastic
strains, as will be shown in Section 9.1.

On expanding a non-local model in Taylor series and omitting high-order derivatives, one
obtains a strain-gradient model (Miihlbaus & Aifantis, 1991). Hence, a strain-gradient model
can be seen as a particular case of a non-local model.

Besides these regularization methods, i.e. viscous models, Cosserat theory, strain-gradient
and non-local models, there are some other simplified methods to provide mesh-independent
softening behaviour. One of these methods is the technique as proposed by Pietruszczak &
Mroz (1981). In their method they accept that the shear-band thickness is given by the
numerical discretization, i.e. the element size, and they apply a multiplication factor in the
softening rule, which is defined as the area of an element over the area of the shear-band.
Other researchers have proposed the use of interface elements to model the localization zone
(Charlier, 1992). In order to model the width of the localization accurately, special
techniques on element level were introduced, as for instance finite elements with localization
modes (Leroy et al., 1987) and adaptive remeshing techniques (Pastor et al., 1991). The
latter method implies a continuous redistribution of elements in such a way that a very fine
grid remains in zones where deformation is concentrated.
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Indeed, all these techniques can provide a more-or-less predictable softening behaviour, but
in a mathematical sense the boundary-value problem remains ill-posed. As a result, these
methods will not solve the problem of poor convergence of iterative procedures.
Nevertheless, some of these techniques can be combined with effective regularization
methods in order to provide a regularization with a high degree of practical applicability.

Non-local theory:

In general, a fully non-local model is based on average stresses o,--*, and average strains

z—:,-j*, where
* 1 B ’ ) ) )
%G = 5 J I j w(x,') 0;(x, +x,) dx;’ dx;’ dx, 8.1
f 1 , o
& = 4 JII w(x,') &;(x, +x,7) dx;’ dxy dx; (8.2)

x,’ is a local coordinate with n = 1,2 or 3. The symbol w denotes a weighting function,

usually taken as the error function, and
A= ”jw(x,,’) dx,” dx, dxy’ (8.3)

A fully non-local model is obtained by introducing a relationship between average stress rates
and average strain rates. The relationship between average stress and local stress complies
with the relationship between macroscopic stress and microscopic stress for granular bodies.
Thornton (1979), Christoffersen et al. (1981) and others have given definitions of the form:

* 1
%G = v J;Oij av 8.4

r
r

where V, is a so-called representative volume; a small sphere around the material point
considered. Hence, the macroscopic stress is an average of the more rapidly varying
microscopic stress. Equation 8.1 simply reduces to Equation 8.4 when assuming a block-type
function w ( x,” ) with w = 1 in the interior of V, and w = 0 outside the
representative sphere. Similarly, sij* and g; can be conceived as macroscopic strain and
microscopic strain respectively. The distinction between macroscopic and microscopic
quantities becomes manifest in the case of localized deformation. It is basically because of
this clear physical background that preference is given in this study to the non-local theory.
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Instead of a well-defined area of influence, as expressed by a block-type weighting function,
it is more reasonable to assume that the non-local character of a constitutive relationship
fades away for larger distances. This effect can be expressed by a particular choice of the
weighting function. A suitable function that represents this property is the error function.

i

In this function r is the distance from any material point to the point where the average is
taken, and / is an internal length parameter, which is related to the width of the localization
zone. In theory, even far remote points contribute to the average, but in practice the
influence is restricted to points within a distance of only a few times the internal length. For
example, the contribution of a point at distance » = 2 [ is only 1.83% of the contribution
of the central point and the influence of a point at distance r = 3 [ is about 0.1%. Other
functions with this property exist, such as goniometric functions, but the difference in the
resulting average is small.

8.2  The existing non-local softening plasticity model

For the sake of simplicity, the existing non-local theory of plasticity is applied to a
one-dimensional tension bar of infinite length (-0 < x < o). Only one local stress
component ¢ and one local strain component & are taken into account. The non-local
formulation is restricted to the softening rule. The relations for the one-dimensional
elastoplastic behaviour are given below:

& = &%+ &P (basic rule of elastoplasticity) (8.6)
g=FE¢& =E(&~¢&P) (elastic stress-strain relation) 8.7
f=o0-o0 (yield function) (8.8)

E is Young’s modulus of elasticity and ¢, is the tensile strength, which obeys a simple
linear non-local softening rule:

5, = ~h&" (8.9)
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Figure 8.1 One-dimensional stress-strain relation

In this relation £ is the softening modulus. The softening is controlled by an auxiliary non-

local strain rate &* . In accordance with Bazant et al. (1987), the non-local strain rate is

defined as:

x

1

= w(r) &P(x+r) dr (8.10)

e

" (x) =

The weighting function w (r) is chosen as the error function as defined in Equation 8.5.
The value A represents the integral of the weighting function over the domain, as defined
in Equation 8.3.

The aim of the non-local model is to obtain a well-posed boundary value problem, resulting
in mesh-independency and good convergence of numerical procedures. However, to the
author’s experience, one-dimensional calculations using the existing non-local model in this
form still resulted in localization in a single point. Hence, the results were not objective with
respect to the schematization. Moreover, the convergence during the iteration process was
very poor. Two-dimensional calculations gave slightly better results, but full mesh-
independence was not obtained. A qualitative explanation will be given below for the fact that
the current non-local formulation is not effective as a regularization method for one-
dimensional applications.

Consider again a one-dimensional softening tension bar with a small imperfection, i.e. a
small section where the initial tensile strength o,o is slightly lower than in the rest of the
bar. Due to this fact, at the onset of plasticity the plastic strain is concentrated in this weak
zone as shown in Figure 8.2a. Note that the precise shape of the plastic strain is of no
importance, but the simple block function in Figure 8.2a is considered for convenience.
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Figure 8.2 Distribution of strain in a bar with an imperfection
a. Plastic strain at the onset of plasticity
b. Non-local strain that follows from &”

The non-local strain & is a redistribution of the plastic strain &”, which always results in
a smoother distribution.

For the distribution of the plastic strain as considered in Figure 8.2a the non-local strain
looks like a Gaussian curve as visualised in Figure 8.2b. The exact shape is influenced by
the choice of the weighting function. In general, the maximum will be in the centre of the
imperfection. According to the non-local softening rule, the material will soften mostly in
this centre point. As a consequence, the plastic strain is more and more concentrated in the
centre point and cannot spread in order to become a fully developed localization zone. If the
non-local strain were such that the maximum extended to the edges of the plastic zone, the
material would soften in a wider range and the plastic strain would spread to become a full
localization zone. These considerations led to the formulation of a modified non-local
plasticity model, which is presented in the next section.

8.3 A modified non-local softening plasticity model

In this modified non-local formulation a new non-local strain rate is introduced which
consists of a local and a purely non-local part. It will be shown that this new formulation is
indeed effective and does not suffer from the problems that occur in the existing non-local
formulation.

For the case of the one-dimensional tension bar, as introduced in the previous section, the
new non-local strain rate can be written as:



CHAPTER 8 PAGE 112

&*(x) = (1-a) &) +% Iw(r) EP(x+r) dr (8.11)

In this formulation « is a new parameter, the value of which can be chosen more-or-less
arbitrarily. Note that for o = 0 the classical (local) theory is obtained. For « = 1 the
above expression is equal to the non-local formulation as given in Equation 8.10. Hence,
based on the considerations at the end of the previous section, the current formulation cannot
be effective for « = 1. As « is increased, one makes sure that zones of low plastic strains
&” get higher non-local strains &". At the same time zones of high plastic strains get lower
non-local strains upon an increasing c.

To illustrate the effect of «, the imperfection of Figure 8.2a is considered again. The
weighting function in Equation 8.11 is again taken as the error function according to
Equation 8.5. For « = 1, the block-type distribution of & results in the Gaussian-type
distribution of Figure 8.2b for &*. The distribution of the non-local strain for a > 1 is
plotted in Figure 8.3a. It can be seen that ¢ has a maximum at the edges of the plastic
zone. As a result, at these points the highest amount of softening occurs. This induces a
converging redistribution of plastic strains in such a way that the non-local strain will finally
be constant over a particular width, as plotted in Figure 8.3b. Hence, an effective non-local
regularization is obtained for o > 1. Note that o < 1 cannot be effective, so that this
case is not taken into consideration at all.

i

Figure 8.3 Distribution of non-local strain in the modified non-local method for « > 1
a. Initial distribution b. Final distribution
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8.4  Analytical solution for the modified non-local model

In this section it will be shown that the modified non-local model allows for an analytical
solutjon. It is important to note that the analytical solution given here is direcily based on the
non-local formulation and not on a differential approximation as presented by Bazant and
Zubelewicz (1988). The analytical solution confirms the observation that for the existing
non-local formulation (or « = 1 in the modified non-local formulation) the localization
zone reduces to a point.

Consider now necking of the tension bar in which the plastic strain rate is formulated as:

&P (x) = —_I‘: (1 + cosx’) Y= 27X (8.12)

with -0 < x < o and L being the width of the localization zone. In fact, necking is a
type of geometrical softening, but it can conveniently be modelled using a one-dimensional
(material) softening model. In reality, a neck will occur very locally for -L/2 < x < L/2
and outside this zone the plastic strain vanishes. However, for convenience, periodic necking
is considered with Equation 8.12 valid for any value of x. It will be shown that this
periodic necking is an analytical solution of the modified non-local model.

The expression for the plastic strain rate as given in Equation 8.12 substituted into Equation
8.11 with the weighting function of Equation 8.5 gives:

N

) (1 + cos(x’+7)) dr

~l -

e*(x) = -2 |(1-a) (1+cosx’) + & J___
h \/—
(8.13)

where 7 = 2xr/ L. In the integral the cosine can be split into two parts using the standard
goniometric rule cos(x’+r’) = cosx’ cosr’ - sinx’ sin r’. Hence, Equation 8.13 becomes:

2
ot -
¢* = -2 11 -a+(1-a)cosx +gILe(’)dr+
A ~ool T
(8.14)
2 2
R =1l
+%cosx’ I_Le 1 cosr dr - £ sinx’ ILe I siny’ dr
~oo
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The integrals in the above expression have a particular form. According to Grobner &
Hofreiter (1961) the integrals can be evaluated as:

Tl

I —— e\ gr=4=1 (8.152)
oo \/_

P -

J LoV cospdr=e \T (8.15b)
Yoo Iy

IR ]

I 7 sinr’ dr =0 (8.15c)

Substitution of Equations 8.15 into Equation 8.14 gives:
2

e*(x) = —% I:I +(1-a) cosx’ + o cosx’ e \ L :’ (8.16)

In order to obtain a stable localization zone, the amount of softening should be constant and
maximal within the range -L/2 < x < L/2. This is obtained if the non-local strain rate &
is constant within the localization zone, i.e. independent from x, which means that the
derivative with respect to x should be zero:

2

ok . ) l’_l)

de" () _ _0 | (1-a) 27 siny - o« 2% sinx'e (L =0 (8.17)
dx A I 2

Elaboration of Equation 8.17 yields an expression for the width of the localization zone L,
which appears to be a function of «:

L= ! (8.18)
VIn(e) - In(a-1)
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L 8
{

6 Lo

Figure 8.4 Width of the localization zone as a function of «

The relation between L and « is plotted in Figure 8.4. From this relation it can be seen
that « must be greater than 1 in order to have a well-defined finite width. In the limiting
case of o« approaching unity, the width of the localization zone reduces to zero. In the
limiting case of « going to infinity, the width of the localization zone also goes to infinity.

all a—>

Hence, the existing non-local theory (o = 1) does not produce a solution to the necking
problem. One needs a factor « as used in the modified theory presented here. For o > 1
the theory incorporates a sound analytical solution for the necking problem.

Preliminary conclusion: the fact that the modified non-local theory allows for an analytical
solution of the necking problem creates some confidence in this approach. It is surprising that
the analytical solution is relatively independent of the particular value of the constant o
being used. Indeed, on changing its value one can also change the value of the internal length
parameter [/ in such a manner that the width of the neck remains constant. Many
combinations of o« and ! will give the same neck, as can be seen from Equation 8.18. At
the same time such combinations theoretically give the same strain distribution within the
neck. As a consequence, all these combinations of « and [ also provide the same rate of
elongation in a tension test. On using the analytical solution to evaluate the rate of
elongation, one obtains for a bar with a single neck:

Ly, = Jédx= J(é"+ép)dx=c’r =

Lbar L
- = 8.20
h ( )
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8.5  Discussion of the analytical solution

In reality, localization will only occur in a single neck and not in periodic necks as
considered in the analytical solution. In the following it will be evaluated to what extent the
analytical solution, as given in Equation 8.12 and the corresponding width of the localization
zone, as given in Equation 8.18, apply to real non-periodic necking.

To this end the relationship 8.11 between the non-local strain rate and the plastic strain rate
is considered. In fact, this relationship can be conceived as an averaging procedure. The
averaging procedure is visualised in Figure 8.5. In this plot the large curves represent the
periodic plastic strain rate &”, as defined by Equation 8.12. The smaller curve is the
weighting function w, as defined by Equation 8.5. The non-local strain is largely
determined by the product between w and €”. Let us first consider a point near the centre
of the neck as illustrated in Figure 8.5a. Here the non-local strain of point A is determined
by the shaded plastic strains. Plastic strains outside the shaded area have hardly any
influence. Hence, for near-centre points, such as point A in Figure 8.5a, the periodicity of
the analytical solution has hardly any influence. For near-edge points the situation is
different. Consider for example point B as indicated in Figure 8.5b. Again, the influence
zone is indicated by shaded plastic strains. Point B is positioned in the same neck as point
A, but not entirely determined by the plastic strains within this neck. Indeed, a smaller part
of the shaded area is located in another neck on the left-hand side. Hence, near-edge points
in single necks will differ from near-edge points in periodic necks. As a consequence, single
necks will not exactly match the periodic necks considered here. It can be argued that single
necks will be somewhat narrower than periodic necks, but differences will be smaller when
larger values of « are considered. Indeed, for a given internal length [, the width of necks
increase as « is increased. As a consequence, the w-curves in Figure 8.5 become small
with respect to the &-curves.

Al i L

|\|| |n||| [“liln;
Figure 8.5 Plastic strain rate for periodic necking and weighting function w,
for computation of non-local strain rate &*.
a. Weighting function for near-centre point
b. Weighting function for near-edge point.
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8.6  Comparison with the strain-gradient theory

The strain-gradient theory is another effective regularization technique to provide well-
posedness in softening problems. According to the gradient theory the auxiliary strain rate

¢* can be formulated as:

2 g2
B = #0) ¢ 2 ds_pg") (8.21)
dx

I, 1s an internal length parameter; the subscript ¢ has been added in order to emphasise the

difference with the non-local theory.

Similar to the modified non-local theory, the strain-gradient theory also allows for an
analytical solution of the necking problem (De Borst & Miihlhaus, 1991). In fact, the
analytical solution is identical to the solution as given in Section 8.4, and Equation 8.12
applies to the strain-gradient theory as well. However, in this case the solution is also exact
for a single neck. The width of the localization zone is found to be:

L, =7l (8.22)

Considering the results as presented by De Borst & Miihlhaus (1991) and the intensive study
by Sluys (1992), it can be concluded that the strain-gradient model is indeed effective as a
regularization technique. In fact, the strain-gradient theory would be very satisfying if its
numerical implementation were not so awkward. Comparison of Equation 8.22 with equation
8.18 shows that both theories give the same width of the localization zone when using:

exp(12/1?
1=1, ln[ @ ] or o= _p(—zg) (8.23)
1 exp(12/17) - 1

As it remains a powerful regularization technique, a comparison is made it with the modified
non-local theory. From Equation 8.23 it follows that the internal length parameter /, as used
in the modified non-local model, is not equal to the internal length /,, as used in the strain-
gradient model. Only for the special case of « = 1.58 do both parameters coincide.

The strain-gradient theory might be conceived as an approximation of the non-local theory.
Indeed, on expanding the non-local strain rate as defined by Equation 8.10 in a Taylor series
around r = 0, one obtains
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oo r2 o (r)z
Ar {r .
é*(x)=lj—1—e(l) SP(X)dr+lJ_r e \1) 48 x) oo,
A L1yr A1) dx
(8.24)
oo r2 o r2
+ l I r? e_(—l) 12_5@ dr + i I r e_(_l) dsé‘p(X) dr + .
A—wZIJ; dx A—ooﬁl\/; dx3

Every odd derivative term falls off in this Taylor expansion, and it follows that:

12 d%&P(x)

£¥(x) = EP(x) + T + higher-order derivatives (8.25)

dx

The difference between Equation 8.25 and Equation 8.21 is just the higher-order derivatives.
In general, Taylor expansions give accurate approximations after a few terms. For this reason
researchers are inclined to think that the higher-order derivatives in Equation 8.25 are
negligible. However, from the fact that the strain-gradient model is effective and the non-
modified non-local model is not, it can already be concluded that the higher-order derivative
terms in Equation 8.25 have an important influence and that they are certainly not negligible.

It is concluded that the modified non-local theory and the strain-gradient theory provide very
similar solutions to the necking problem, although internal length parameters play somewhat
different roles. However, for the special choice of In(e) - In(e-1) = 1 (a = 1.58), their
internal length parameters are equivalent.

8.7  One-dimensional numerical implementation

Finite element application of the modified non-local softening model involves an incremental
approach where an iterative procedure is used to satisfy the equilibrium condition. To be sure
about convergence, an elastic stiffness matrix is used in an accelerated initial stress procedure
(Vermeer & Van Langen, 1989). The writer has great doubts about the use of a tangent
stiffness matrix for the current non-local model. An exact formulation of the tangent matrix
is virtually impossible. An approximated tangent matrix based on the assumption that the
non-local strain rate can be approximated by the local plastic strain rate, yields a stiffness
matrix that would produce much too soft a structural response. Performing equilibrium
iterations with such a matrix tends to give convergence problems. An elastic stiffness matrix
does definitely not suffer from these problems and has therefore been adopted.
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The calculation procedure is similar to ordinary local finite element calculations that involve
initial stress-type procedures. An essential subroutine is the computation of stress increments
for given strain increments. Therefore this topic will be described in full detail.

Time integration of Equations 8.7 and 8.9 respectively yields:
Ao = E (Ae - A&P) (8.26)

Ao, = -h Ac* (8.27)

In the case of elastic behaviour, the plastic strain increment and the non-local strain
increment are zero. For plastic behaviour, the non-local strain increment Ag” is obtained
by time integration of Equation 8.11. Substitution of the plastic strain increment Ag” by
Ag - Ag® gives:

Ae*(x) = (1 -a) (Ae(x) - Aef(x)) +
(8.28)

T __1._ —(_;) (Ae(x+r) - Aee(x+r)) dr
IJr

— 00

DaIQ

In a one-dimensional application the elastic strain increment Ag® can be directly calculated
from the applied stress increment. Hence, the non-local strain increment is related with the
total strain increment Ag rather than with the plastic strain increment Ag”. For a
homogeneous bar the elastic strain increment is constant, which gives:

; T 1_1_ e_(_;) Ae(x+r) dr = Agf(x) (8.29)

—-oC

Hence, the non-local strain increment can be written as:

©o

Ae* (x) = A&P(x) - o Ag(x) + % [ b e_(7) Ae(x+r) dr (8.30)
I

-~ 00
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Using this equation, one computes the non-local strain in a material point from a given
distribution of physical strain. Hence, the entire strain distribution must be known before any
non-local strain can be computed.

For a material point in plastic state which is subject to loading, the change of stress is such
that the new state of stress complies with the yield condition. As a result, the value of the
yield function is zero at the end of the time-step i:

f(d) =0 d =g (8.31)
where
o = ol + Ac d=d"'+Ag, (8.32)

Substitution of the Equations 8.32 for the current stress and tensile strength into Equation
8.31, with the help of Equations 8.26, 8.27 and 8.30, yields an expression for the plastic
strain increment:

1

2
ot -
Aef = o a1 - 0;'1 + (E-ah) Ae + O{Tﬁ I e (’) Ae(r) dr

1
Z n

(8.33)

Note that this expression for the plastic strain increment is exact, even in the case of a
transition from elastic to plastic behaviour. In case the material point was already in plastic
state at the end of the previous time-step, the term o - ¢/! in the above expression is
cancelled.

Backsubstitution of the plastic strain increment into Equation 8.26 gives the final stress
increment. The calculation of the stress increment is summarized in Table 8.1 on the next

page.
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Table 8.1 Calculation of stress increment for a given strain increment

Ao = E Ac¢

2
o) r
f=odl+Ac -0 -ahhe + ah J e (7) Ag(r) dr
IWr e

if f> 0 then

AP = )
E-nh

Ao = Ao - E AéP

2
© (s
Ao, = ~hA& + ahhe - &I J e (’) Ag(r) dr

Ix
end if
o =d1 + Ao
i i-1
o, =0, +Ag

3.8

Numerical versus analytical solution

Again the necking problem for a tension bar is considered, but now the problem is solved

numerically. One of the aims is to verify mesh-independence of the modified non-local

theory. Hence the problem is to be solved for various meshes with different finesses. The
second aim is to verify whether or not the analytical solution is approximately retrieved; both
for the width of the neck and for the rate of elongation of the tension bar. To investigate this
in detail, two combinations of o« and ! will be considered which should give the same

localization width of L = 31.42 mm. The calculations are fully determined by the data as
listed in Table 8.2.
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Table 8.2 Data of the one-dimensional tension bar

Length of bar Ly, = 100 mm

Young’s modulus E =20-10% kPa
Softening modulus - h =2105kPa

Initial strength 0> =210 kPa
Amplification factor @ =72.000 and 6.763
Internal length ! =8326 and 4.000
Number of elements N =35, 15, 35 and 75

High-order 5-noded line elements are used, but lower-order line elements could be used as
well. Calculations are done with four Gaussian integration points per 5-noded element. For
all calculations a neck was triggered by means of a small perturbation; the tensile strength
of the most central Gaussian integration point was reduced by 0.1 percent. The extension of
the bar is simulated by applying prescribed displacements at the bar ends.

Computed load-displacement curves are shown in Figure 8.6. From Figure 8.6a it is
observed that four different meshes give exactly the same curve. For the second series of
calculations only the very coarse mesh produces deviating results, as can be seen from Figure
8.6b. Hence an excellent degree of mesh-independence is found. On comparing Figures 8.6a
and 6b, it is also observed that both sets of « and [ give virtually identical results, as
expected from the analytical solution. Except for the coarsest mesh in Figure 8.6b, all
calculations show a softening slope Ao/Au of about 93-10° kPa/mm, as follows from the
analytical solution.

20

o [kPa] 0 5 elements <103 | © [kPa]
s 15 elements

v 35 elementsT 1.5
> 75 elements

o 5 elements
2 15 elements
< 35 elements
> 75 elements

1.0

a = 2.000 / .
- + 05 1t/ -
I=28326 / 1=4.000 \

u [mm] u = [mm]

0 0.01 0.02 0.03 0 0.01 0.02 0.03

Figure 8.6 Stress-displacement curves of softening bar for different numbers of elements
a. Relatively small «-value b. Relatively large «-value
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Computed distributions of plastic strain increments are shown in Figure 8.7. These data
demonstrate again mesh-independence. Very pronounced strain localizations are observed and
the lengths of these necks can simply be measured. For the computations with « = 2.000,
a length of about 25 mm was measured (Figure 8.7a) and a length of about 29 mm is found
when applying a large value of « = 6.763 (Figure 8.7b). The last one approaches the
analytical solution of L = 31.42 mm. The latter is in line with the argument in Section 8.5,
that larger «-values will give closer approximations of the analytical solution.

1.2
AeP 0 5 elements x10% | AeP 0 5 elements
% 15 elements 2 15 elements
35 elements v 35 elements
75 elements T 08 1 > 75 elements
0.4
a = 2.000 o = 6.763
{=28.326 { =4.000
x [mm] x [mm]
0 20 80 100 0 20 40 L 60 80 100

Figure 8.7 Plastic strain increments of softening bar for different numbers of elements
a. Relatively small «-value b. Relatively large «-value

Figure 8.8 Distribution of non-local strain increment (75 elements)
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Figure 8.8 shows distributions of the non-local strain measure ¢". Here the analytical
solution indicates a block function. The best approximation of this block function is again
obtained for the higher value of the factor «, as expected from the discussion in Section
8.5.
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9 IMPLEMENTATION OF REGULARIZATION TECHNIQUE

In this chapter the modified non-local regularization method, as described in the previous
chapter, is extended to general three-dimensional applications. It is shown that the method
overcomes the problems of mesh-dependency and poor convergence, as indicated in Chapter
7. Moreover, a practical solution is given to avoid the use of very small elements, as needed
for a realistic modelling of localization zones.

9.1 A Drucker-Prager non-local softening model

The Drucker-Prager softening model, as described in Section 7.2, is extended with the non-
local method of the previous chapter. To this end the softening rule, as given by Equation
7.3, is changed to obtain:

c=nw&" 9.1

v

where

&7 (x,) = (1-a) eh(x,) + % J” w(x,) &0 (x, +x,’) dx;” dxy dxy  (9.2)

A= JIJw(xn’) dx;” dx, dx;’ (9.3)

x,’ is a local coordinate with n = 1, 2 0or3 and w denotes the weighting function, in

which the internal length parameter [ is included.

The difference between Equation 9.1 and the similar Equation 7.3 is the volumetric plastic
strain, which is non-local in the current formulation. Elaboration of the full non-local stress-
strain model using the softening rule 9.1 will result in an integro-differential equation, as
mentioned by De Borst & Miihlhaus (1991). This problem can be avoided by using suitable
approximations of the non-local strain rate 9.2. Now, a later approximation is anticipated by
rewriting Equation 9.2 in the form:

s’;*:s€+a[ ]wgﬁdv—e’;] (9.4)

| —
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Apart from a rearrangement of terms, a shorter notation is introduced. In this form, the non-
local formulation resembles the gradient formulation as expressed in Equation 8.21. The term
in brackets can be well compared with the second-order gradient in Equation 8.21. It is
known from gradient theory that the second-order gradient term is negative at the point under
consideration, whereas it is positive at a distance of the order of the internal length from the
point considered. This effect induces a redistribution of plastic strains. The term in brackets
in Equation 9.4 has a similar influence and the factor o can be regarded as an amplification
factor.

In elastoplastic behaviour, the plastic strains usually dominate the elastic strains, so that the
plastic strains can be approximated by the total strains. On applying this approximation to
the volumetric plastic strain rates in brackets in Equation 9.4, the non-local volumetric plastic
strain rate 8’:, *  can be approximated by:

& =é€+a[%JwévdV—év] ©.5)
Note that in the case of a uniformly distributed elastic volumetric strain field, the elastic
components are equal, as in Equation 8.29, and cancel each other out. Under these
circumstances the above Equation 9.5 is exact. However, such a situation rarely occurs in
practical applications, so that Equation 9.5 should be regarded as an approximation.

Elaboration of the elastoplastic stress-strain relation using the above approximation of the
non-local volumetric plastic strain rate in the cohesion softening rule, leads to a regular
expression which is formulated as:

= [Qe_dithT]§_3+hhg%[%IWS”dV_év] @0

at least, when plasticity occurs according to the definition in Equation 3.6b.

The vectors a and b’ were defined earlier in Equation 3.11 and the softening modulus

h was already defined in Equation 7.6.
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9.2 Numerical integration and implementation of the non-local model
The above stress-strain relationship can simply be integrated using the implicit integration

scheme of Section 5.3. Apart from the calculation of the trial stresses ¢ as formulated in
Equation 5.17 (second part), an auxiliary cohesion ¢” must be calculated according to:

¢ =t v anw l% jw Aeg, dV - Aev] .7

Using this value, the new stress state can be explicitly formulated as:

oo

oi:ofr-MDe 9
= d+ h =[

] : 9.8)

Y
1a

The second term is only taken into account if the value of the yield function, based on ¢
and ¢”, is larger than zero, as implied by the McCauley brackets {> . The above
equation is similar to Equation 5.21 for local plasticity, except that the yield function is
evaluated with the auxiliary cohesion.

In the case of plastic behaviour, i.e. when f(d”,¢”) > 0, the cohesion is updated according
to:

. . i
cl= ¢l AN R [%] ok [%JwAsvdV—Aev 9.9)

where AN is defined as:

f(gtr , Ctr)

9.10
d+h ( )

AN =

Considering the numerical implementation of the model, only minor changes are required
compared with the local Drucker-Prager model. Note that the new stress state can be
calculated in a local process without iteration, provided that the non-local contribution

§ wAg, dV/ A, asrequired for the cohesion softening, is known for each stress point.

This local process is summarized in the scheme on the next page.
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o = o+ D° Ag (Equation 5.17)
calculate c¢" (Equation 9.7)
calculate f(d",c™) (Equation 3.3)
if f> 0 then
calculate d and h (Equation 3.9/ 7.6)
T g
AN = ﬁi_’;_) (Equation 9.10)
+
ol = o - AND® [%]' (Equation 9.8)
- g
calculate ¢ (Equation 9.9)
end of if

The non-local contribution  { w Ag, dV / A is calculated from the strain increments in
the integration points. According to the finite element method, the strain increments follow
from the displacement increments in the nodes, as formulated in Equation 5.10. The integral
as mentioned above is evaluated for all integration points:

n
E Vi Wi Aev.
Iw Ag, dv = 2L (9.11)

n
Y viw

i=1

n =

where n is the number of integration points, V; is the representative volume of integration
point i and w; is the value of the weighting function according to Equation 8.5. The latter
depends on the internal length ! as well as the distance 7 between integration point / and
the integration point under consideration.

In fact, the current non-local model is easy to implement in existing finite element programs.
Moreover, the above procedure can be extended to more complex softening models such as
the Advanced Cam-Clay model of Section 7.1.
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9.3  Shear-banding in purely cohesive material

In addition to the Drucker-Prager non-local softening model, as described in the previous
section, a non-local Von Mises softening model can be formulated. A detailed model
description will be omitted, but the Von Mises model is used in some calculations to show
the effectiveness of the modified non-local method for softening problems. This is done by
means of a recalculation of the biaxial test problem of Section 7.4.1. As the problem is fully
documented in Section 7.4.1, attention is focused here on the non-local quantities.

In Chapter 8 an expression was derived for a one-dimensional situation in which the width
of the localization zone L is related to the internal length ! and the amplification factor
«. It is assumed that this expression is also valid for the shear-band thickness in two-
dimensional applications, such as the current biaxial test problem. A realistic shear-band will
usually be very small and requires a very fine grid in a numerical analysis. However, in
order to prove the effectiveness of the current regularization method, it is not necessary to
model a realistic shear-band thickness. Hence, a much wider band can be accepted here.

In the current example, the internal length ! is taken such that the positive influence of the
non-local method is guaranteed for the coarsest mesh being used. The amplification factor
o can, in principle, be selected arbitrarily, provided that it is larger than 1.0. In the current
example, it is chosen for an amplification factor « = 2.0 and an internal length [ = 0.02
m. With these values Equation 8.18 would suggest a shear-band thickness of 0.075 m.

Calculations were performed for the four different element meshes as shown in Figure 7.3.
In contrast to the calculations with local softening plasticity, the current calculations run
smoothly, i.e. fast convergence of the iteration process and barely changing (automatic) step
sizes. Figure 9.1 presents the Force-Displacement curves of the biaxial test problem. The
curves match very well. There is no significant mesh dependence and the softening branch
is almost a straight line. It is remarkable that the softening branch tends to increase after
quite some softening has occurred. This may indicate a slightly changing localization zone.

Figure 9.2 shows the contour lines of displacement increments as obtained from the softening
branch for a force of about 1.4 kN. The numerical results, as shown in Figure 9.2, indicate
a more-or-less homogeneous shear-band thickness of about 0.06 m, independent of the
element size and the orientation of elements. Indeed, the observed thickness is smaller than
the theoretical value, but this is in line with the one-dimensional results for o« = 2.0, as
discussed in Section 8.8. The orientation of the shear-band, i.e. the inclination angle 6, is
about 45 degrees, as expected from theory (e.g. Vermeer, 1990). As softening proceeds, the
orientation 6 tends to decrease a little, which may explain the slightly increasing softening
branch as mentioned before. This type of behaviour is not observed for real soil behaviour.
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Figure 9.1 Force-Displacement curves from biaxial test problem with non-local model
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L

Figure 9.2 Contour lines of displacement increments for biaxial test in softening branch
a. 12 elements b. 24 elements c. 48 elements d. 96 elements

More details on the shear-band orientation will be given in the next section, where frictional
material is considered. The current example shows that the non-local model gives mesh-
independent results and good convergence of iterative procedures. On using a coarse mesh
of only 12 triangular elements, the solution is already fairly accurate, because the results
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from the 96-element mesh are not so different. It should be noted bere that high-order 15-
noded elements were used with full 12-point Gaussian integration. The size of the elements,
as used in the 12-element mesh, is of the order of the shear-band thickness. On using larger
element sizes, say twice the shear-band thickness, the influence of the non-local term is too
low to provide an effective regularization. This could be improved slightly by using 16-point
or even 25-point Gaussian integration, but, as a rule, the lower limit for the element size is
advised to be at least the shear-band width. Using lower-order elements gives an even
stronger requirement for the element size with respect to the shear-band thickness.

From a convergence point of view, the amplification factor o = 2.0 seems to be well-suited
for two-dimensional applications, although the shear-band thickness is smaller than Equation
8.18 suggests. Without presenting any figures, it can be mentioned here that even better
results can be obtained by using a larger amplification factor. This was observed in a
calculation in which « = 5.0 was used in combination with a smaller internal length [ =
0.011 m, such that the resulting shear-band thickness is similar, at least according to
Equation 8.18. Indeed, the softening branch in the resulting Force-Displacement curve shows
an even more regular step-size distribution and approximates a straight line well. However,
the observed shear-band thickness is still too small compared with the theoretical value
resulting from Equation 8.18.

9.4  Shear-banding in rock-like material

Considering rock-like materials, one may observe high friction angles up to 40 degrees
(Vermeer & De Borst, 1984) together with a relatively high cohesion for the intact rock. In
biaxial tests on rock-like materials, thin shear-bands are observed and the collapse modes
very closely resemble those of soil. An extensive study on shear-banding in soft rock was
recently published by Tillard (1992). Within a shear-band, there is an increase of volume,
which breaks down the cohesive ties. The material friction, however, remains more-or-less
the same. The Drucker-Prager non-local softening model, as described in Section 9.1, can
serve as a first approximation for the behaviour of rock-like material.

Again, the biaxial test problem, as described in Section 7.4.1, is calculated. In the current
calculations the Drucker-Prager non-local softening model of Section 9.1 is used. The model
parameters, as listed in Table 9.1, are chosen arbitrarily, but not unrealistically considering
a rock-like material. In order to avoid the use of very small elements, the internal length
parameter is taken much higher than the value that is required to obtain a realistic shear-band
thickness. The amplification factor « is taken as 2.0.
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Table 9.1 Model parameters for biaxial test of rock-like material

Drucker-Prager softening

Shear modulus G = 1-10°kPa

‘Poisson’s ratio .~ - » = 0.3

 Initial cohesion ~ ¢; = 20kPa
Friction angle @ ="140° (a = 1.08)
Dilation angle ¥ o= 10° B =0.30
Softening modulus =~ 4 = 2:10* kPa

Figure 9.3 shows the Force-Displacement curve of the biaxial test. The curves match
reasonably well. The 48-element mesh shows a minor deviation from the other curves, but
the inclination is about equal. This mesh also requires by far the most calculation steps. As
the results of the 96-element mesh are again in line with the coarser meshes, the deviations
as observed in the 48-clement mesh should be considered as a bad coincidence.

Figure 9.4 shows the contour lines of the displacement increments as obtained from the
softening branch for a force of about 5.2 kN. The observed shear-band thickness is equal to
the shear-band thickness of about 0.06 m as observed in the previous example (Section 9.3).
The orientation §, however, is somewhat larger and corresponds well to the formula given
by Roscoe (1970): 6 = 45° + ¢/ 2.

12 elements
24 elements
v 48 elements
> 96 elements

Force
[kN]

—_—

0 002 004 006 008 0.1
Vertical displacement [mm]

Figure 9.3 Force-displacement curves from biaxial test on rock-like material
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Figure 9.4 Contour lines of displacement increments for biaxial test on rock-like material
a. 12 elements b. 24 elements c. 48 elements d. 96 clements

Calculations for highly frictional materials tend to be more cumbersome than for materials
with a low friction angle (De Borst & Vermeer, 1984). For the present non-local model the
situation would seem better, because no real difficulties were encountered here when using
¢ = 40°. However, as yet, experience is restricted to biaxial tests and it cannot be concluded
that the current model can handle high friction angles without difficulties in any type of
problem. On examining Figure 9.3 in detail, it can be seen that the Force-Displacement
curves are not as smooth as those presented in Figure 9.1 for friction less material, but
without any doubt, results are fully mesh-independent. The results can further be improved
by using a larger amplification factor together with a smaller internal length, as discussed in
the previous section.

For a material with a friction angle of 40 degrees, a comparison was made of the shear-band
orientation for a dilation angle of 10° and 25° respectively. Figure 9.5 presents the
incremental displacement fields of both cases. The orientation 6 is significantly larger when
using the larger dilation angle, and corresponds again to the Roscoe solution (57.5°).
Moreover, it was found that on increasing the friction angle without changing the dilation
angle, the orientation remains the same. From this observation it can be concluded that for
the current Drucker-Prager softening model, the shear-band orientation is determined by the
dilation angle according to the Roscoe solution, f = 45° + /2. Vermeer (1990) has
indicated that the Roscoe solution applies generally to coarse sands, where the influence of
stress discontinuities is negligible. In the current numerical model there are no stress
discontinuities, except for small residual stresses. From that point of view it is logical and
reasonable that the Roscoe solution is found in the numerical model.
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Figure 9.5 Comparison of shear-band orientation for ¢ = 40° and different dilation angles
a. y = 10° b. ¢ = 25°

9.5  Softening scaling to improve practical applicability

The modified non-local method is, as any other regularization technique, only effective if the
grid size is in any direction at most the size of the shear-band thickness. In the numerical
model, the shear-band thickness is related with the internal length parameter, whereas from
a physical point of view, the shear-band thickness is related with the average grain size, at
least for granular materials (Miihlhaus & Vardoulakis, 1987). For geomaterials, the real
shear-band thickness is generally very small with respect to the dimension of the geometry
that is modelled in a numerical analysis. In principle, shear-bands can occur everywhere in
the geometry. This leads to the conclusion that realistic calculations of most geotechnical
problems can only be made if thousands of extremely small elements are used, which will
make calculations very expensive and time consuming. Therefore, a more practical solution
is desired.

A step in this direction is made by the use of adaptive remeshing techniques, as developed
by Lohner et al. (1986), Zienkiewicz & Zhu (1987), and successfully applied for shear-band
problems by Pastor et al. (1991). In this method a finite element mesh is continuously
remeshed according to a specific refinement functional. This functional is defined such that,
on remeshing, small elements are formed in zones of relatively large deformations and larger
elements are formed in zones of relatively small deformations. Note that the use of adaptive
remeshing does not abolish the need for an effective regularization technique. Indeed, with
adaptive remeshing, the total number of elements is largely reduced compared with an
extremely fine mesh throughout the whole geometry, but still a lot of elements are required
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to model a shear-band accurately. Moreover, the remeshing procedure is quite complicated
and requires a lot of "administration". The latter point is particularly true when considering
practical geotechnical applications, where soil properties tend to vary from one layer to
another. Nevertheless, adaptive remeshing is a promising method which may be developed
to become a powerful tool for practical geotechnical applications.

In this thesis a very simple method is proposed to predict the appropriate softening behaviour
for practical applications, using relatively large element sizes. The method is called softening
scaling and is based on the technique as proposed by Pietruszczak & Mroz (1981). Instead
of striving for modelling the real shear-band thickness, a much larger non-physical shear-
band thickness is adopted, which is the minimum shear-band thickness that can accurately
be resolved by the given finite element mesh. Therefore an auxiliary internal length

parameter [ is introduced, defined as:

mesh

Lypoch = b ‘/ min(A4;) (for i=1to n) (2-D applications) (9.12a)
Lesh = 1 3,/min( V) (for i=1ton) (3-D applications) (9.12b)

Here A; and V; are, respectively, the area and the volume that are covered by element
i and n is the number of elements. The factor p, which is used to optimize the non-
physical shear-band thickness, is influenced by numerical aspects such as the type of elements
being used and the number of integration points. For the modified non-local method, p is
also influenced by the amplification factor «. Without giving further details, a proper value
for p is suggested here for the modified non-local method using 15-noded elements:

p = yIn(a) - In(a-1) / « (u = 0.15 for « = 5) (9.13)

In addition, a softening scaling factor is introduced, defined as

!
g = ek (9.14)

where [ is the physical internal length, i.e. the value that wili give the real shear-band
thickness. The global softening behaviour depends linearly on the shear-band thickness and
on the softening modulus. The softening increases with decreasing shear-band thickness and
with increasing softening modulus. Hence, on using the auxiliary internal length parameter
instead of a realistic internal length and simultaneously multiplying the softening modulus by
the softening scaling factor, one obtains, in principle, a similar softening behaviour as when
using realistic values for / and A.



CHAPTER 9 PAGE 136

Such a recalculation of parameters can automatically be done in a finite element program.
In combination with the previously described non-local method, a robust and objective
calculation procedure is obtained for softening plasticity. In this way a user can concentrate
on the input of realistic parameters without worrying about numerical difficulties. However,
it should be realized that the observed shear-band thickness is not realistic.

Finite element calculations tend to become more accurate when using a finer mesh. This
general principle is lost when using softening plasticity without regularization, as shown in
Chapter 7. On using the modified non-local regularization method with softening scaling, as
described in this thesis, this general principle of the finite element method is retained. It
should be noted that the use of softening scaling is not purely associated with non-local
regularization, as it can be used in combination with other effective regularization methods
as well.

9.6  Non-local softening and scaling in slope stability problem

In this final application it will be shown that similar softening behaviour can be obtained for
different meshes when using non-local softening together with the scaling method as
described in the previous section. Therefore a slope stability problem, similar to the one in
Section 7.4.2, is calculated using a mesh of 18 elements and 72 elements. For the current
application, model parameters are chosen to be different from Section 7.4.2. Considering
sandy clay, one may observe a realistic shear-band thickness of the order of a few
millimeters, say 5 mm. An amplification factor of « = 5.0 was chosen. An appropriate
internal length would be 7-10* m. The real softening modulus is arbitrarily chosen as 1 kPa.

Table 9.2 Model parameters for slope stability problem

Drucker-Prager softening

Dry weight = 16 kN/m?
Shear modulus = 1000 kPa
Poisson’s ratio =03

Initial cohesion =. 10 kPa

35° (.= 0.98)
5° B:=0:15)
1 kPa

Friction angle
Dilation angle
Softening modulus

eSS T Q=

il
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Figure 9.6 Finite element meshes in slope stability analysis of softening material
a. 18-element mesh b. 72-element mesh

Considering the 18-clement mesh, the minimum element area is 0.20 m?. Using Equation
9.12a with help of Equation 9.13 gives an auxiliary internal length /., = 0.07 m. This
gives a softening scaling factor of 100. Hence, the applied softening modulus in the
numerical model for the 18-element mesh is 100 kPa. In the 72-element mesh, the minimum
element area is 0.05 m%. The resulting auxiliary internal length and the softening scaling
factor are half the values as obtained for the 18-element mesh. The shear-band thickness that
is expected from Equation 8.18 is 0.47 m for the 18-element mesh and 0.93 m for the 72-

element mesh.

0 18 elements
2 72 elements

Gravity
factor

0.0

0.0 0.1 0.2 03 04 0.5
Displacement at toe [m]

Figure 9.7 Force-Displacement curve for slope stability problem
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Figure 9.8 Contour lines of displacement increments indicating a shear-band
a. 18-element mesh b. 72-element mesh

Figure 9.7 presents the Force-Displacement curves of both calculations. Although the curves
do not completely coincide, the results are fully acceptable from a practical point-of-view.
In contrast with the results as presented in Section 7.4.2, the current results give a mesh-
independent peak load. This peak load is higher than in Section 7.4.2, because a larger
friction angle was adopted here.

Figure 9.8 shows a difference in the shear-band thickness of a factor 2. This is induced by
the difference in the auxiliary internal length parameter. The shear-band thicknesses, as
measured from the plots, agree well with the theoretical values. The location and orientation
of the shear-band in both calculations is similar.

Although it can be concluded that the method of softening scaling gives acceptable results
from a practical viewpoint, care should be taken with coarse meshes. In such a case, a wide
shear-band occurs, which may be highly influenced by geometrical effects or boundary
conditions. As a result, no full objectivity with respect to the finite element discretization is
obtained. For relatively fine meshes, the modelled shear-band thickness is small, and
geometrical effects will hardly influence the results.



CHAPTER 10 PAGE 139

10 CONCLUSIONS AND RECOMMENDATIONS

The use of a simple power law to formulate the elastic stiffness modulus as a function of the
stress level is incorrect from a viewpoint of energy. A model based on a (complementary)
strain-energy function does not have this anomaly, but the applicability of such a model is
limited. The complementary strain-energy function of Vermeer (1980) is applicable for
modelling the (elastic) behaviour of sand, but it cannot be generalized to account for a linear
relationship between stiffnesses and stress level, as needed for Cam-Clay type models.
Neither is the complementary strain-energy function of Molenkamp (1988), in its original
form, suitable for Cam-Clay type models. Therefore an extension of this model is proposed
such that stiffnesses proportional with the stress level can be accounted for.

For elastoplastic models, in which only one yield function contributes to plastic straining, the
elastoplastic material matrix can be obtained by elaboration of the consistency condition. For
models in which more than one yield function contributes to plasticity, the proper
elastoplastic material matrix can be obtained by repeating the single yield function procedure
for all active yield functions successively. This new method is simpler than the existing
method in which a set of equations must be solved before the matrix can be formed.

For practical applications, the Mohr-Coulomb model is a widely accepted model to simulate
the behaviour of geomaterials. Generally, this model describes failure more accurately than
the Drucker-Prager model, but for particular conditions the Drucker-Prager model can be
tuned such that it predicts a similar failure load as the Mohr-Coulomb model. In this respect
a formulation is elaborated for the Drucker-Prager parameters for the case of plane strain,
in which the effect of dilatancy is included. In order to further improve the practical
applicability of the Mohr-Coulomb model, it is proposed here to extend this model with a
stress-dependent stiffness modulus, a tension cut-off and a dilatancy cut-off. The extended
model is named the Advanced Mohr-Coulomb model.

The Modified Cam-Clay model does not correctly predict the Kj-path in one-dimensional
compression. This anomaly is improved in the Plaxis Cap model. In the latter model, both
failure and K),-path can be tuned independently with different model parameters. A further
improvement can be obtained by formulating a Mohr-Coulomb like failure surface for the
Plaxis Cap model instead of the Drucker-Prager type failure surface. The latter extension is
not considered in this study and is a subject for further development. An important
conclusion from the use of (cap) hardening models is that the observed stiffness behaviour
does not only depend on the stress level but also on the stress path.
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For the stress integration of the Plaxis Cap model three different situations are discussed in
detail. For elastic behaviour an exact integration scheme is proposed. It is recommended that
an initial strain method for loading and an initial stress method for unloading be used. For
cap yielding, a robust implicit integration scheme is proposed. For the (numerical) integration
of the hardening rule, a midpoint rule performs the best, as far as speed and accuracy are
concerned. Because of non-linearity, a local iteration process is inevitable. For the yield
vertex, also a robust implicit integration scheme is proposed. By again using numerical
integration of the hardening rule, a local iteration process can be avoided.

Concerning global equilibrium iterations, it is known that the use of a consistent tangent
stiffness matrix drastically decreases the number of iterations required for a certain tolerated
error. However, the range of calculation steps that properly lead to convergence was found
to be much smaller than when using the elastic stiffness matrix. As a result, the step size
must be taken much smaller in order to avoid divergence. In general, the total time needed
for an average two-dimensional failure analysis was found to be longer than when using an
elastic stiffness matrix with acceleration procedures (Vermeer & Van Langen, 1989). Hence,
for practical applications it is recommended that an elastic stiffness matrix be used.

From the practical applications it can be concluded that the implementation of the Plaxis Cap
model, as described in this thesis, is indeed robust and performs well. Using hardening
plasticity does not always produce better results than using perfect plasticity. For some
practical applications similar results can be obtained for both categories of geomaterial
models. Hardening plasticity is in favour when successive compression and distortion is
expected or when stress points are successively subject to compressive and deviatoric stress
paths. Moreover, in order to predict lateral deformations correctly in quasi vertical loading
problems, the use of a hardening model is required.

Softening behaviour of overconsolidated clay as well as rock-like material can be described
as a first approximation with a Drucker-Prager linear softening model. This model can be
extended to the highly non-linear Advanced Cam-Clay model, as described by Atkinson &
Bransby (1978). A first approach to a mathematical formulation of this model is given in this
thesis, but a full formulation and numerical implementation is a subject of further research.
Numerical analyses with local softening plasticity do not only cause mesh-dependency, as
mentioned in several publications, but poor convergence of equilibrium iterations as well. For
the numerical analysis of softening behaviour, the use of a regularization method is definitely

required.

The non-local theory is a regularization method with a clear physical background. Existing
non-local models, in which the softening parameter is treated as a pure non-local quantity,
distributed according to the error function, do not give a proper regularization in one-
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dimensional applications. The modified non-local method, as introduced in this thesis, in
which a different formulation of the softening parameter is utilized, does give a proper
regularization. For the one-dimensional case of necking in a tension bar, an exact analytical
solution exists which is directly based on the non-local formulation.

The modified non-local method can easily be applied to the Drucker-Prager softening model
and implemented in a general three-dimensional finite element program. The method is
robust, gives mesh-independent results and provides proper convergence of equilibrium
iterations. The amplification factor ¢, as used in the definition of the non-local softening
parameter, must be larger than 1. Based on current experience, a value of 5.0 is
recommended, but a more detailed investigation is required. This is a topic for further
research. Shear-band analyses of biaxial test problems indicate that the current non-local
model] gives a shear-band orientation according to Roscoe’s solution. The amount of softening
linearly depends on the shear-band thickness. For a good performance of the non-local
method, the (15-noded) element size in each direction must be smaller than the shear-band
thickness. In order to avoid the use of many extremely small elements in practical
applications, one could use the method of softening scaling, as proposed in this thesis, based
on earlier work of Pietruszczak & Mroz (1981). In this method, the softening behaviour is
modelled sufficiently accurately, but the shear-band thickness is not realistic.
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SYMBOLS AND SIGN CONVENTION

Strain interpolation matrix

Cohesion

Undrained shear-strength

Elastic material matrix representing Hooke’s law

LR

Void ratio

Young’s modulus

Yield function

Vector with discrete force components
Plastic potential function

Hardening / softening modulus

Shear modulus

Identity matrix

RNIN Yy e ™M S e g oW

Bulk modulus

Coefficient of lateral earth pressure
Global stiffness matrix

Internal length parameter

Length

Width of localization zone

Power in stress-dependent stiffness relation
Tangent of Critical State Line
Material stiffness matrix

Matrix with interpolation functions
Overconsolidation ratio

B P

RS 8II2
=

Isotropic stress or mean stress
Positive for pressure; negative for tension
Isotropic preconsolidation stress

]
)

Positive for pressure
POP Pre overburden pressure
Equivalent shear stress
Normalized stress direction vector
Vector with boundary traction components
Vector with displacement components
Vector with discrete displacement components
Weighting function
Complementary strain energy function

g IR S LS
.
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Amplification factor in non-local strain measure

Drucker-Prager friction constant

Drucker-Prager dilation constant

Soil weight

Vector with Cartesian strain components

Normal components positive for extension; negative for compression

™ 2w R R

Equivalent shear strain
Volumetric strain
Positive for compression; negative for extension

[

Softening scaling factor

x =

Swelling index
Modified swelling index
Plastic multiplier

*

Compression index

Modified compression index

Poisson’s ratio

Vector with Cartesian stress components

Normal components positive for tension; negative for pressure
Vertical preconsolidation stress

Negative for pressure

Friction angle

*

S 2

S

Dilation angle
w : Numerical integration constant
w =10 : explicit ; w =1 : implicit

< 8

Only rectangular Cartesian coordinates are considered. A single underscore is used to identify
a vector and a double underscore is used for matrices. A small dot above a symbol indicates
the time-derivative (rate) of a particular quantity.

General three-dimensional coordinate system and sign convention for stresses:



PAGE 151

SUMMARY IN DUTCH  (Samenvatting)
Nederlandse titel: ~ Materiaalmodellen voor Grond en Numerieke Analyse van Softening

Met de brede toepassing van computers worden geotechnische constructies steeds vaker door
middel van eindige-elementenberekeningen geanalyseerd. Een wezenlijk onderdeel in deze
benadering is het materiaalmodel, dat wil zeggen de toegepaste spanning-rek relatie die het
grondgedrag weergeeft. In dit proefschrift worden enige materiaalmodellen beschreven en
geévalueerd met speciale aandacht voor de praktische toepasbaarheid. In aansluiting hierop
worden verbeteringen voorgesteld.

Toepassing van conventionele materiaalmodellen met softeninggedrag, dat wil zeggen afname
van de sterkte, leidt tot discretizatie-afhankelijke oplossingen en slechte convergentie van het
evenwicht-iteratieproces. Door middel van regularizatiemethoden kunnen deze problemen
worden verholpen. In dit proefschrift wordt een verbetering van een non-local
regularizatiemethode voorgesteld en wordt de toepassing van de methode in eindige-
elementenberekeningen beschreven.

Wanneer een grondconstructie in zeer geringe mate wordt ontlast en/of herbelast, zijn de
daarbij optredende rekveranderingen nagenoeg reversibel. Een dergelijk gedrag kan worden
beschreven door middel van elastische en pseudo-elastische modellen, welke in hoofdstuk 2
van dit proefschrift aan de orde komen. Voor een energetisch correcte beschrijving dienen
elastische modellen te zijn gebaseerd op een zogenaamde strain-energy function, waarvan hier
een tweetal wordt geanalyseerd. Voor klei en wellicht ook voor veen is het van belang dat
de stijfheid evenredig is met het spanningsniveau, hetgeen in beide modellen onmogelijk is.
Van één van deze modellen wordt daarom een uitbreiding voorgesteld, waarmee een stijfheid
evenredig met het spanningsniveau weél tot de mogelijkheden behoort.

Het optreden van irreversibele rekken kan worden beschreven door middel van elasto-
plastische modellen. In hoofdstuk 3 wordt aan de hand van een tweetal bekende
materiaalmodellen de basis van de plasticiteitstheorie beschreven. Speciale aandacht wordt
besteed aan de formulering van vertices in het irreguliere Mohr-Coulomb vloeioppervlak.
Daarnaast wordt getoond hoe het Drucker-Prager model voor plane strain situaties met
dilatantie kan worden afgestemd op het Mohr-Coulomb bezwijkcriterium.

Naast het correct beschrijven van het bezwijkgedrag, is het van belang dat een materiaal-
model het gedrag in compressie correct weergeeft. Met name (quasi) ééndimensionale
samendrukking is een in de praktijk veel voorkomende belastingsituatie. Hierbij treden er
weliswaar irreversibele rekken op, maar van bezwijken is meestal geen sprake. Een dergelijk
gedrag kan worden beschreven met een hardening model, waarvan Cam-Clay modellen een
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goed voorbeeld zijn. In hoofdstuk 4 wordt een beschrijving gegeven van het bekende
Modified Cam-Clay model. Dit model heeft als nadeel dat de laterale gronddrukcoéfficiént
K, onjuist wordt weergegeven. In dit proefschrift wordt daarom een uitbreiding van het
Modified Cam-Clay model geintroduceerd, genaamd het Plaxis Cap model, welke
bovengenoemd nadeel niet heeft. De relatie tussen K; en de modelparameters komt in dit
hoofdstuk uiteraard uitvoerig aan de orde.

In hoofdstuk 5 wordt een algemene formulering gegeven van de eindige-elementenmethode
voor deformatieberekeningen. Vanwege het niet-lineaire karakter van de modellen zijn er
iteratieve procedures nodig om tot een evenwichtsysteem te komen. Het grootste deel van dit
hoofdstuk behandelt de tijdsintegratie van spanningen en de numerieke implementatie van het
in hoofdstuk 4 beschreven Plaxis Cap model. Voor het cap-hardening deel worden
verschillende integratiemethoden geévalueerd, waarbij de numerieke integratie op basis van
de midpoint regel als beste wordt beoordeeld.

Het belang van hardening plasticiteit, zoals geformuleerd in Cam-Clay modellen, wordt
geanalyseerd in hoofdstuk 6 aan de hand van een drietal berekeningen van praktijksituaties.
Hierin worden de resultaten van berekeningen met het Plaxis Cap model vergeleken met die
van eenvoudiger modellen. De conclusie van deze analyse is dat het gebruik van hardening
modellen voordelen biedt in situaties waarbij er successievelijk compressie en distorsie
optreedt, of in het geval van quasi ééndimensionale samendrukking waarbij horizontale
deformaties een belangrijke rol spelen.

Hoofdstuk 7 geeft een beschrijving van enige materiaalmodellen met softening. Terwijl voor
niet-softening modellen de eindige elementen oplossing bij toenemende verfijning van de
discretizatic convergeert naar een eenduidige oplossing, leidt een conventioneel
softeningmodel tot een oplossing die afhankelijk is van de discretizatie. Bovendien kunnen
convergentieproblemen ontstaan tijdens het iteratieproces, waardoor het beoogde
evenwichtsysteem moeizaam wordt bereikt. Dit laatste punt is in eerdere studies sterk
onderbelicht, maar er wordt hier aangetoond dat dit een consequentie is van het gebruik van
conventionele softeningmodellen. Voorbeelden illustreren dat resultaten van berekeningen met
conventionele softeningmodellen onbetrouwbaar zijn.

Het probleem van de discretizatie-afhankelijkheid werd al in het midden van de jaren 70
geconstateerd, waarna diverse onderzoekers in de jaren 80 fundamentele oplossingen van dit
probleem hebben voorgesteld, de zogenaamde regularizatiemethoden. Eén van deze methoden
is de non-local theorie, waaraan een belangrijke impuls is gegeven door Bazant. In hoofdstuk
8 wordt echter aangetoond dat de bestaande non-local methode niet effectief is, en er wordt
een nieuwe formulering voorgesteld. Om een goed inzicht te verkrijgen in de werking van
de methode alsmede de invloed van non-local parameters, wordt er in hoofdstuk 8 uitgegaan
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van een puur ééndimensionale spanning-rek relatie met lineaire softening. De nieuwe
formulering leidt tot een analytische oplossing voor het lokaal bezwijken van een trekstaaf.

In hoofdstuk 9 wordt beschreven hoe de non-local methode kan worden uitgebreid naar
algemene toepassing in driedimensionale softeningmodellen. Na de formulering van een
robuuste eindige-elementen implementatie, wordt er aangetoond dat, bij toepassing van deze
methode op de in hoofdstuk 7 beschreven softening modellen, de genoemde discretizatie- en
convergentieproblemen zich niet meer voordoen.

De conclusies van het onderzoek worden tenslotte weergegeven in hoofdstuk 10.
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