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Abstract

In this report the formulation of the UBC3D constitutive model as imple-

mented in PLAXIS is presented. The UBC3D is a 3-D generalized formula-

tion of the original 2-D UBCSAND model introduced by Puebla et al. (1997).

The initial 3-D implementation in PLAXIS was presented by Tsegaye (2010).

An improved version is developed by the authors and the final model is pre-

sented together with a validation in different monotonic and cyclic stress

paths. UBC3D-PLM consists a relatively simple but powerful approach

in order to model the onset of the liquefaction phenomenon. In Chapter

1 the main features of the UBC3D-PLM are presented. The model utilises

isotropic and simplified kinematic hardening rules for primary and secondary

yield surfaces, in order to take into account the effect of soil densification

and predict a smooth transition into the liquefied state during undrained

cyclic loading. By means of a simplified Rowe stress-dilatancy theory the

model is capable of modelling cyclic liquefaction for different stress paths.

Post liquecation behaviour of loose sands and cyclic mobility of dense sands

can be modelled in terms of a stifness degradation rule. In Chapter 2 the

validation of the model in monotonic and cyclic stress paths is discussed.

Moreover,the performance of the model in a finite element scheme is in-

vestigated and the numerical modelling of a dynamic centrifuge test with

PLAXIS 2D Dynamics is presented. The ability of the model to capture

the onset of liquefaction is thoroughly discussed. The capabilities and the

limitations are highlighted and recommendations for the use of the model

are summarized.



Chapter 1

Key Features of UBC3D

The UBC3D-PLM model has been developed by Tsegaye (2010) and im-

plemented as a user-defined model in PLAXIS. It is closely based on the

UBCSAND model introduced by Puebla et al. (1997), Beaty and Byrne

(1998). The original UBCSAND is a 2-D model developed for prediction of

liquefaction in sandy soils. Its formulation is based on classical plasticity

theory with a hyperbolic strain hardening rule, based on the Duncan-Chang

approach with modifications. The hardening rule relates the mobilized fric-

tion angle to the plastic shear strain at a given stress. It contains a 2-D

Mohr-Coulomb yield surface and a corresponding non-associated plastic po-

tential function. The flow rule in the model is based on the stress-dilatancy

theory developed by Rowe (1962), linearised and simplified according to

energy considerations.

The main difference between the UBCSAND model and the UBC3D

model is the latter generalized 3-D formulation. The UBC3D model uses the

Mohr-Coulomb yield condition in a 3-D principal stress space. Moreover, a

modified non-associated plastic potential function based on Drucker-Prager’s

criterion is used, in order to maintain the assumption of stress-strain coax-

iality in the deviatoric plane for a stress path beginning from the isotropic

line (Tsegaye, 2010).

2



Comparing with the previous version of UCB3D implemented in PLAXIS,

in the latest version a correction is made in the equation of the plastic mul-

tiplier which governs the constitutive relationship between the stresses and

strains and higher accuracy is succeeded during monotonic loading. Finally,

a soil densification rule added in order to predict a more realistic evolution

of excess pore pressures during cyclic loading. This allows the increase of

the volumetric strains with a decreasing rate during shearing. Moreover, the

bulk modulus of water is depended with the degree of saturation which is

specified via PLAXIS input and this user defined model can be used in the

Advanced calculation mode of PLAXIS.

The main characteristics of the model as implemented by (Tsegaye, 2010)

and modified by the authors are presented in the following sections.

1.1 Yield Surfaces

The UBC3D-PLM model uses the well known Mohr-Coulomb yield function

generalized in 3-D principal stress space. In order to understand how the

algorithm deals with the complexity of the 3-D representation of the yield

surfaces, the full set of the Mohr-Coulomb yield functions are introduced

(pressure is positive, tension is positive):

f1a =
1

2
(σ′2 − σ′3) +

1

2
(σ′2 + σ′3) sinφ′ − c′ cosφ′ (1.1)

f1b =
1

2
(σ′3 − σ′2) +

1

2
(σ′3 + σ′2) sinφ′ − c′ cosφ′ (1.2)

f2a =
1

2
(σ′3 − σ′1) +

1

2
(σ′3 + σ′1) sinφ′ − c′ cosφ′ (1.3)

f2b =
1

2
(σ′1 − σ′3) +

1

2
(σ′1 + σ′3) sinφ′ − c′ cosφ′ (1.4)
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f3a =
1

2
(σ′1 − σ′2) +

1

2
(σ′1 + σ′2) sinφ′ − c′ cosφ′ (1.5)

f3b =
1

2
(σ′2 − σ′1) +

1

2
(σ′2 + σ′1) sinφ′ − c′ cosφ′ (1.6)

The six combinations of the principal stresses in the equations define six

planes in 3-D principal stress space. These planes defines the Mohr-Coulomb

yield surface as presented in Figure 1.1. The projection of the yield surface

in the π -plane is presented in Figure 1.2.

Figure 1.1: The intersection of the six planes and finally the yield surface

in 3-D principal stress space. After Tsegaye (2010).

The first step that has to be done by the model is to compute the prin-

cipal stresses of the stress tensor. This is done after solving the eigenvalue

problem. The eigenvalues give the principal stresses and the eigenvectors

will be their directions. As far as isotropic behaviour is concerned the di-

rections of the principal stresses are fixed (rotation of the principal stresses

is not included in UBC3D-PLM) so the material response is not dependent

on the orientation. After the determination of the three principal stresses
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Figure 1.2: Projection of the yield surface in the deviatoric plane. After

Tsegaye (2010).

the yield surface has to be defined. Considering any stress path in the gen-

eralized 3-D stress space visualized in the deviatoric plane, the yield surface

which will be first activated is given by the equation in which the maximum

difference between two principal stresses is being used. The critical yield

surface in the model is given by Equation 1.7:

fm =
σ′max − σ′min

2
−
(
σ′max + σ′min

2
+ c′ cotφ′p

)
sinφmob (1.7)

The above presented equation is derived by the Mohr-Coulomb failure

criterion using the maximum and the minimum principal stress as well as

the mobilized friction angle (see Section 1.2). In order to compute Equation

1.7 the principal stresses are sorted as follows:

−σ1 ≥ −σ2 ≥ −σ3 (1.8)

After the sorting and the development of the yield surface, three possible

stress paths can be produced by the model, in one of the six parts of the

π-plane; triaxial compression, triaxial extension and regular stress path, as

depicted in Figure 1.2.
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Referred to as the apex term, c cotφp defines the point where the yield

surface intersects the mean effective stress axis (p) (see Figure 1.3). Usually,

in granular soils, the cohesion is zero, so the intersection would be located

at the origin of the coordinate system (0,0).

Figure 1.3: Systematization of the yield surfaces in p-q stress space. After

Tsegaye (2010).

When the stress state is inside the space defined by the yield surfaces

elastic behaviour is assumed. However, once the stress path touches the

yield surface plasticity starts to occur. After the reformulation made by

the authors the latest version of the UBC3D-PLM has two yield surfaces in

order to distinguish between the primary and the secondary loading and to

ensure a smooth transition to the liquefied state. This mechanism is better

explained in Section 1.5. The elasto-plastic behaviour of the model will be

analytically presented in the next paragraph.

1.2 Elasto-plastic Behaviour and Hardening Rule

The elastic behaviour which occurs within the yield surface is governed by a

non-linear rule. Two parameters control this non-linear behaviour; the elas-

tic bulk modulus K and the elastic shear modulus G. These two moduli are

stress dependent and the relationships are given in the following equations:
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K = Ke
BPA

(
p

Pref

)me
(1.9)

G = Ke
GPA

(
p

Pref

)ne
(1.10)

where Ke
B and Ke

G are the bulk and the shear modulus respectively, at a

reference stress level. The factors ne and me are parameters define the rate

of stress dependency of stiffness. In the literature, the reference stress level

(pref ) is commonly taken as the atmospheric pressure (PA=100 kPa). Pure

elastic behaviour is predicted by the model during the unloading process.

Once the stress state reaches the yield surface, plastic behaviour is pre-

dicted as long as the stress point is not going immediately back into the

elastic zone. More specifically, plastic hardening based on the principal

of strain hardening is used in the model. The hardening rule governs the

amount of plastic strain (irrecoverable deformation) as a result of mobiliza-

tion of the shear strength (sinφmob). The mobilized friction angle derived

from the Mohr-Coulomb yield criterion (1.7) is given as:

sinφmob =
σ′1 − σ′3
σ′1 + σ′3

=
tmob
s′

(1.11)

where tmob is the mobilized shear stress and s is the mean effective stress

(s).

The hyperbolic hardening rule (Beaty and Byrne, 1998) is presented

schematically in Figure 1.4. It relates the increment of the sine of the mobi-

lized friction angle to the plastic shear strain increment as follows (Puebla

et al., 1997):

δγp =

(
1

G?

)
δ sinφmob (1.12)

G? = kpG

(
p′

PA

)np{
1−

(
sinφmob
sinφpeak

)
RF

}2

(1.13)
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where kpG is the plastic shear modulus number; np is the plastic shear

modulus exponent; φmob is the mobilized friction angle, which is defined by

the stress ratio; φpeak is the peak friction angle; and Rf is the failure ratio

nf/nult, ranging from 0.5 to 1.0, where nf is the stress ratio at failure and

nult is the asymptotic stress ratio from the best fit hyperbola.

The hardening rule as reformulated by Tsegaye (2010) in UBC3D-PLM

model is given as:

Figure 1.4: The original UBCSAND’s Hardening Rule. From Beaty and

Byrne (1998)

d sinφmob = 1.5Kp
G

(
p

pA

)np pA
pm

(
1− sinφmob

sinφpeak
Rf

)2

dλ (1.14)

where dλ is the plastic strain increment multiplier.

1.3 Plastic Potential Function

The plastic potential function specifies the direction of the plastic strain.

A non-associated flow rule based on the Drucker-Prager plastic potential

function is used in the UBC3D-PLM (Tsegaye, 2010).

The plastic potential function is formulated as:

8



g = q − a
(
p′ + c cotφp

)
(1.15)

a =

√
3 sinψmob

cos θ + sin θ sinψ√
3

(1.16)

where θ equals 30◦ cause the Drucker-Prager surface is fixed in the compres-

sion point.

1.4 Flow Rule

In the UBC3D-PLM model the flow rule of the original UBCSAND model

is used, which is derived from energy considerations by Puebla et al. (1997).

The flow rule used in UBCSAND is based on three observations: 1. there

is a unique stress ratio, defined by the constant volume friction angle φcv,

for which plastic shear strains do not cause plastic volumetric strains; 2.

stress ratios which lie below sinφcv exhibit contractive behaviour, while

stress ratios above sinφcv lead to a dilative response; and, 3. the amount of

contraction or dilation depends on the difference between the current stress

ratio and the stress ratio at sinφcv.

The relationship is given as follows:

dεpv = sinψmdγ
p (1.17)

sinψm = sinφm − sinφcv (1.18)

where, dεpv is the plastic volumetric strain increment and φcv is the con-

stant volume friction angle. A graphical representation of the flow rule is

give in Figure 1.5.
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Figure 1.5: Graphical representation of the modified Rowe’s flow rule as

used in UBC3D-PLM.

1.5 Cyclic Mobility and Stress Reversal

Based on the mobilized friction angle an unloading-reloading criterion is

defined in the model as follows:

sinφem < sinφ0m(Unloading; elastic behaviour.) (1.19)

sinφem > sinφ0m(Loading or reloading; plastic behaviour.) (1.20)

The previous mobilized friction angle (sinφom) is memorized from the

previous calculation step, while the current one (sinφem) is calculated based

on the current stresses. During loading, the friction angle is mobilized, and

hardening plasticity occurs. During unloading, pure elastic behaviour is

predicted until the stress point reaches the p′ axis.

A soil densification rule was introduced in the latest verion of the UBC3D-

PLM in order to have higher accuracy in the predicted evolution of the excess

pore pressures. A secondary yield surface was introduced in the model for
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the secondary loading in order to ensure a smooth transition into the liq-

uefied state of the soil. This enables the distinction between primary and

secondary loading.

The secondary yield surface generates less plastic strains compared to the

primary yield surface. An isotropic hardening rule is used for the primary

yield surface, while a simplified kimematic hardening rule is used for the

secondary surface. The plastic shear modulus Kp
G during primary loading

is identical with the one entered as input parameter by the user and is used

in the hardening rule governing the hardening of the primary yield surface.

The plastic shear modulus Kp
G during the secondary loading is formulated

as a function of the number of cycles followed during the loading process

in order to capture the effect of soil densification during drained shearing

reported by many researchers in the literature (Martin et al., 1975).

A simple rule based on stress reversals from loading to unloadind and

vise versa is used in order to define the counting of cycles. This leads to an

increase of the excess pore pressure during uncdrained cyclic loading with a

decreasing rate until the liquefied state is approached.

The modification of the plastic shear modulus during the secondary load-

ing is as follows:

Kp
G = Kp

G ∗
(

4 +
nrev

2

)
∗ hard ∗ fachard (1.21)

where nrev is the number of shear stress reversals from loading to unloading

or vice versa, hard is a factor which is correcting the densification rule for

loose soils and fachard is a multiplier which is a user input parameter to

adjust the densification rule.

A correction is made in the densification rule for loose sands (5 ≤ N160 ≤
9) according to the experimental observations and following the formulation

of the UBCSAND proposed by Beaty and Byrne (2011) and reported by

Naesgaard (2011). The correction rule is as follows:
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hard = min(1,max(0.5, 0.1N160) (1.22)

The plastic shear modulus is limited according to the maximum cor-

rected SPT value (N160) of corresponding dense soils (Equation 1.23). The

maximum N160 for a very dense soil is defined as 60.

Kp
G,max = Ke

G ∗ (maxN1260,max)0.003 + 100 (1.23)

This rule is the result of calibrating a number of direct simple shear

tests. Thus, the calibration factor plays a key role when the user wants to

model different stress paths (cyclic triaxial tests etc.) and the final value is a

matter of judgement according to the most critical stress path for a specific

problem. It finally leads to an increase of the excess pore pressure during

undrained cyclic loading until the liquefied state is approached. The rate of

generation of excess pore pressure decreases by increasing number of cycles

which is proven via experiments.

The new yield surfaces are schematically presented in Figure 1.6. In

Case a, primary loading occurs during the first half cycle in an arbitrary

simple shear test starting from the p′ axis. The initial input parameter for

the plastic shear modulus Kp
G is used and both yield surfaces expand until

the maximum stress state.

In Case b, elastic unloading occurs and the secondary yield surface

shrinks until it reaches the isotropic axis where sinφmob is very small. A

half cycle is counted. Since an isotropic hardening rule is used for the pri-

mary yield surface, it remains at the maximum stress state reached since

the beginning of the test.

In Case c secondary loading occurs but with an identical plastic shear

modulus as used in primary loading followed by elastic unloading. A full

cycle is counted. After the full cycle the densification rule is activated.
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In Case d secondary loading occurs with a plastic shear modulus 4.5 times

stiffer than used in primary loading. The secondary yield surface expands

until it reaches the maximum stress state of the primary yield surface. Then

primary loading is predicted again until the new maximum stress state.

Finally, in case e, when the primary yield surface touches the peak stress

state (governed by the peak friction angle) the secondary yield surface is de-

activated. After the deactivation of the secondary yield surface the primary

loading surface is used again.

1.6 Post-liquefaction rule and cyclic mobility

One important issue during the modelling of cyclic liquefaction in sands

is the volumetric locking. The evolution of the volumetric strains, after

the stress path reaching the yield surface defined by the peak friction angle,

becomes constant due to the formulation of the flow rule (in Equation (1.18)

sinφ
′
mob becomes sinφ

′
p and remains constant while sinφ

′
cv is also constant.

Due to this issue the stiffness degradation of the soil due to the post-

liquefaction behaviour of loose non-cohesive soils or due to the cyclic mo-

bility of dense non-cohesive sands, which is observed in the experimental

studies, cannot be modelled. This limitation is solved in the formulation of

the UBC3D-PLM with the implementation of an equation which gradually

decreases the plastic shear modulus as a function of the generated plastic

deviatoric strain during dilation of the soil element. The stiffness degra-

dation is formulated based on the plastic deviatoric strain related with the

dilation of the soil element, due to the deconstruction of the soil skeleton

which occurs during dilative behaviour. This leads to the decreased soil

stiffness during contraction which follows after the unloading phase. This

behaviour is presented in Figure 8 picturing the process of cyclic mobility

of a dense sand. The stiffness degradation is computed as follows:

13



Kp
G = Kp

G,primary ∗ e
Edil (1.24)

Edil = min(110 ∗ εdil, facpost) (1.25)

where εdil is accumulation of the plastic deviatoric strain which is gener-

ated during dilation of the soil element. With the input parameter facpost

the value of the exponential multiplier term in the above mentioned equa-

tion is limited. The above mentioned behaviour is schematized in Figure

1.7.

1.7 Undrained behaviour in UBC3D-PLM

The undrained behaviour of the soil is treated implicitly by the UBC3D-

PLM constitutive model. Therefore, the increment of the pore water pres-

sure is computed at each step of the analysis. Considering a saturated soil

specimen, the increments in total stress during loading is given by the fol-

lowing equation:

dp = Kudεv (1.26)

where Ku is the bulk modulus of the undrained soil and dεv the volumetric

strain of the soil as a whole.

The effective stress increment can be computed as follows:

dp′ = K ′dεv (1.27)

where K ′ is the bulk modulus of the soil skeleton and dεv its volumetric

strain.

The increments of the pore water pressure is computed with the following

equation:
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dpw =
Kw

n
dεv (1.28)

where Kw is the bulk modulus of the water, n is the soil porosity and dεv is

the volumetric strain of the fluid.

The relationship between the total stresses, the effective stresses and the

pore pressure is assumed according to Terzaghi’s theory (Equation 1.29).

Moreover, the volumetric compatibility under undrained conditions requires

that the equivalent fluid volumetric strain must be equal to the volumetric

strain of the soil skeleton. Equation 1.30 is finally derived.

dp = dp′ + dpw (1.29)

Kw

n
= (Ku −K ′) (1.30)

Once Kw is determined, then the excess pore pressures can be computed

in each increment using Equation 1.28. The Poisson’s ratio for undrained

condition is set as ν = 0.495 implicitly by the model. This value is close to

the upper limit (of 0.5) as water is almost incompressible. Using a value of

0.5 is to be avoided as this is known to cause numerical instabilities. Based

on this Poisson’s ratio the bulk modulus of the undrained soil is computed

as follows:

Ku =
2Ge(1 + νu)

3(1− 2νu)
(1.31)

where Ge is the elastic shear modulus.

The drained bulk modulus of the soil skeleton K ′ is computed in the

same way using the drained Poisson’s ratio which is based on the stress

dependent stress moduli (Equation 1.32).

ν ′ =
3Ke − 2Ge

6Ke + 2Ge
(1.32)
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In the latest version of the UBC3D the bulk modulus of water is depen-

dent with the degree of saturation of the soil. This enables the prediction of

the pore pressure evolution in unsaturated soils. The bulk modulus of the

unsaturated water is defined as follows:

Kwunsat =
KSat
w Kair

SKair + (1− S)KSat
w

(1.33)

where KSat
w is the bulk modulus of the saturated water and Kair is the

bulk modulus of air which equals 1 kPa in this implementation having the

minimum value. This enables to avoid the generation of pore pressures

during modelling a dry sand. under atmospheric pressure. Finally, S is the

degree of saturation in the soil.

In this chapter the formulation of the UBC3D-PLM model has been thor-

oughly discussed. The following chapter presents the validation of the model

under triaxial conditions, in order to investigate how well characteristic soil

behaviour is captured.

1.8 Parameter selection, summary of the UBC3D

input parameters and state variables

In Table 1.8 the input parameters for the UBC3D-PLM model are presented.

The main extracting method of the parameters is by fit the experimental

curves from element tests. It is crucial to pick the proper element test

depends on the stress path which will be the critical during the modelling

process. Usually, in earthquake engineering when the onset of liquefaction

is the modelling target a drained cyclic direct simple shear test (DSS) is the

proper test in order to be able to extract all the parameters for the UBC3D

model.

However, in many cases only data from drained triaxial tests are available

(CD TxC). As the triaxial test does not involve principal stress rotation,

the test data cannot in principal reflect soil response under principal stress
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rotation (Vaid et al., 1995). Puebla et al. (1997) proposed a set of equations

to be used in the original UBCSAND in order to include the effect of the

rotation of principal stresses in terms of stiffness. The equations proposed

are derived by experimental observations and fit to the formulation of the

UBC3D-PLM constitutive model also. They are derived as follows:

For, 0o ≤ aσ ≤ 45o, then Kp
G = (Kp

G)0{F − (F − 1) cos 2a} (1.34)

For, 45o ≤ aσ ≤ 90o, then Kp
G = (Kp

G)0F (1.35)

Where:

• and aσ is the angle between the major principal stress direction and

the vertical axis.

• (Kp
G)0 is the plastic modulus number corresponding to aσ = 0◦ (ver-

tical compression);

• F is the factor of anisotropic plastic response which is less than unity

(proposed value 0.317);

With the use of the proposed equations the plastic shear modulus (Kp
G

which is proper for modelling the direct simple shear stress path (aσ = 45◦)

is possible if the one suits for triaxial compression is known. Even though

with this specific formulation the effect of principal stress rotation in terms

of stiffness during plastic hardening can be modelled, the limitations of

modelling the inherent and induced anisotropy in the framework of classical

plasticity still arise. The proposed equations were derived only in order to

overcome the limitation of using parameters generated from triaxial com-

pression tests which is a common procedure in engineering practice.

Finally, some equations for the derivation of the parameters are pub-

lished by Beaty and Byrne (2011) for the initial calibration of the model
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as generic input parameters. These correlations are based on SPT values

after calibration of the UBCSAND with proposed analytical solutions and

experimental results. The UBC3D-PLM shows a good agreement with the

UBCSAND in this stage of development. However, if only the N160 is used

for the preliminary parameter selection, the model has to be calibrated with

experimental data.

The input parameters of the UBC3D are summarized bellow:

• φcv is the constant volume friction angle;

• φp is the peak friction angle;

• c is the cohesion of the soil;

• Ke
B is the elastic bulk modulus of the soil in a reference level of 100

kPa. It can be derived from a drained triaxial test with a confining

pressure of 100 kPa. When data from a triaxial test with a different

confining pressure are available, it can be corrected using Equation

1.9;

• Ke
G is the elastic shear modulus of the soil in a reference level of 100

kPa. It can be related with the Ke
B using the Poison ratio as shown

in Equation 1.36;

• Kp
G is the plastic shear modulus and has to be extracted after curve

fit;

• me is the elastic bulk modulus index and has a default value of 0.5;

• ne is the elastic shear modulus index and has a default value of 0.5;

• np is the plastic shear modulus index and has a default value of 0.5;

• Rf is the failure ratio nf/nult like in Duncan-Chang mode (0.9);

• PA is the atmospheric pressure;
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• fachard is the densification factor. It is a multiplier that controls the

scaling of the plastic shear modulus during secondary loading. Above

1 the Kp
G becomes higher and the behaviour stiffer and bellow 1 the

Kp
G becomes lower and the behaviour softer;

• N160 is the corrected SPT value of the soil. If this is not known an

approximation with relative density can be made as shown in Equation

1.37;

• facpost Fitting parameter to adjust post liquefaction behaviour;

Ke
B

Ke
G

=
2(1 + ν ′)

3(1− 2ν ′)
(1.36)

N160 =
RD2

152
(1.37)

PPR =
p′i − p′c
pi

(1.38)

where p′i is the initial effective mean stress and p′c is the current effective

mean stress. When PPR equals 1 then the soil is in a liquefied state.

The PPR state variable can show the current status during the calculation

whereas the PPRMAX can reveal if the soil had been in the liquefied state

even once during the test. The state variable ru gives similar information

as PPR but instead of the effective mean stress the vertical effective stress

is used in the equation as shown in Equation 1.39.

ru =
σ′vertical,i − σ′vertical,c

σ′vertical,i
(1.39)
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Table 1.1: Input Parameters for the UBC3D.

Name Symbol Unit Method Default

Constant volume fric-

tion angle

φcv (◦) CD TxC or DSS -

Peak friction angle φp (◦) CD TxC or DSS -

Cohesion c kPa CD TxC or DSS 0

Elastic Shear Modulus Ke
G - Curve Fit -

Elastic Plastic Modulus Kp
G - Curve Fit -

Elastic Bulk Modulus Ke
B - Curve Fit -

Elastic Shear Modulus

Index

ne - Curve Fit 0.5

Elastic Bulk Modulus

Index

me - Curve Fit 0.5

Plastic Shear Modulus

Index

np - Curve Fit 0.5

Failure Ratio Rf - Curve Fit 0.9

Atmospheric Pressure PA kPa Standard Value 100

Tension Cut-off σt kPa - 0

Densification Factor fachard - Curve Fitting 1

SPT value N160 - In-Situ Testing -

Post Liquefaction Fac-

tor

facpost - Curve Fitting 0.2-1
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Table 1.2: State variables of the UBC3D.

Name Symbol Explanation

Mobilized Friction An-

gle

sinphi mob Equation 1.11

Maximum Mobilized

Friction Angle

maxsinphi mob -

Internal Variable etham r Equals with the

sinphi mob

Number of Cross Over xCross Number of half cycles

Internal Variable dsinphi mob evolution of sinphi mob

Confining Factor facConf Always 1 in this version

Internal Variavle PhiPReached It is 1 when the φpeak is

reached

Internal Variable ru Equation 1.39

Initial mean stress p0 In the beginning of the

dynamic phase

Pore pressure ratio PPR Equation 1.38

Initial vertical stress SigV 0 -

Maximum Pore pres-

sure ratio

PPRMax -

Maximum ru ruMax -
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Figure 1.6: Introduction of two yield syrfaces in order to include soil den-

sification, smooth transition in liquefaction state and post-liquefaction be-

haviour.
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Figure 1.7: Undrained cyclic shear stress path reproduced with UBC3D-

PLM for dense sand. Cyclic mobility, stiffness degradation and soil densifi-

cation are mentioned on the graph.
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Chapter 2

Validation of the UBC3D in

various stress paths and a

finite element scheme

2.1 Validation of the reformulated UBC3D-PLM

in monotonic loading

In this section the validation of the UBC3D-PLM under monotonic loading

is presented. The numerical modelling of a monotonic triaxial compression

(TxC) and a monotonic simple shear test (DSS) are shown and compared

with experimental data, as well as with the original UBCSAND as published

by Beaty and Byrne (1998).

The parameters used in the tests are extracted from a drained triaxial

test. The plastic anisotropic factor is used to modify the plastic shear mod-

ulus used in UBC3D-PLM in PLAXIS as proposed by Puebla et al. (1997).

The parameters are summarized in Table 2.1.

In Figure 2.1 the results for the numerical modelling of a triaxial com-

pression test are presented. It can be seen that the reproduced soil behaviour

from the UBC3D-PLM high accuracy and is in close agreement both with the
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Figure 2.1: Validation of the UBC3D-PLM under monotonic triaxial com-

pression. Undrained behaviour of loose Syncrude sand. Isotropic consol-

idation with p′ = 100. The data from the numerical calculation and the

experimental result are published by Beaty and Byrne (1998).

experimental data and the results from the original UBCSAND. In Figure

2.2 the results for the numerical calculation of a monotonic direct simple

shear test are presented. The UBC3D-PLM model is in good agreement

both with the experimental data and the results from the original UBC-

SAND for this stress path. The model shows a stiffer undrained hardening

behaviour in small strain but this can be improved after a better calibration

of the input parameters specifically for the proposed model. In this test the

parameters are calibrated based on the original UBCSAND.

It is concluded that the UBC3D can model the undrained behaviour of

loose sand with high accuracy.
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Figure 2.2: Validation of the UBC3D-PLM under monotonic direct simple

shear. Undrained behaviour of loose Syncrude sand. Vertical applied stress

100 kPa. The data from the numerical calculation and the experimental

result are published by Beaty and Byrne (1998).

2.2 Validation of the UBC3D-PLM in cyclic load-

ing

The behaviour of loose Fraser sand under cyclic direct simple shear is mod-

elled and the numerical results are compared with experimental data as

published by Sriskandakumar (2004). The relative density RD of the tested

sand is 40 %. Three different shear stress ratios are used (CSR=0.08, 0.1,

0.12) with the same set of parameters. The vertical applied stress is 100

kPa in all cases. The K0 factor in the numerical calculations is assumed to

be 0.46 computed with the well known Jaky formula. Therefore the initial

stresses after consolidation in the two horizontal directions equal 46 kPa.

In Figures 2.3, 2.4 and 2.5 the evolution of excess pore pressure in three

stress controlled DSS tests are presented. The input parameters are pre-
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φp(
◦) φc(

◦) Ke
B Ke

G Kp
G(TxC) Kp

G(DSS) Rf F

33.7 33 300 300 310 98.3 0.95 0.317

Table 2.1: Model parameters used to simulate undrained behaviour of loose

Syncrude sand (Puebla et al., 1997). The stiffness parameters determined in

reference stress level of 100 kPa and are unitless. The Rf and F are unitless

parameters.

sented in Table 2.2. Even though modelling the onset of liquefaction in

the framework of classical plasticity is very complicated, the UBC3D-PLM

constitutive model can reproduce the evolution of excess pore pressures to-

wards cyclic liquefaction with adequate accuracy for three different shear

stress ratios using the same set of parameters. The updated formulation of

the densification rule is helping the model not to predict very steep evolution

of the excess pore pressures in the case of the anisotropic consolidated soil

which was reported by Petalas et al. (2012) for previous formulations.

One of the main limitations of the model is presented in the case of

the higher shear stress ratio (CSR=0.12). The formulation of the UBC3D-

PLM cannot take into account the anisotropic consolidation effects during

the primary loading which causes higher evolution of the excess pore pres-

sures during the first full cycle. Due to this issue the UBC3D-PLM predicts

a slower evolution for this CSR. The slope of the curve in the experimental

results is much steeper during the first two half cycles as can be seen in

Figure 2.5. The ability of the UBC3D-PLM of reproducing with high ac-

curacy the cyclic stress paths which are started from the isotropic line was

presented by Petalas et al. (2012).

In Figure 2.6 the influence of the post liquefaction formulation can be

seen for the case of the lower shear stress ratio (CSR 0.08). The predicted

total shear strains are in a good agreement with the experimental results

and prove the liquefied state of the soil. The same good agreement in the

predicted relationship between the shear stress and the shear strain is ob-

27



Table 2.2: Input parameters for the validation of the UBC3D-PLM in mod-

elling cyclic element tests and a dynamic centrifuge test.

Cyclic and Dynamic Tests

Input Parameters Cyclic DSS Dynamic Centrifuge

φp(deg) 33.3 31.2

φcv(deg) 33 34.6

Ke
B(-) 848 720

Ke
G(-) 594 1031

Kp
G(-) 243 700

me and ne(-) 0.5 0.5

np(-) 0.4 0.4

Rf (-) 0.81 0.74

PA(kPa) 100 100

σt(kPa) 0 0

fachard(-) 0.45 0.45

N160(-) 8 13

facpost(-) 0.01 0.01
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Figure 2.3: Evolution of excess pore pressures during simple shearing on

Fraser sand (RD=40%). CSR=0.08. σv=100 kPa.

served for the other two shear stress ratios as well, still with the same set of

parameters.

Finally, in Figure 2.7 a drained strain controlled cyclic direct simple

shear test on the same soil is modelled with constant applied strain up to

3%. The first cycle is highlighted. It can be concluded that the constitutive

model over-produce hysteretic damping in the system because of the linear

elastic unloading rule with constant shear modulus equals Gmax. This leads

to bigger area of the hysteretic loop, which equals with the amount of pre-

dicted damping. This fact is well documented in the literature also for the

UBCSAND model (Beaty and Byrne, 2011) and is an intrinsic characteristic

in the formulation of the model.

In the final section the validation of the reformulated version in a finite

element scheme is presented. This gives the opportunity to investigate the

limitations of the reformulated version during non-symmetric cycles, under

different stress paths during the test and finally to have a clearer opinion on

the influence of the K0 value.
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Figure 2.4: Evolution of excess pore pressures during simple shearing on

Fraser sand (RD=40%). CSR=0.1. σv=100 kPa.

Figure 2.5: Evolution of excess pore pressures during simple shearing on

Fraser sand (RD=40%). CSR=0.12. σv=100 kPa.
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Figure 2.6: Evolution of shear strains during undrained simple shearing.

Fraser sand (RD=40%). CSR=0.1. σv=100 kPa.

Figure 2.7: Over-produce of hysteretic damping of the UBC3D-PLM con-

stitutive model. The elastic unloading with Gmax leads to over-produced

damping.

31



2.3 Validation of the UBC3D-PLM in a finite ele-

ment scheme

A dynamic centrifuge test is modelled with PLAXIS 2D dynamics in order

to validate the UBC3D-PLM in a boundary value problem. The numerical

results are compared with the experimental results published by Byrne et al.

(2004). The input parameters are presented in Table 2.2.

The depth of the sand in the model on prototype scale is 38.1 m. The

width does not have any influence in numerical modelling and a 1D soil

response is predicted. The total time of the input acceleration is 33 seconds.

50 loading cycles are modelled with constant amplitude of acceleration equal

to 1.96 m/s2.

The results of the predicted evolution of excess pore pressure are pre-

sented in Figure 2.8. At 13.1 meters depth the numerical predictions is in

a close agreement with the experimental result. The model can predict the

onset of liquefaction with adequate accuracy for this depth. However, in the

two higher depths, i.e., at 24.8 and 30.8 meters, the model shows inaccu-

racy during the first loading cycles. It predicts a much steeper evolution of

excess pore pressure which lead earlier to the liquefied state compared with

the experiment. This issue gets more crucial in the deeper layer.

The influence of the higher relative density in the deeper layer is critical

in that case. The UBC3D-PLM cannot take into account the specific feature

and the layer is treated as homogeneous. Moreover, the densification of the

soil in the two cases is not in close agreement with the experimental results

and reveals the complexity of the soil behaviour under undrained cyclic

loading. It is concluded from this research that the absence of a stress

densification feature in the model leads to a rapid evolution of the pore

pressures in the first loading cycles. The effective confining pressure does

not influence the behaviour of the current model.
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Figure 2.8: Comparison of the predicted evolution of excess pore pressure by

the UBC3D with the experimental results published by Byrne et al. (2004).
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