
 
 
 

 
 
 
 

Internal Report 
 
 
 
 

Groundwater flow, fully coupled flow deformation 
and undrained analyses in PLAXIS 2D and 3D 

 
 

 
 
 
 
 
 
 
 
 
 
 

Vahid Galavi 
 
 
 

Research department 
 
 
 

Plaxis BV 2010 



Preface 
 
The main goal of this research was to implement groundwater flow and fully 
coupled flow-deformation analysis in PLAXIS 2D and 3D to enhance the code to 
simulate flow and deformation in saturated and partially saturated soils. The ex-
isting undrained analysis of PLAXIS has also been modified for partially satu-
rated soils. The mechanical behaviour of unsaturated soil is described by the 
well-known Barcelona Basic Model (developed for PLAXIS 3D via user defined 
soil model option by Nubia Gonzalez), Gonzalez & Gens (2008).   
 
It is acknowledged that the scientific part of the fully coupled flow-deformation 
analysis is mainly based on the report written by Radu Schwab (2008).  
 
The outline of the work presented in this study is the following: 
 
Chapter 1 presents basic equations and definitions.  
 
Chapter 2 presents the governing equations of flow and deformation. Fist of all 
Darcy’s law is described and then the continuity equation and deformation equa-
tions are derived.  
 
The finite element formulation of the flow and the deformation equations derived 
in Chapter 2 is presented in Chapter 3. 
 
Chapter 4 presents available boundary conditions for groundwater flow calcula-
tion. 
 
Hydraulic models, implemented in PLAXIS 2D and 3D, are discussed in Chapter 
5. 
 
Barcelona Basic Model is briefly described in chapter 6. This chapter gives the 
basic features of the model which is written by Gonzalez & Gens (2008).  
 
Chapters 7 to 10 present numerical verification of the code. Verification of one-
dimensional groundwater flow problems is given chapter 7, while the two prob-
lems are discussed in Chapter 8. Fully coupled-flow deformation analysis and 
unsaturated soil model are verified in Chapter 9 and 10 respectively.  
 
In chapter undrained analysis of PLAXIS is reviewed and the bulk modulus of 
water used in different types of calculation is summarised. At the end of this 
chapter some examples are given.  
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1 Introduction  
 
To analyse mechanical behaviour of saturated or partially saturated soils by 
means of numerical methods (e.g. finite element method) in proper manner, it is 
necessary to take into account both deformation and groundwater flow. For time 
dependent behaviour, this leads to mixed equations of displacement and pore 
pressure, called coupled hydro-mechanical approach, which have to be solved 
simultaneously. For applications which involve a horizontal phreatic surface, the 
equations can be simplified by decomposing the total pore pressure into a 
constant component (steady state pore pressure) and a time dependent component 
(excess pore pressure). But in many practical cases the distribution of stationary 
pore pressure is unknown in the beginning of the calculation stage (undrained 
excavations with dewatering or simulation of wave loading in off-shore 
conditions). Therefore a more general formulation according to Biot’s theory of 
consolidation is needed which enables the user to simultaneously calculate 
deformation and groundwater flow with time-dependent boundary conditions in 
saturated and partially saturated soils, as presented here. The main challenge in 
this case is the need to use the consolidation theory for unsaturated soil 
conditions at least due to the need to simulate the phreatic line. Due to 
elastoplastic behaviour of soil skeleton and suction dependency of degree of 
saturation and relative permeability, all coefficients of the global stiffness matrix 
in the finite element formulations of Biot theory are non-linear. This case is 
completely different from the equations of saturated soils where only the 
elastoplastic stiffness matrix is non-linear. Therefore efficient numerical 
procedures are required, as implemented in PLAXIS. Accuracy, robustness and 
efficiency of the calculation depend on the method that selects the time 
increments. PLAXIS 2D and 3D utilise a fully implicit scheme which is 
unconditionally stable (Booker & Small, 1975). 

Another essential issue for modelling the mechanical behaviour of unsaturated 
soils is the constitutive model implemented in a coupled flow-deformation 
analysis. A conceptually similar model to the well-known Barcelona Basic 
Model (BBM) (Alonso et al., 1990), developed by Gonzalez & Gens (2008), has 
been implemented in PLAXIS via user defined soil model option. The main 
features of the implemented model is that it utilises Bishop stress and suction as 
state variables (Sheng et al., 2003; Gallipoli et al., 2003) instead of net stress and 
suction as utilised in the original BBM. In addition to an implicit stress 
integration scheme based on backward Euler algorithm, a sub-stepping scheme 
proposed by Pérez et al. (2001) is used to integrate the strain-stress relations. The 
input variables of the constitutive model are the increment of total strain and 
increment of suction. 
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Two types of calculations, namely steady state and transient groundwater flow 
calculations for saturated and unsaturated soils have been fully implemented in 
PLAXIS kernels. According to the type of element used for deformation analysis, 
the new kernel uses the same type of element for groundwater flow calculation. 
Usually higher order elements do not behave as well as lower order elements for 
groundwater flow calculation. But additional procedures are utilised in the kernel 
to overcome the problems related to higher order elements. It is shown that the 
model is capable of calculating groundwater flow with a good accuracy. 

Five types of hydraulic models have been implemented in PLAXIS kernels, 
namely Van Genuchten, Mualem (simplified Van Genuchten which has been 
called Van Genuchten in PlaxFlow kernel developed by GeoDelft), linearized 
Van Genuchten, spline and fully saturated.   

In the following all features of the new implementations are presented.   

   

1.1 Basic equations 
 
Representation of formulations is based on the mechanical sign conventions, in 
which compressive stresses and strains are negative. In the same manner, pore 
water pressure pw and pore air pressure pa are considered to be negative in 
compression. Water discharge is assumed to be positive for inflow. 

The porosity n is the ratio of the volume of voids to the total volume, and the 
saturation S is the ratio of free water volume to void volume: 

v

wv

dV

dV
S

dV

dV
n ==                    (1.1)  

The volumetric moisture content is:    

nSdV
dVw ==θ                           (1.2) 

The water content is the ratio of the weight (or mass) of the water and the solids: 

s

w

s

w

n

n
S

dW

dW
w

ρ
ρ

−
==

1
        (1.3) 

The density of the multiphase medium ρ is: 

ws Snn ρρρ +−= )1(         (1.4) 

where sρ stands for the density of the solid particles and wρ is the water density. 
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The stress state of the groundwater can be expressed in terms of groundwater 
heads as well. The hydraulic head φ can be decomposed in the elevation head z 
and the pressure head φp: 

 

        (1.5) 

The equations are presented in a three-dimensional space with a vertical and 

upwards oriented z-axis. For two dimensional problems the y-axis is vertical and 

the range of the vectors and matrices is correspondingly reduced.  

The vector format of the gradient operator ∇ is: 

zyx
T

∂
∂

∂
∂

∂
∂≡∇          (1.6) 

The differential operator corresponding to the definitions of engineering strains 

L is defined as: 
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       (1.7) 

1.2 Unsaturated soil behaviour  
 

Granular matrix, such as soil, is a mixture of solid particles in which pore spaces 
can be filled with liquids and gas. In geotechnical engineering the common fluids 
are air and water. The mechanical behaviour of soil is simplified in classical soil 
mechanics, by considering only two states where soil is fully dry, i.e. all pores 
are filled with air, or soil is fully saturated, i.e. all pores are filled with water. In 
the dry case, it is often assumed that the pores are empty and the compressibility 
of fluid and the degree of saturation are neglected. In contrast, in unsaturated soil 
mechanics the pores are considered to be filled with both liquid (water) and gas 
(air) and the relative proportion of liquid and gas plays a significant role in the 
mechanical behaviour of unsaturated soils. If degree of saturation of liquid is less 
than 1, the soil is called unsaturated or partially saturated which generally 
appears above the phreatic level and the pore water pressure is positive with 
respect to the atmospheric pressure. Below the phreatic level, the pore water 
pressures are negative and the soil is usually saturated. The position of phreatic 
level and the distribution of pore water pressure governed by climate conditions 
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(groundwater flow boundary conditions). In the areas where the upward flux (i.e. 
evaporation and evapotranspiration) exists, suction above phreatic level increases 
(and degree of saturation decreases) and the water level is lowered with time 
while in the case of downward flux (i.e. precipitation) suction decreases (and 
degree of saturation increases) and the water level rises with time. In the case of 
zero net surface flux, the pore water pressure profile become in equilibrium at a 
hydrostatic condition (Figure 1.1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.1: A visualisation of soil mechanics showing the role of the surface flux 

boundary conditions (Fredlund, 1996) 

 

1.3 Suction  
 
Water potential is the potential work of pure water relative to a reference. This 
causes to flow water in porous media from an area with higher water potential to 
an area with lower water potential. The total water potential can be considered as 
the summation of water potential due to matric, osmotic, gas pressures and 
gravity. Flow in unsaturated zones relates to total suction which summation of 
matric S and osmotic suction π :  

 π+= SSt                                                                                                             (1.8) 

In most practical applications, osmotic suction does not exist, therefore: 

 SSt =                                                                                                                   (1.9) 

Matric suction is related to soil matrix (adsorption and capillarity due to soil 
matrix) and it is the difference between soil water pressure and gas pressure: 

 wa ppS −=                                                                                                        (1.10) 
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where, pw and pa are the pore water pressure and the pore air pressure, 
respectively. In most cases, the pore air pressure is constant and small enough to 
be neglected. Therefore the matric suction is negative of the pore water pressure: 

 wpS −=                                                                                                        (1.11) 

1.4 Bishop effective stress 
 
The governing equations of consolidation based on total pore pressure approach 
as used in PLAXIS follow Biot’s theory (Biot, 1941). The formulation is based 
on small strain theory and Darcy’s law for fluid flow is assumed. Bishop’s 
effective stress (Bishop & Blight, 1963) is utilised in this formulation defined by 
Eq. (1.8). Note that the mechanical sign convention is used, i.e. compressive 
stresses are considered to be negative.  

 ( )aw pp )1( χχ −++′= mσσ                                                                               (1.12) 

where: 

 ( )Tzxyzxyzzyyxx σσσσσσ=σ                                                               (1.13a) 

 ( )T000111=m                                                                                   (1.13b) 

σσσσ is the vector with total stresses, σσσσ´ contains the effective stresses, pw and pa are 
the pore water pressure and the pore air pressure, respectively, and m is a vector 
containing unity terms for normal stress components and zero terms for the shear 
stress components. χ is an effective stress parameter called matric suction 
coefficient and varies from 0 to 1 covering the range from dry to fully saturated 
conditions. Considering these two special cases shows that for a fully saturated 
soil (χ = 1), the classical effective stress equation for compressive pore pressure 
is obtained as: 

 wpmσσ +′=                                                                                                        (1.14) 

and for a fully dry soil (χ = 0) the effective stress is 

 apmσσ +′=                                                                                                        (1.15) 

This concept can be simplified for practical application assuming that the pore air 
pressure is constant and is small enough to be neglected (i.e. pa ≈ 0). Therefore 
for a completely dry soil, effective and total stresses are essentially equal. The 
matric suction coefficient χ is generally determined experimentally. This 
parameter depends on the degree of saturation, porosity and on the matric suction 
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(pa – pw) (e.g. Bolzon et al., 1996; Bishop & Blight, 1963). The experimental 
evidences on the matric suction coefficient χ are quite sparse and therefore this 
parameter is often assumed to be equal to the effective saturation in PLAXIS. 
Now the effective stress formulation can be simplified to 

 ( )we pSmσσ +′=                                                                                                      (1.16) 

in which Se is the effective saturation which is a function of the suction pore 
pressure. 
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2 Governing equations 

2.1 Darcy’s law 
 
The flow of water in a saturated soil is commonly described using Darcy’s law 
(1856). He postulated that the rate of water flow through a soil mass is 
proportional to the hydraulic head gradient. The equations of equilibrium for 
groundwater flow are: 

0=++∇ ϕρ gp ww                      (2.1) 

where g = (0, -g, 0)T is the vector of gravitational acceleration and ϕ  the vector 
of the friction force, per unit volume, between the flowing fluid and the soil 
skeleton. This force is linearly dependent on the fluid velocity and acts in 
opposite direction. The relations are: 

qmint−=ϕ                      (2.2) 

where q is the specific discharge (fluid velocity), and mint  is: 

z

y

x

m

κ
µ

κ
µ

κ
µ

00

00

00

int =                   (2.3) 

with µ the dynamic viscosity of the fluid and κi the intrinsic permeability of the 
porous medium. From (2.1) and (2.2) results: 

0int =+−∇− qmgp ww ρ                    (2.4) 

which can be also written as: 

)(int gpkq ww ρ+∇=                     (2.5) 

where  kint  is: 

µ
κ

µ
κ

µ
κ

z

y

x

k

00

00

00

int =                   (2.6) 
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In soil mechanics the coefficient of permeability ki
sat (or hydraulic conductivity) 

is used instead of both intrinsic permeability and viscosity: 

zyxigk i
w

sat
i ,,==

µ
κρ                       (2.7) 

In an unsaturated state the coefficient of permeability depends on the soil 
saturation. The relative permeability krel(S) is defined as the ratio of the 
permeability at a given saturation to the permeability in saturated state. The 
coefficients of permeability defined in (2.7) represent the full saturation, for an 
unsaturated state the permeability is: 

zyxikkk sat
ireli ,,==                     (2.8) 

The basic form of Darcy’s law is: 

( )gpk
g

k
q ww

sat

w

rel ρ
ρ

+∇=                      (2.9) 

where ksat  is the saturated permeability matrix.  

sat
z

sat
y

sat
x

sat

k

k

k

k

00

00

00

=                     (2.10) 

2.2 Compressibility of water 
 
The compression modulus of the air-water mixture is the inverse of the 
compressibility: 

)1( β=wK            (2.11) 

 where  

dp

VdV ww=β            (2.12) 

where dVw and Vw are volume of the water and volume variation due to the 
variation of the pressure. 

For unsaturated groundwater flow the compressibility of water can be expressed 
as follows (Bishop & Eldin, 1950; Fredlund & Rahardjo, 1993).  
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           (2.13) 

 

where S = degree of saturation; βw = compressibility of pure water (4.58×10-7 
kPa-1); h =  volumetric coefficient of air solubility (0.02); Kair = Bulk modulus of 
air (100 kPa at atmospheric pressure). The equation can be simplified by 
neglecting the air solubility (Verruijt 2001): 

 

                   (2.14) 

 

2.3 Continuity equation 
 
The mass concentration of water (residual water) in each elemental volume of the 
medium is equal to ρwnS. The mass continuity equation of the water states that 
the water outflow from the volume is equal to the changes in the mass 
concentration. While the water outflow is the divergence of the mass flux density 
of the residual water ( )qw

T ρ∇ . Therefore the continuity equation has the form 
(Song 1990): 

( ( )Sn
t

gpk
g

k
www

sat

w

rel
w

T ρρ
ρ

ρ
∂
∂−=








+∇∇ )                 (2.15) 

The right hand side of equation (2.15) can be written as: 

( )
t

n
S

t

S
n

t
SnSn

t ww
w

w ∂
∂−

∂
∂−

∂
∂

−=
∂
∂− ρρρρ                  (2.16) 

These three terms represent the changes in water density, saturation and soil 
porosity, respectively.  

According to the principle of mass conservation, for different corresponding 
values of pressure and volume, the mass is constant, i.e.: 

cVm www == ρ                         (2.17) 

Thus: 
 

0=+= wwwww VddVdm ρρ                        (2.18) 

or  

air
w K

ShS
S

+−+= 1ββ

air
w K

S
S

−+= 1ββ
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w

w

w

w d

V

dV

ρ
ρ

=−                                                        (2.19) 

Introducing the definition of water compressibility, we have 

dp
d

w

w β
ρ
ρ

−=                                              (2.20) 

The time derivative of the equation is 

t

p

Kt

p

t w

w

w ∂
∂−=

∂
∂−=

∂
∂ 11 βρ

ρ
                                           (2.21) 

Now, the term containing the derivative of ρw with respect to time can be 
expressed as: 

t

p
S

K

n

t
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p
Sn

t
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w
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∂
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The second term of the right hand side of Eq. (2.16) has the form: 

t

p

p

S
n

t

S
n w

w
ww ∂

∂
∂
∂=

∂
∂ ρρ                                       (2.23) 

The term representing the changes in porosity is composed of: 

• The overall compression of the soil structure due to effective stresses and 
pore pressure: 

t
m

t
Tv

∂
∂−=

∂
∂− εε                    (2.24) 

• The compression of the solid particles due to the changes of the pore 
pressure:  

t

p
S

K

n w

s ∂
∂−− )1(

                    (2.25) 

where Ks is the bulk modulus of the solid particles forming the soil skeleton and  

• The compression of the solid particles due to the changes in effective 
stresses: 










∂
∂−

∂
∂

m
t

p
S

Kt
Mm

K
w

s

T

s 3
1

3
1 ε

                   (2.26) 
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Substituting all the factors in Eq. (2.15) and neglecting the second order 
infinitesimal terms the continuity equation is obtained as: 

( ) ( 0)
1 =
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                                                                                                                        (2.27) 

Equation (2.27) can be reformulated for the flow problem by neglecting the 
deformations of the solid particles and the density gradients of water 
(Boussinesq’s approximation): 
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            (2.28) 

 

2.4 Steady state and transient groundwater flow 
 
Steady state is defined as an analysis, in which the hydraulic head and the 
coefficient of permeability at any point in the soil mass remain constant with 
respect to time which can be consider as a situation of groundwater flow when 
time tends to infinity. In contrast, in transient analyses, the hydraulic head (and 
possibly the coefficient of permeability) change with respect to time. Changes 
are usually in respect to a change in the boundary conditions with respect to time.  

Equation (2.28) can be simplified for transient analysis by neglecting the 
displacements of solid particles, i.e.: 
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                                  (2.29) 

The above equation is a form of the well-known Richards equation which 
describes saturated-unsaturated groundwater flow. The Richards equation has the 
following form (e.g. Dogan & Motz (2005)):  
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)(1        (2.30) 

where Kx, Ky and Kz are permeability coefficients in x, y and z directions, 
respectively. C(h)=(∂θ/∂h) is the specific moisture capacity (L-1) and Ss is the 



12 2 Governing equations 
 

specific storage (L-1). The specific storage Ss is a material property which can be 
expressed as:  









+−=

ws
ws K

n

K

n
gS

1ρ                                                                                       (2.31) 

The compressibility of soil particles can be neglected, therefore: 

w

w
s K

gn
S

ρ
=                                                                                                        (2.32) 

The term C(h) in the Richards equation can be expanded as: 

( )
h

S
nnS

hh
hC

∂
∂=

∂
∂=

∂
∂= θ

)(                                                                               (2.33) 

By substituting equations (2.32) and (2.33) in the Richards equation (Eq. 2.30) 
and changing from head based equation to pore water pressure based equation, 
equation (2.29) is obtained.  

For steady state groundwater flow, in which variation of pore water pressure with 
respect to time is zero, the continuity condition applies: 

( 0) =







+∇∇ gpk

g

k
ww

sat

w

relT ρ
ρ

                                                                   (2.34) 

This equation expresses that there is no net inflow or outflow in an elementary 
area, as illustrated in Figure (2.1).  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.1: Illustration of the continuity condition 
 



2 Governing equations 13 
 

2.5 Deformation equations 
 
For a representative elemental volume of the soil the linear momentum balance is 
given by: 

0gmpSL we
T =++′ ρσ )(          (2.35) 

where  

ws Snn ρρρ +−= )1(                                                                                                                   (2.36) 

is the density of the multiphase medium, g is a vector containing the gravity 
acceleration gT = (0, -g, 0)T in the 3D space and LT is  the transpose of the 
differential operator L (Eq. 1.7). 

Assuming infinitesimal strain theory, the relationship between strain and 
displacements can be formulated as: 

udLd =ε            (2.37) 

Rewriting the effective stress equation (1.12) in incremental form as: 

mdpSdd we+′= σσ                       (2.38) 

The constitutive relation using effective stresses is written as: 

εσ dMd =′                     (2.39) 

M represents the material stress-strain matrix. The governing equation for the 
deformation model is obtained: 

[ ] 0gdmdpSudLML we
T =++ )()( ρ                       (2.40) 
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3 Finite element formulation 

3.1 Deformation problem 
 
In finite element method the displacement field in an element u results from the 
nodal values of the displacements v using interpolation (shape) functions 
assembled in a matrix N: 

vNu =  (3.1) 

Substitution of (3.1) in (2.33) gives: 

vBvNL ==ε  (3.2) 

where B is a matrix containing the spatial derivatives of the shape functions. The 
virtual work equation is: 

Γ+= ∫∫∫
Γ

dtudVbudV T

V

T

V

T δδσεδ  (3.3) 

where b is the body force vector in the volume V and t is the traction on the 
boundary Γ. The stresses can be computed incrementally:  

dt

i

i

t

t

iii

∫
−

+=∆+= −−

1

11 σσσσσ &  (3.4) 

If Eq. (3.3) is considered for the actual state i, the unknown σ i can be eliminated 
using Eq. (3.4), therefore: 

dVdtudVbudV i

V

TiTi

V

T

V

T 1−

Γ
∫∫∫∫ −Γ+=∆ σεδδδσεδ  (3.5) 

Equation (3.5) can be reformulated in discretised form as: 

dVBdtNdVbNdVB i

V

TiTi

V

T

V

T 1−

Γ
∫∫∫∫ −Γ+=∆ σσ  (3.6) 

By writing the body forces and the boundary tractions in incremental form the 
following equation is obtained: 

1−

Γ

+Γ∆+∆=∆ ∫∫∫
i

v
T

V

T

V

T rdtNdVbNdVB σ  (3.7) 

with the residual force vector 1−ir : 
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dVBdtNdVbNr i

V

TiTi

V

Ti 1111 −−

Γ

−−
∫∫∫ −Γ+= σ  (3.8) 

The residual force vector should be equal zero if the solution of step i is accurate.  
Plaxis uses in the consolidation analyses the same shape functions for 
displacements1 and for pore pressures, i.e.: 

nw pNp =  (3.9) 

The principle of effective stresses Eq. (1.12) can be written in the following 
form: 

mpS i
w

i
e

ii 1111 −−−− +′= σσ                                                         (3.10) 

mpS w
i

e ∆+′∆=∆ −1σσ                                                              (3.11) 

By substituting Eq. (3.11) in Eq. (3.7) one obtains: 

1)( −

Γ

+Γ∆+∆=∆+′∆ ∫∫∫
i

v
T

V

T
w

i
e

V

T rdtNdVbNdVmpSB σ            (3.12) 

Substitution of the stress-strain relationship (Eq. 2.35) in Eq. (3.12), we have: 

i
v

T

V

T
w

V

T
e

V

T rdtNdVbNdVpmBSdVvBMB +Γ∆+∆=∆+∆ ∫∫∫∫
Γ

(3.13) 

or in matrix form: 

v
i

uw rfpQvK +∆=∆+∆                                                           (3.14) 

where K, Q and ∆fu are the stiffness matrix, the coupling matrix and the 
increment of the load vector, respectively. 

 

dVBMBK
T

V
∫=                                                                         (3.15) 

                                              
1 For generality, different sets of shape functions may be used to describe the variation of the 

displacements and the pore pressure rates. This implies that the nodes in the finite element mesh may 

have varying degrees of freedom, with some being associated with displacements, some being associated 

with pore pressure, and some being associated with both. In order for the pore pressure rates to be 

consistent with the stress rates, one can choose the polynomial describing the pore pressure rates to be 

one order lower than the polynomial describing the displacements. This approach leads to less accurate 

estimates of the displacements but smaller oscillations in the pore pressures (see Abbo, 1997)  
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dVNmBSQ
T

V

e∫=                                                                     (3.16) 

dStNdVbNf
TT

V

u ∆+∆=∆ ∫∫
Γ

                                                    (3.17) 

The actual changes of the degree of saturation are included in the increments of 
the body forces (Eq. 3.17). 

3.2 Flow problem 

Galerkin approach with the same shape functions for pore pressure and for 
displacements is applied to Eq. (2.27). By using the Green's theorem the 
differential order of the equation is reduced and the discretised mass conservation 
equation results in the form of: 
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                                                                                                                        (3.18) 
and in matrix form: 

p

w

w
qG

dt

vd
C

dt

pd
SpH +=+−−                                            (3.19) 

where H, Q, C and S are the permeability matrix, the coupling matrix and the 
compressibility matrix. qp is the flux on boundaries. G is a vector in which effect 
of gravity on flow in vertical direction is considered. This vector is a part of 
external flux. 
 

dVNk
k

NH sat

w

relT

V

)()( ∇∇= ∫ γ
                                                    (3.20) 

dVN
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V
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
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−= ∫                                                       (3.21) 

∫=
V

dVNLSNC                                                                          (3.22) 

dVgk
k

NG w
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w
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V

ρ
γ

)(∫ ∇=                                                     (3.23) 
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dSqNq w

T

p ˆ∫
Γ

=                                                                        (3.24) 

For transient calculation displacements of particles can be neglected. Therefore 
the coupling matrix is zero. Now Eq. (3.19) can be simplified to the following 
form: 

p

w

w
qG

dt

pd
SpH +=−−                                                           (3.25) 

For steady state calculation, time derivative of pore pressure is zero, therefore: 

pw
qGpH +=−                                                                         (3.26) 

3.3 Coupled problem 

The formulation of Biot's equation presented above contains a coupled behaviour 
which is represented by both the equilibrium equation and the continuity 
equation of the water-soil mixture. The displacements of the solid skeleton and 
the pore water pressure are chosen as basic variables of the problem. The spatial 
discretisation yields the following system of equations, which is non symmetric: 
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                         (3.27)                                          

The symmetry of the system (Eq. 3.27) can be restored by the time differentiation 
of the first equation: 
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3.4 Solving procedure 

Equation (3.28) can be integrated in time, using a first order finite difference 
method. The equations are written in a more concise form: 
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FXC
dt

Xd
B =+                                                                        (3.29)                                          

where 
w

T pvX = . The matrices B, C and F are dependent on X. The 

discretisation is carried out by the generalised midpoint rule which approximates 
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          (3.30)                                                                  

Eq. (3.29) at time α+it becomes: 

[ ] [ ] ααα αα ++++ ∆+∆−−=∆+ iiiii FtXCtBXCtB )1(1                   (3.31)                                                                  

where ∆t is the time step and α is a parameter 0 ≤ α ≤ 1. In Plaxis a full implicit 
procedure is utilised with α = 1. Application of this procedure to Eq. (3.28) 
yields: 
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 (3.32)              

with  
)(* HtSS ∆+= α                                                                         (3.33)  
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∫=
V

dVNLSNC                                                                          (3.40) 

dStNdVbNf
TT

V

u ∆+∆=∆ ∫∫
Γ

                                                    (3.41) 

In the case of consolidation of unsaturated soils all matrices and the external flux 
(right hand vector) are nonlinear. In this respect the following issues should be 
taken into account: 

• The stiffness matrix K is usually stress-dependent.   

• The permeability in the permeability matrix H and in the vector G is 
pressure dependent, due to suction dependency of relative permeability 
krel. 

• The coupling matrices Q and C as well as the compressibility matrix S are 
suction dependent. The latter is also depends on the derivative of 
saturation 

• In addition, the boundary conditions for the seepage line and drains are 
also nonlinear. 

• The right hand side of both equilibrium and mass conservation equations 
are nonlinear terms for unsaturated soils. The nonlinearity of the first 
equation is due to the weight of the soil which is a function of the degree 
of saturation and the nonlinearity of the right side of the second equation 
is due to the suction dependency of the relative permeability and the 
variable Neumann boundary conditions.  

For both equations the Cauchy BC are imposed directly in the equation system.  
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4 Boundary conditions 
The following boundary conditions are available in PLAXIS: 

4.1 Closed 

This type of boundary conditions specifies a zero Darcy flux over the boundary 
as 

0=++=⋅ zzyyxx nqnqnqnq  (4.1) 

where nx, ny and ny are the outward pointing normal vector components on the 
boundary. 

4.2 Inflow 
A non-zero Darcy flux over a boundary is set by a prescribed recharge value q  
and reads 

qnqnqnqnq zzyyxx −=++=⋅  (4.2) 

This indicates that the Darcy flux vector and the normal vector on the boundary 
are pointing in opposite directions. 

4.3 Outflow 
For outflow boundary conditions the direction of the prescribed Darcy flux, q , 
should equal the direction of the normal on the boundary, i.e.: 

qnqnqnqnq zzyyxx =++=⋅  (4.3) 

4.4 Head 

For prescribed head boundaries the value of the head φ  is imposed as 

φφ =  (4.4) 

Alternatively prescribed pressure conditions can be given. Overtopping 
conditions for example can be formulated as prescribed pressure boundaries. 

0=p  (4.5) 

These conditions directly relate to a prescribed head boundary condition and are 
implemented as such. 
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4.5 Infiltration/evaporation 
 
This type of boundary conditions poses a more complex mixed boundary 
condition. An inflow value q  may depend on time and as in nature the amount of 
inflow is limited by the capacity of the soil. If the precipitation rate exceeds this 
capacity, ponding takes place at a depth maxφ  and the boundary condition 
switches from inflow to prescribed head. As soon as the soil capacity meets the 
infiltration rate the condition switches back.  

This boundary condition simulates evaporation for negative values of q . The 
outflow boundary condition takes place, when the groundwater head is higher 
than the minimum head specified by the user minφ .   

These boundary conditions are expressed as 



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+=
+<+<+−=++=⋅

+=

dryingify

yyyifqnqnqnqnq

pondingify

zzyyxx

min

maxmin

max

φφ
φφφ

φφ
 (4.6) 

4.6 Seepage 

Flow problems with a free water level may involve a seepage surface on the 
downstream boundary, as shown in Figure 4.1. A seepage surface will always 
occur when the water level touches an open downstream boundary. The seepage 
surface is not a streamline (in contrast to the water level) or an equi-potential 
line. It is a line on which the groundwater head, h, equals the elevation head y (= 
vertical position). This condition arises from the fact that the water pressure is 
zero on the seepage surface, which is the same condition as that exists at the 
water level. 

It is not necessary to know the exact length of the seepage surface before the 
calculation begins, since the same boundary conditions (h = y) may be used along 
the whole boundary line where seepage is expected to occur. Free boundaries 
with h = y may therefore be specified for all boundaries where the hydraulic head 
is unknown. Alternatively, for boundaries well above the water level where it is 
obvious that a seepage surface does not occur, it may also be appropriate to 
prescribe those boundaries as closed flow boundaries. 
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Fig. 4.1: Seepage surface 

 

The water line option generates phreatic/seepage conditions by default. An 
external head φ  is prescribed on the part of the boundary beneath the water line, 
seepage or free conditions are applied to the rest of the line. The phreatic/seepage 
condition reads 









=++=⋅
=
=

suctionandlevelphreaticaboveifnqnqnqnq

outflowandlevelphreaticaboveifz

levelphreaticbelowif

zzyyxx 0

φ
φφ

 (4.7) 

The seepage condition only allows for outflow of groundwater at atmospheric 
pressure. For unsaturated conditions at the boundary the boundary is closed. The 
external head φ  may vary in a time dependent way. 

4.7 Infiltration well 

Inside the domain wells are modelled as source terms, Q  where specifies the 
inflowing flux per meter. 

QQ =  (4.8) 

As the source term in the governing equation simulates water flowing in the 
system, the source term is positive for a recharge well. 

4.8 Extraction well 

A discharge rate Q  simulates an amount of water leaving the domain 

QQ −=  (4.9) 

The source term in the governing equation is negative for a discharge well. 

4.9 Drain 

Drains are handled as seepage boundaries. However, drains are located inside the 
domain. In reality drains cannot work perfectly and do not permit water leaving 
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the domain at atmospheric pressure, therefore a prescribed head φ  should be 
considered for the part of the drain below the water level. The condition is 
written as 







=++=⋅
=

suctionifnqnqnqnq

outflowif

zzyyxx 0

φφ
                                         (4.10) 

The drain itself does not generate a resistance against flow. 

4.10 Interfaces 

Interface elements are used to simulate impermeable structural elements. In such 
an element there is no connection between both sides of the element and 
therefore a zero Darcy flux over internal boundary is obtained.  

Initial conditions are generated as a steady state solution for a problem with a 
given set of boundary conditions.  

4.11 Time dependent conditions 

PLAXIS provides several features for analysis of transient groundwater flow and 
fully coupled flow-deformation problems with varying conditions in time (time-
dependent conditions). Time-dependent conditions can only be applied in a 
transient or in a fully coupled flow-deformation analysis. 

Seasonal or irregular variations in water levels can be modelled using linear, 
harmonic or user-defined time distributions. Four different functions can be 
assigned for this purpose, namely constant, linear, harmonic and user-defined 
functions.  

Linear (function 1): This option can be used to describe the increase or decrease 
of a condition linearly in time. For a linear variation of groundwater head, the 
inputs of the following parameters are required: 
 
∆t: This parameter represents the time interval for the calculation phase, 

expressed in unit of time. Its value is equal to the Time interval parameter 
as specified in the Parameters tab sheet of the Phase list window. The 
value is fixed and cannot be changed in the Time-dependent head 
window. 
 

H0: This parameter represents the actual height of the water level, expressed 
in unit of length. Its value is automatically calculated in the kernel based 
on the initial pore pressures. 
 

Hult: This parameter, specified in unit of length, represents the ultimate value 
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of head for the current calculation phase. Hence, together with the time 
interval this parameter determines the rate of the water level increase or 
decrease. 

 

For a linear variation of infiltration, inflow or outflow the inputs of the following 
parameters are required: 

 
Q0: This parameter is the initial specific discharge through the geometry line 

under consideration, expressed in unit of length per unit of time. 
 

Qult: This parameter, specified in unit of length per unit of time, represents the 
ultimate specific discharge in the time interval of the current calculation 
phase. 

 

Harmonic (function 2): This option can be used when a condition varies 
harmonically in time. The harmonic variation of the water level is described as: 

)sin(5.0)( 000 ϕω ++= tHyty                                                        (4.11)                                                                       

with 

T/20 πω =                                                         

in which H, T and ϕ0 are the wave height in the unit of length, the wave period in 
the unit of time and the initial phase angle, respectively. 

In case of infiltration, inflow or outflow, the parameter QA needs to be entered 
instead of H. QA represents the amplitude of the specific discharge and is 
specified in unit of length per unit of time. 

Table (function 3): In addition to the pre-defined functions for variations with 
time, PLAXIS provides the possibility to enter user-defined time series. This 
option can be useful for a back-analysis when measurements are available. In the 
table, time always starts from zero which is related to the beginning of the 
calculation phase.  
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5 Hydraulic models 

5.1 Van Genuchten model 
 
There are many material models which describe the hydraulic behaviour of 
unsaturated soils. The most common in the groundwater literature is the model of 
Van Genuchten (1980) relationship, which is used in PlaxFlow. This relationship 
is a more general case of Mualem (1976) function. Van Genuchten function is a 
three-parameter equation and relates the saturation to the suction pore pressure 
head φp: 

( )[ ] cn
gg

paresidusatresidup gSSSS φφ +−+= 1)()(  (5.1) 

where 

g
p

w

w
p ρφ −=  

Sresidu is the residual saturation which describes the part of water that remains in 
soil even at high suction heads. Ssat is the saturation when the pores are filled with 
water. In general, the pores at saturated conditions the pores cannot be 
completely filled with water and some air bubbles can be present in water 
therefore in this case Ssat will be less than 1. ga, gn and gc are empirical 
parameters. If the following assumption is made, as used in Plaxis, Eq. (5.1) 
converts to Mualem (1976) function which is a two-parameter equation.  

n

n
c g

g
g

−
=

1
                                                                                  (5.2) 

Figure 5.1 shows the effect of the parameter ga on the shape of retention curve. 
This parameter is related to the air entry value (AEV) of the soil.  

The effect of the parameter gn, which is a function of the rate of water extraction 
from the soil once the AEV has been exceeded, is plotted in Figure 5.2.  

The parameter gc is a function of the residual water content (related to the 
curvature in the high suction range), Figure 5.3.  
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Fig. 5.1: Effect of the parameter ga on the retention curve, (gn = 2.0 and  

gc = -1.0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.2: Effect of the parameter gn on the retention curve, (ga = 1.0 and  

gc = -1.0) 
 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10 100 1000

Suction (kPa)

S
at

u
ra

ti
o

n
 

ga = 1.0
ga = 10
ga = 100

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10 100 1000
Suction (kPa)

S
at

u
ra

ti
o

n

gn = 0.5
gn = 1.0
gn = 2.0



5 Hydraulic models 29 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.3: Effect of the parameter gc on the retention curve, (ga = 1.0 and gn = 2.0) 
 

The effective saturation is defined as: 

residusat
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−
−=  (5.3) 

The relative permeability according to Mualem - Van Genuchten is: 
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 gl is an empirical parameter. ga, gl and gn have to be measured. In Plaxis 2D the 
parameters can be directly specified or can be chosen using a database of soil 
properties. 

The derivative of saturation in respect to pore pressure reads: 
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Figure 5.1 and Figure 5.2 present the Mualem - Van Genuchten relations for a 
sandy material with parameters Ssat = 1.0, Sres = 0.027, ga = 2.24 m-1, gl = 0:0 and 
gn = 2.286 graphically. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.4: Mualem – Van Genuchten: head – degree of saturation 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.5: Mualem – Van Genuchten: head – relative permeability 
 

5.2 Linearized Van Genuchten model 

A linearised form of the Van Genuchten’s model is also used as alternative in 
Plaxis 2D. The saturation is defined as: 
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and its derivative in respect to pore pressure is: 
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The variable φps represents the threshold of the unsaturated condition and can be 
derived from Van Genuchten model: 
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The relative permeability is approximate as: 
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 (5.9) 

 

where φpk is the pressure head at which the relative permeability is reduced to 
10-4, but is limited to a value between 0.5 and 0.7 m.  

Figure 5.3 and Figure 5.4 present the linearized Van Genuchten relations for a 
sandy material with parameters φps = 1.48 m, φpk = 1.15 m graphically. 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5.6: Linearized Van Genuchten: head – degree of saturation 
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Fig. 5.7: Linearized Van Genuchten: head – relative permeability 
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6 Barcelona Basic Model 

6.1 Introduction 

The unsaturated soil model implemented to account for effects of suction follows 
the well-known Barcelona Basic Model (Alonso et al., 1990) which is an 
extension of the Modified Cam Clay model (Roscoe & Burland, 1968) by 
introducing suction to its formulation. Bishop stress and suction are used as state 
variables in this model. The model switches from fully saturated constitutive 
model to partially saturated soil model, as suction increases. 

The main features of the model are: 

• To follow the Barcelona Basic Model (BBM) characteristics to account 

the behaviour of unsaturated soils (Alonso et al., 1990) 

• To work with Bishop stress (Sheng, et al., 2003, Gallipoli et al., 2003) and 

suction as the state variables a difference of the BBM which use the net 

stress and suction 

• To consider an independent elastic strain component associated to suction 

(the elastic strain increment is then split into the elastic strain increment 

due to Bishop stress changes and the elastic strain increment due to 

suction changes. 

In the following the model is described briefly. Stress invariants and derivatives 

are given in Appendix A. 

6.2 Yield function 
 

To define the yield function it assumes that: 

• The behaviour of saturated soil is represented by the Modified Cam Clay 

model (MCC). 

• The yield surface of the MCC model is valid for suction s>0. 

• The preconsolidation pressure Pc is a function of suction like to BBM 

model 

 

The yield function is defined as: 

( )
( ) ( )( )s c

g
F J M p p P p

g

θ 
= − + − − 
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2 23
30º

   (6.1) 
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Where, p’ is the mean effective stress, J is the square root of the second stress 

invariant of deviatoric stress tensor, ( )ij ijJ trace p = − 
 

1/2
1

'
2

σ δ .  The function 

( )θg is defined as: 
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=
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    (6.2) 

where θ is Lode angle. 
c

P'  is assumed to vary with suction according to  
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where P '

0  is the yield surface location at zero suction and is also the hardening 

parameter,rP  is a reference mean stress, oλ *  is the modified compression index 

for saturated soil, sλ * is the slope modified of the NCL for unsaturated soil and 

κ * is the modified swelling index which is assumed to be independent of suction. 

The increase in cohesion follows a linear relationship with suction, i.e.: 

s sp k s=      (6.4) 

where, sκ describe the increase in cohesion with suction. The slope sλ * is assumed 

to vary with the suction according to: 

( ) ( )s o r s rλ λ β= − − +  
* 1 exp    (6.5) 

Wherer andβ are two additional material constants that can be determined 

experimentally. The first is a constant related to the maximum stiffness of the 

soil (for an infinite suction), s or sλ λ= → ∞( )/ , and the second controls the rate of 

increase of soil stiffness with suction. 

6.3 Elastic response 

The mechanical elastic behaviour is the same as in the Cam –clay models with 

the tangent modulus (K) and shear modulus (G) being defined by the following 

expressions (a constant Poisson’s ratio (µ) is assumed): 
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p
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 In the model a change in suction produces a volumetric elastic strain given by: 

s
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atm s
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e,s
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3( ) 3
    (6.8) 

sκ , is the elastic stiffness for changes in suction. 

6.4 Flow rule and hardening parameters 

The yield surface location at zero suctionP '

0 , defines the hardening parameter (as 

in the BBM model) and the hardening law is described as: 

po
o v

o

P
P dε

λ κ
=

−

'
'

* *
d      (6.9) 

The plastic flow rule is defined as, 
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   (6.10) 

where α  can be chosen to obtain Jaky’s formula for one dimensional 

consolidation for normally consolidated materials.  Following the procedure used 

by Alonso et al., 1990, the expression for α   is: 

( )( )
( ) ( )* *9 3

1/ 1 /
9 6 o

M M M

M

− −
 α = − κ λ −

   (6.11) 

6.5 Implicit integration of unsaturated soil model 

The implementation is based on Backward Euler algorithm following the 

application to three invariants isotropic hardening models developed by Jeremic 
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and Sture (1997) and Pérez et al., (2001).  The solution is sough by using the 

flow direction σ= ∂ ∂ij ijm G at the final stress state.  

The variables given as input of the mechanical constitutive subroutine are the 

increment of total strain and increment of suction. 

6.6 Constitutive relations for infinitesimal plasticity 

The constitutive equations which characterize the elastoplastic material can be 

briefly stated as follow, 

ij ij ij

,
ijd d d dε ε ε ε= + +e p e s      (6.12) 

( ),
ij ijkl kl ijkl kl kl kld d d d dσ ε ε ε ε= = − −e p e sD D    (6.13) 
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where, ijdε ,
ij

dε e  and 
ij

dε p are increments of the total elastic and plastic strain 

tensors respectively and 
ij

,dε e s is the contribution of suction to increment of elastic 

strain tensor. dχ represents the increment of hardening parameters (in this case of 

0P ) and dλ  is the plastic multiplier to be determined with the aid of the loading-

unloading criterion, which can be expressed in terms of the Kuhn Tucker 

conditions as, 

( )ij , , 0

d 0

d 0

σ χ
λ

λ

≤

≥
=

F s

F

      (6.16) 

During any process of loading, conditions (Eq. 6.16) must hold simultaneously.  

6.7 Backward Euler algorithm 

Fully implicit, Backward Euler schemes are given in the following form: 
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where, 

( ) ( )Dσ ε ε ε∆ = ∆ − ∆ − ∆
ij kl

n+1 p e,s 
ijkl kl kl     (6.18) 
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Where (n+1) is the actual load step and (n) is the converged step. 

Time-integration of equation (6.17) with backward Euler scheme yields the 

following nonlinear local problem (in compact notation), 
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In equation (6.21), the state at time t(n) (i.e., quantities (n)σσσσ and χ (n) ), the 

increment of total strains from time t(n) to time t(n+1), ∆εεεε , and the suction, s, are 

known. The unknowns of this local problem are the stresses (n+1)σσσσ and the 

hardening parameters χ (n+1) at time t(n+1), and the plastic multiplier λ∆ .  

Formulating the residual of the three non-linear equations (6.21), the local 

Newton-Raphson solver may be stated as follows: 
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The non-linear system of eight equations is solved by linearizing the residual and 

expanding it into a Taylor series: 
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The gradient expression 
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Truncation after the first order terms, δ  ≅ 
2 0O , and letting the residual equation 

(6.23) go to zero, it obtains a set of linear equations for the corresponding 

increments of [ ]χ λ∆, ,σσσσ , that simultaneously reduces all three residuals to zero: 
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Indices k and k+1 denote the iteration cycle. Solving the linearized system of 

equations the new iterative update of the eight variables is obtained: 
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Addition of the iterative corrector to the old values of the independent variables 

yields the eight updates:  
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For starting the iteration, an initial solution is required. This solution is chosen to 

be the elastic solution at the contact point with the yield surface given by: 

( )α
χ χ

λ

= = − ∆

=

=
∆ =

c h
0

h
0

c
0

0

1 :

0

s s

+ Dσ σ σ εσ σ σ εσ σ σ εσ σ σ ε

    (6.28) 

The trial stress state ( )∆ = ∆Trial
n+1 :Dσ εσ εσ εσ ε  and the elastic strain vector due to suction 

e
s∆εεεε  are maintained fixed during the iteration process. 

6.8 Consistent tangent stiffness matrix  

To solve the global problem with quadratic convergence it is necessary to use a 

consistent tangent matrix. To compute this matrix, the consistent moduli 
1 1n n+ +¶ ¶ Ds e  at each Gauss point are needed. They are obtained by linearizing 

equation (6.21), the linearization is represented in a compact form as (Pérez et 

al., 2001): 

 ( )
1

11
1

n
T n

n

+
-+

+

¶
=

¶ D
JP PD

s
e

   (6.29) 

where ( )n 10 ,T
n ns s c +=P I  is the projection matrix on stress space (Pérez et al., 2001); 

note that n 10 ,ns c + is a null rectangular matrix with ns rows and 1n c + columns, ns  

is the number of stresses and nc is the number of hardening parameters. 

Additionally, the above process will be combined with sub-incrementation of the 

prescribed strain (substepping) according to the recursive scheme proposed by 

Pérez-Foguet et al., (2001), this implementation is in progress. 

6.9 Description of the subroutine: unsat_model  

The subroutine Unsat_Model has the same structure for input/output variables of 
the subroutine User_Mod of Plaxis to implement user-defined soil models. In the 
subroutine are expected as input variables (in addition to the standard input 
variables in User-defined soil models) the following: 
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Suction0: Previous or historical suction value of the current stress point  
Suction:  Suction value to be applied in the current stress point 
Sig0: Bishop’s effective stress at start of step 
 
As output variables are expected (in addition to the standard input variables in 
User-defined soil models): 
 
Sig: Bishop’s effective stress computed in the subroutine 

Ierror_code:  Code assigned to the possible errors during the calculation 

process.  

Input/output variables:  

iMod = 1 : Number model 
 
nProps = 18 : Model parameters 
 

ParamName (1):  Poisson ratio (µ) 
ParamName (2):  Slope of the unload/reload line (κ) of saturated soil 
ParamName (3):  Slope of the normal compression line (λ0) of saturated 
soil 
ParamName (4):  Elastic stiffness due to suction (κs) 
ParamName (5):  Parameter to control the tensile strength due to suction 
(k) 
ParamName (6):  Slope of the Critical state line (M) 
ParamName (7):  Friction angle at CS (csφ [degrees]) 
ParamName (8):  Initial void ratio  (e0) 
ParamName (9):  Preconsolidation pressure of saturated soil  (Po [kPa]) 
ParamName (10): Reference mean stress  ( Pr  [kPa])  
ParamName (11): Parameter to control infinite suction (r) 
ParamName (12): Parameter to control soil stiffness with suction  (β [kPa-

1])  
ParamName (13): Van Genuchten Parameter  (a [kPa]) 
ParamName (14): Van Genuchten Parameter  (b) 
ParamName (15): Van Genuchten Parameter  (c) 
ParamName (16): Parameter of non associated flow rule (αg) 
ParamName (17): Coefficient of earth pressure at rest (Ko) 
ParamName (18): Overconsolidation ratio (OCR) 

 
nStat = 6 :  Number of state variables 
 
 stVar0 (1) = Po (Preconsolidation pressure of the saturated soil) 
 stVar0 (2) = Suction (Actual suction value) 
 stVar0 (3) = Sr (Acutal degree of saturation) 
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 stVar0 (4) = Pc (Preconsolidation pressure of Unsaturated soil) 
 stVar0 (5) = pt (Tensile strength due to suction) 
 stVar0 (6) = F_result (Value of yield function) 
 
Ierror_code (Scalar Integer):  Code assigned to the possible errors 
 
Contains the code assigned to the possible errors that can occur during the 
calculation process. If ierror_code is greater than zero, this parameter will force 
the calculation to stop. The possible errors and their codes are 
 
Code Description Subroutine 

101 

102 

103 

 

Does not converge during elastic integration 

Can not find crossing point with yield surface 

Does not converge during plastic  integration 

 

Subroutine Elastic integration 

Function exit F_1 

Subroutine Plastic integration 

 
 
Note: Internally the subroutine Unsat_Model groups some input data into a 
derived data type named Prop_model which has the follow fields: 
 
Prop_model%Imod  = Imod 
Prop_model%npar   = Nprops 
Prop_model%n        = Nstress  
Prop_model%nhv    = Nstat 
Prop_model%par     = Props() 
 

Nstress is the number of stress components (6) plus the number of the hardening 

parameters in order to build a vector of generalized stress. 

6.10 Proposition for determination of the unsaturated 
soil parameters  

Table 6.1 describes the determination the unsaturated soil model and Table 6.2 

gives parameters of Barcelona Basic Model for some soil types. 
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Tab. 6.1: User-defined soil model local property variables 

No 
Model 

parameters 
Definition Proposition for estimation 

Typical 
values 

Reference 

10 Pr  [F/L2] Reference 
mean stress 

at which 
one may 
reach the 
saturated 

virgin state, 
starting at a 

partially 
saturated 
condition, 
through a 
wetting 

path which 
involves 

only 
(elastic) 
swelling. 

 

Upscaled from Isotropic 
compression tests or eodometric 
tests at different constant suctions. 
 

 
Fig 1. Relationships between 

preconsolidation stress (Po, Pc) and the 
reference stress (Pr) 

 
- Fit of the Load-Collapse curve 
(LC): 
 

 
Fig 2. Isotropic stress path at constant 

suction to determine the LC curve 
 
Influence of Pr on LC: 
 

Mean net stress, p

S
uc

tio
n,

 s
 

Pr = 0.2 * Po
Pr = 0.4 * Po
Pr = 0.6 * Po
Pr = 0.8 * Po
Pr = Po

r* β:  β:  β:  β:  
Constants

Po  
 

Fig 3. Influence of Pr in the shape of LC 
curve 

 
Pr should be significantly lower 
than the lowest value of Po likely to 
occur in a given application to 
avoid illogical yield curve shapes. 
 

When Pr = Po 
(saturated 
condition) the 
LC yield curve 
becomes a 
straight line. 
In this case, 
changes in s 
do not result in 
plastic 
deformations. 
 
See Table 1: 
Some values 
from literature. 

Alonso et 
al (1990). 

11 r Parameter 
defining 

the 
maximum 

soil 
stiffness 
(for an 
infinite 
suction) 

Upscaled from Isotropic 
compression tests or eodometric 
tests at different constant suctions.  
 
Fit of the Load-Collapse curve 
(LC). 
 
 
 
 

See Table 1: 
Some values 
from literature. 

Alonso, et 
al (1990). 
Barrera, et 
al (2002) 
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No 
Model 

parameters 
Definition Proposition for estimation 

Typical 
values 

Reference 

 r (cont.)  Influence of r on LC: 
 

Mean net stress, p

S
uc

tio
n,

 s
 

r = 0.75
r = 0.80
r = 0.85
r = 0.90
r = 0.95
r = 1

P r , β:  β:  β:  β:  
Constants

Po  
Fig 4. Influence of r* in the shape of LC 
curve 
 
Example of the influence of suction 
increase on the compressibility: 
 
Sion Silt (Geiser et al., 2000): 

( ) ( )s o r s rλ λ β = − − + 
* *1 exp  

 

 
Fig 5. Variation of the compressibility index 

with the suction 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Geiser et al 
(2000). 

12 β [F/L2]-1 Parameter 
controlling 
the rate of 
increase of 

soil 
stiffness 

with 
suction 

Upscaled from Isotropic 
compression tests or eodometric 
tests at different constant suctions.  
 
Fit of the Load-Collapse curve 
(LC). 
 
Influence of β on LC: 

Mean net stress, p'

S
uc

tio
n,

 s
 

β = 2.5
β = 5
β = 10
β = 15
β = 20

P r , r*:  
Constants

Po

ββββ [MPa-1]

 
 

Fig 6. Influence of β in the shape of LC 
curve 

See Table 1: 
Some values 
from literature. 

Alonso, et 
al (1990) 

Barrera, et 
al (2002). 
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Tab. 6.2: Parameters for the Barcelona Basic Model for different soil types  

Soil type µµµµ    M κκκκ    λλλλ(0) r 
ββββ 

(MPa)-1 

pr 

(MPa) 
Reference 

BCN Silt 
0.3

3 
1.155 0.005 0.073 0.782 155 

7.0 E-

05 

Barrera 

(2002) 

Sion silt 

 

0.4

0 
1.33 0.007 

0.032: 

p:100–

400 kPa 

0.047: 

p>400 

kPa 

0.65 5 0.02 
Geiser et al 

(2001) 

Compacted 

kaolin, ML 

G=

3.3 

MP

a 

0.821 0.015 0.14 0.26 16.4 0.043 
Josa 

(1988) 

Compacted kaolin 

[w = 6% , 

Sr= 0.627] 

  0.011 0.065 0.75 20 0.01 
Karube 

(1986) 

Compacted kaolin   0.027 0.063 

Variab

le 

0.32 

0.58 

0.972 

10  
Thu, et al. 

(2007) 

Sandy Clay 

(Lower Cromer 

till) 

G=

7 

MP

a 

1.2 0.0077 0.066 0.25 20 0.012 
Maswoswe 

(1985) 

Lower Cromer till 0.2 1.2 0.0077 0.066 0.35 16.4 0.012 
Georgiadis 

(2003) 

Lambeth Sand 

(London City) 
0.2 0.9 0.005 0.06 0.25 20  

Georgiadis 

(2003) 

Metramo silty 

Sand 

 

G 

= 

45 

MP

a 

 

1.54 0.0056 0.022 

Variab

le 

0.68 

0.91 

0.978 

24 0.001 

Rampino 

et al 

(2000) 

Boom Clay 

Pellets 
  0.015 0.16 0.57 6 0.05 

Sánchez 

(2004) 

FEBEX Bentonite  1.24 0.005 0.080 0.90 1 0.50 
Lloret et al 

(2003) 

Silty sand from 

the Riverside 
 

1.32 

 

0.009 

 
0.11 0.29 18.1 

0.041 

 

Mun B-J 

(2004) 



6 Barcelona Basic Model 45 
 

Soil type µµµµ    M κκκκ    λλλλ(0) r 
ββββ 

(MPa)-1 

pr 

(MPa) 
Reference 

Campus 

Bentonite –Sand 

mixtures 
  0.008 0.25 0.85 0.05 

8.0E-

06 

Alonso et 

al (2005) 

Lixhe chalk 0.2  0.0085 0.18 0.95 8.0 0.003 
Collin et al 

(2002) 

Compacted silt. 

(clayey, slightly 

sandy Silt) 

[w = 23.1%, 

γd = 15.6 kN/m3] 

 

 

  0.004 0.052 0.17 1.8   
Vasallo et 

al (2007) 

Serrate bentonite 0.4 1.5 0.05 0.15 0.75 0.05 0.1 
Zhang et al 

(2003) 

Boom Clay 
0.3

33 
1.0 

0.0026

5 
0.26 0.564 0.544 0.06 

Zhang et al 

(2003) 

Reconstituid 

Kaolin 
  0.014 0.37 0.27 10  

Slatter et al 

(2006) 

Earth fill 

compacted with a 

soil with a lower 

than optimum 

water content 

  0.005 0.085 2 5  

Cordao 

and Farias 

(2006) 

Jossigny's Silt 

(silt of low 

plasticity) 

0.3 1.0 0.015 0.108 0.911 5.75 
6.55E-

06 

Vaunat et 

al (2000) 

Residual granite 

soil (CH) 

G=

8.9 

MP

a 

0.895 0.14 0.29 0.24 19.69 0.045 
Mofiz et al 

(2005) 
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7 Verification of groundwater flow: One-
Dimensional  

 
In this section verification of the groundwater flow codes implemented in 
PLAXIS 2D and 3D kernels is given. As it is hard to derive an analytical solution 
for the examples given in this section, the results are compared with the existing 
Plaxflow code developed by GeoDelft. The examples are chosen from the first 
part of the report provided by GeoDelft, report co710201.101 v1, December 
2002. 
 
This chapter presents the results of 13 column tests, for which a flow problem 
has been solved. The column has a height of 2.0 m and a width of 0.05 m, 
vertical boundaries are closed and flow is strictly one-dimensional. The Van 
Genuchten and spline models are used. Most of available types of boundary 
conditions are imposed separately including constant head, constant pressure, 
inflow, outflow and seepage conditions. Precipitation conditions automatically 
apply the inflow and outflow conditions according to the function used for the 
prescribed flux. Right now, four functions can be used for varying prescribed 
flux in time, namely constant, linear, harmonic and the user defined function 
(table). The same functions can also be applied for water level varying. In the 
case of steady state calculation, only constant function is utilised, i.e. no 
variation. To have proper results, fine mesh used in both 2D and 3D, Figure 7.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.1: finite element meshes used in 2D and 3D calculations; Left: 2D; Right 

3D 
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7.1 Case A1: pressure head  
 
Case A1 involves an infiltration situation and is shown in Figure A1.1. The left 
picture presents the initial boundary conditions from which a steady state flow 
situation is calculated. Imposing a head of -1.0 m at the bottom of the model and 
1.0 m at the top generates unsaturated starting conditions. The right hand side 
picture shows the boundary conditions for the later time period. Boundary 
conditions change to 2.0 m at the top of the model, the bottom condition is not 
changed. Staring series O1 sand model describes hydraulic behaviour of material 
for which Van Genuchten relationship is applied. The properties of the soil are 
given in Table A1.1.  
 
The following steps are performed in this case: 

1. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure, (suction pore pressure of 10 kPa in the entire column).  

2. Transient: The top boundary head is set. Infiltration takes place and the 
model gets more saturated in time. The infiltration front move downward 
in time until a new steady state situation is reached. Figure A1.2 and A1.3 
show a vertical cross section of the calculated pore pressures and degree 
of saturation in time. The infiltration profiles are shown for steps given in 
Table A1.2.  

3. Steady state: Steady state groundwater flow calculation to generate 
ultimate pore pressure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1.1: Geometry of case A1 
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Tab. A1.1: Input data for case A1 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1521 

initial void ratio einit [-] 0.5625 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.06203 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 
 
Tab. A1.2: Input data for case A1 
 

Step Time (day) 
2 Steady state 

20 0.232 

32 0.463 

44 0.694 

56 0.926 

68 1.16 

80 1.39 

126 2.31 

156 3.47 

194 Steady state 
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Fig. A1.2: Active pore pressure in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1.3: Degree of saturation in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1.4: Active pore pressure in time vs height in PLAXIS 3D 
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Fig. A1.5: Degree of saturation in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1.6: Active pore pressure in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1.7: Degree of saturation in time vs height (existing PlaxFlow) 
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Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.2 Case A3: Inflow boundary  
 
Case A3 involves an infiltration situation and is shown in Figure A3.1. In this 
example the influx is constant in time and given as an prescribed boundary flux. 
The left picture presents the initial boundary conditions from which a steady state 
flow situation is calculated. Imposing a head of -1.0 m at the bottom of the model 
and 1.0 m at the top generates unsaturated starting conditions. The right hand 
side picture shows the boundary conditions for the later time period. Boundary 
conditions change to 0.152 m/day inflow at the top of the model, the bottom 
condition is not changed. Staring series O1 sand model describes hydraulic 
behaviour of material for which Van Genuchten relationship is applied. The 
properties of the soil are given in Table A3.1.  
 
The following steps are performed in this case: 

1. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure, (suction pore pressure of 10 kPa in the entire column).  

2. Transient: The boundary prescribed flux is imposed. Infiltration takes 
place and the model gets more saturated in time. The infiltration front 
move downward in time until a new steady state situation is reached. 
Figure A3.2 and A3.3 show a vertical cross section of the calculated pore 
pressures and degree of saturation in time. The infiltration profiles are 
shown for steps given in Table A3.2.  

3. Steady state: Steady state groundwater flow calculation to generate 
ultimate pore pressure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A3.1: Geometry of case A3 
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Tab. A3.1: Input data for case A3 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1521 

initial void ratio einit [-] 0.5625 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.06203 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 
 
Tab. A3.2: Input data for case A3 
 

Step Time (day) 
2 Steady state 

39 0.232 

76 0.463 

113 0.694 

150 0.926 

187 1.16 

224 1.39 

372 2.31 

557 3.47 

643 Steady state 
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Fig. A3.2: Active pore pressure in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A3.3: Degree of saturation in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A3.4: Active pore pressure in time vs height in PLAXIS 3D 
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Fig. A3.5: Degree of saturation in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A3.6: Active pore pressure in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A3.7: Degree of saturation in time vs height (existing PlaxFlow) 
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Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.3 Case B1: Fixed head boundary  
 
Case B1 involves a recharge situation and is shown in Figure B1.1. In this 
example the column is filled from the bottom in opposite direction of the 
gravitational force. The left picture presents the initial boundary conditions from 
which a steady state hydrostatic situation is calculated. Imposing a head of 0 m at 
the bottom of the model and seepage boundary condition (or closed) at the top 
generates unsaturated starting conditions. The right hand side picture shows the 
boundary conditions for the later time period. Boundary conditions change to 1.5 
m at the bottom of the model, the top condition is not changed. Staring series O1 
sand model describes hydraulic behaviour of material for which Van Genuchten 
relationship is applied. The properties of the soil are given in Table B1.1.  
 
The following steps are performed in this case: 

1. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure, (hydrostatic condition: suction pore pressure of 20 kPa at 
the top of the column).  

2. Transient: The fixed boundary head of 1.5 m at the bottom is imposed. 
Recharge takes place and the model gets more saturated in time. The 
infiltration front move upward in time until a new steady state situation is 
reached. Figure B1.2 and B1.3 show a vertical cross section of the 
calculated pore pressures and degree of saturation in time. The infiltration 
profiles are shown for steps given in Table B1.2.  

3. Steady state: Steady state groundwater flow calculation to generate 
ultimate pore pressure, (hydrostatic condition: suction pore pressure of 5 
kPa at the top of the column). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B1.1: Geometry of case B1 
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Tab. B1.1: Input data for case B1 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1521 

initial void ratio einit [-] 0.5625 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.06203 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 
 
Tab. B1.2: Input data for case B1 
 

Step Time (day) 
2 Steady state 

3 0.00579 

4 0.0116 

7 0.0694 

10 0.127 

34 0.706 

53 1.28 

147 7.07 

244 12.9 

246 Steady state 
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Fig. B1.2: Active pore pressure in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B1.3: Degree of saturation in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B1.4: Active pore pressure in time vs height in PLAXIS 3D 
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Fig. B1.5: Degree of saturation in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B1.6: Active pore pressure in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B1.7: Degree of saturation in time vs height (existing PlaxFlow) 
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Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.4 Case B3: Fixed head boundary  
 
Case B3 involves a drainage situation and is shown in Figure B3.1. In this 
example the column is dried from the bottom in opposite direction of the 
gravitational force. The left picture presents the initial boundary conditions from 
which a constant suction of 0 kPa is generated in entire column. Imposing a head 
of 0 m at the bottom of the model and a head of 2.0 m at the top of the column 
generates the unsaturated starting conditions. The right hand side picture shows 
the boundary conditions for the later time period. Boundary conditions change to 
seepage (or closed) at the bottom of the model, the top condition is not changed. 
Staring series O1 sand model describes hydraulic behaviour of material for which 
Van Genuchten relationship is applied. The properties of the soil are given in 
Table B3.1.  
 
The following steps are performed in this case: 

1. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure, (constant suction pore pressure of 0 kPa in whole of the 
column).  

2. Transient: The seepage boundary condition (or closed boundary 
condition) at the top is imposed. Drainage takes place and the model gets 
more unsaturated in time. Figure B3.2 and B3.3 show a vertical cross 
section of the calculated pore pressures and degree of saturation in time. 
The results are shown for steps given in Table B3.2.  

3. Steady state: Steady state groundwater flow calculation to generate 
ultimate pore pressure, (hydrostatic condition: suction pore pressure of 20 
kPa at the top of the column). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B3.1: Geometry of case B3 
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Tab. B3.1: Input data for case B3 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1521 

Initial void ratio einit [-] 0.5625 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.06203 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 
 
Tab. B3.2: Input data for case B3 
 

Step Time (day) 
4 Steady state 

58 2 

101 4 

174 8 

311 16 

575 32 

1096 64 

2129 128 

2131 Steady state 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B3.2: Active pore pressure in time vs height in PLAXIS 2D 
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Fig. B3.3: Degree of saturation in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B3.4: Active pore pressure in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B3.5: Degree of saturation in time vs height in PLAXIS 3D 
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Fig. B3.4: Active pore pressure in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B3.5: Degree of saturation in time vs height (existing PlaxFlow) 
 

Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.5 Case B4: Outflow boundary  
 
Case B4 involves a drainage situation and is shown in Figure B4.1. In this 
example the column is dried from the bottom in opposite direction of the 
gravitational force by means of prescribed outflow boundary conditions. The left 
picture presents the initial boundary conditions from which a hydrostatic water 
pore pressure is generated in column. Imposing heads of 2 m at the bottom and at 
the top of the column generates the saturated starting conditions. The right hand 
side picture shows the boundary conditions for the later time period. Boundary 
conditions change to constant outflow of 0.152 m/day at the bottom of the model, 
the top condition is not changed. Staring series O1 sand model describes 
hydraulic behaviour of material for which Van Genuchten relationship is applied. 
The properties of the soil are given in Table B4.1.  
 
The following steps are performed in this case: 

4. Steady state: Steady state groundwater flow calculation to generate initial 
hydrostatic pore pressure.  

5. Transient: The outflow boundary condition at the bottom is imposed. 
Drainage takes place in time. Figure B4.2 and B4.3 show a vertical cross 
section of the calculated pore pressures from the PLAXIS 2D and 
Plaxflow kernels, respectively. The results of PLAXIS 2D are shown for 
steps given in Table B4.2.  

6. Steady state: Steady state groundwater flow calculation to generate 
ultimate pore pressure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B4.1: Geometry of case B4 
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Tab. B4.1: Input data for case B4 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1521 

Initial void ratio einit [-] 0.5625 

Elastic storage Kw,ref/n [kN/m2] 10.84 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.06203 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 
 
Tab. B4.2: Input data for case B4 
 

Step Time (day) 
2 Steady state 

23 2 

41 4 

60 8 

81 16 

105 32 

135 64 

177 128 

187 Steady state 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B4.2: Active pore pressure in time vs height in PLAXIS 2D 
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Fig. B4.3: Active pore pressure in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B4.4: Active pore pressure in time vs height (existing PlaxFlow) 
 

Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.6 Case C1: pressure head (spline model: sand) 
 
Case C1 involves an infiltration situation and is shown in Figure C1.1. The left 
picture presents the initial boundary conditions from which a steady state flow 
situation is calculated. Imposing a head of -1.0 m at the bottom of the model and 
1.0 m at the top generates unsaturated starting conditions. The right hand side 
picture shows the boundary conditions for the later time period. Boundary 
conditions change to 2.0 m at the top of the model, the bottom condition is not 
changed. Haverkamp sand model describes hydraulic behaviour of material for 
which cubic Hermit spline interpolation is applied. The properties of the soil are 
given in Table C1.1 and Table C1.2.  
 
The following steps are performed in this case: 

4. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure, (suction pore pressure of 10 kPa in the entire column).  

5. Transient: The top boundary head is set. Infiltration takes place and the 
model gets more saturated in time. The infiltration front move downward 
in time until a new steady state situation is reached. Figure C1.2 to C1.4 
show a vertical cross section of the calculated pore pressures, degree of 
saturation and relative permeability in time. The infiltration profiles are 
shown for steps given in Table C1.3.  

6. Steady state: Steady state groundwater flow calculation to generate 
ultimate pore pressure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C1.1: Geometry of case C1 
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Tab. C1.1: Input data for case C1 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 8.156 

initial void ratio einit [-] 0.403 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 
 
Tab. C1.2: Haverkamp sand data 
 

- H (m) kr S 
0.00E+00 1.0 1.0 

2.00E-01 0.44448 0.94019 

4.00E-01 2.91E-02 0.57286 

6.00E-01 4.36E-03 0.35567 

8.00E-01 1.12E-03 0.29439 

1.00E+00 3.89E-04 0.27536 

1.20E+00 1.64E-04 0.26821 

1.40E+00 7.90E-05 0.26508 

1.60E+00 4.19E-05 0.26354 

1.80E+00 2.40E-05 0.26272 

2.00E+00 1.46E-05 0.26224 

2.20E+00 9.27E-06 0.26195 

2.40E+00 6.14E-06 0.26177 

2.60E+00 4.20E-06 0.26165 

2.80E+00 2.95E-06 0.26157 

3.00E+00 2.13E-06 0.26151 

3.20E+00 1.57E-06 0.26147 

3.40E+00 1.18E-06 0.26144 

3.60E+00 8.98E-07 0.26141 

3.80E+00 6.95E-07 0.2614 
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Tab. C1.3: Input data for case C1 
 

Step Time (day) 
2 Steady state 

188 0.00463 

312 0.00926 

436 0.0139 

560 0.0185 

684 0.0232 

808 0.0278 

932 0.0324 

1259 0.0463 

1393 Steady state 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C1.2: Active pore pressure in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C1.3: Degree of saturation in time vs height in PLAXIS 2D 
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Fig. C1.4: Relative permeability in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C1.5: Active pore pressure in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C1.6: Degree of saturation in time vs height in PLAXIS 3D 
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Fig. C1.7: Relative permeability in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C1.8: Active pore pressure in time vs height (existing PlaxFlow) 
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Fig. C1.9: Degree of saturation in time vs height (existing PlaxFlow) 
 

Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar. The 
maximum suction pore pressure is 10 kPa (H=-1.0 m), therefore the minimum 
degree of saturation for all curves plotted in Figure C1.3 must be 27.5 % (Table 
C1.2). As seen the degrees of saturation for step 1259 and 1393 show lower 
values at distance 2 m which is a visualization problem due to extrapolation 
method used in the output program and this is not a serious problem. 
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7.7 Case C2: pressure head (spline model: clay) 
 
Case C2 involves an infiltration situation and is shown in Figure C2.1. The left 
picture presents the initial boundary conditions from which a steady state flow 
situation is calculated. Imposing a head of -1.0 m at the bottom of the model and 
1.0 m at the top generates unsaturated starting conditions. The right hand side 
picture shows the boundary conditions for the later time period. Boundary 
conditions change to 2.0 m at the top of the model, the bottom condition is not 
changed. Haverkamp clay model describes hydraulic behaviour of material for 
which cubic Hermit spline interpolation is applied. The properties of the soil are 
given in Table C2.1 and Table C2.2.  
 
The following steps are performed in this case: 

7. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure, (suction pore pressure of 10 kPa in the entire column).  

8. Transient: The top boundary head is set. Infiltration takes place and the 
model gets more saturated in time. The infiltration front move downward 
in time until a new steady state situation is reached. Figure C2.2 to C2.4 
show a vertical cross section of the calculated pore pressures, degree of 
saturation and relative permeability in time. The infiltration profiles are 
shown for steps given in Table C2.3.  

9. Steady state: Steady state groundwater flow calculation to generate 
ultimate pore pressure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C2.1: Geometry of case C2 
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Tab. C2.1: Input data for case C2 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.0106 

Initial void ratio einit [-] 0.98 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 
 
Tab. C2.2: Haverkamp clay data 
 

- H (m) kr S 
0.00E+00 1.0 1.0 

2.00E-01 0.3829 0.9263 

4.00E-01 0.1539 0.8498 

6.00E-01 8.15E-02 0.7935 

8.00E-01 0.05064 0.7505 

1.00E+00 0.03469 0.7164 

1.20E+00 0.02536 0.6886 

1.40E+00 0.01942 0.6653 

1.60E+00 0.0154 0.6454 

1.80E+00 0.01254 0.6283 

2.00E+00 0.01043 0.6132 

2.20E+00 0.008822 0.5999 

2.40E+00 0.004573 0.588 

2.60E+00 0.006579 0.5773 

2.80E+00 0.005775 0.5675 

3.00E+00 0.005114 0.5587 

3.20E+00 0.004565 0.5505 

3.40E+00 0.004102 0.543 

3.60E+00 0.003709 0.5361 

3.80E+00 0.003372 0.5297 
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Tab. C2.3: Input data for case C2 
 

Step Time (day) 
2 Steady state 

107 2.32 

150 4.63 

193 6.95 

236 9.26 

279 11.58 

322 13.89 

365 16.21 

623 32.41 

655 Steady state 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C2.2: Active pore pressure in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C2.3: Degree of saturation in time vs height in PLAXIS 2D 
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Fig. C2.4: Relative permeability in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C2.5: Active pore pressure in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C2.6: Degree of saturation in time vs height in PLAXIS 3D 
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Fig. C2.7: Relative permeability in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C2.8: Active pore pressure in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C2.9: Degree of saturation in time vs height (existing PlaxFlow) 
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Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.8 Case C3: material contrast high-low permeability 
 
Case C3 involves an infiltration problem through a column composed of a sand 
layer on top of a clay layer as shown in Figure C3.1. The left picture presents the 
initial boundary conditions from which a steady state flow situation is calculated. 
Imposing a head of -1.0 m at the bottom of the model and 1.0 m at the top 
generates unsaturated starting conditions. The right hand side picture shows the 
boundary conditions for the later time period. Boundary conditions change to 2.0 
m at the top of the model, the bottom condition is not changed. Haverkamp clay 
and Haverkamp sand models describe hydraulic behaviour of clay and sand 
materials for which cubic Hermit spline interpolation are applied. The properties 
of the layers are given in Table C1.1, Table C1.2, Table C2.1 and Table C2.2.   
 
The following steps are performed in this case: 

10. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure.  

11. Transient: The top boundary head is set. Infiltration takes place and the 
model gets more saturated in time. The infiltration front move downward 
in time until a new steady state situation is reached. Figure C3.2 to C3.4 
show a vertical cross section of the calculated pore pressures, degree of 
saturation and relative permeability in time. The infiltration profiles are 
shown for steps given in Table C3.1.  

12. Steady state: Steady state groundwater flow calculation to generate 
ultimate pore pressure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C4.1: Geometry of case C3 
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Tab. C3.1: Input data for case C3 
 

Step Time (day) 
14 Steady state 

40 0.00463 

58 0.00926 

76 0.0139 

94 0.0185 

107 0.0232 

141 1.07 

177 2.22 

240 4.54 

261 Steady state 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C3.2: Active pore pressure in time vs height in PLAXIS 2D 
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Fig. C3.3: Degree of saturation in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C3.4: Relative permeability in time vs height in PLAXIS 2D 
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Fig. C3.5: Active pore pressure in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C3.6: Degree of saturation in time vs height in PLAXIS 3D 
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Fig. C3.7: Relative permeability in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C3.8: Active pore pressure in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C3.9: Degree of saturation in time vs height (existing PlaxFlow) 
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Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.9 Case C4: material contrast low- high permeability 
 
Case C4 involves an infiltration problem through a column composed of a clay 
layer on top of a sand layer as shown in Figure C4.1. The left picture presents the 
initial boundary conditions from which a steady state flow situation is calculated. 
Imposing a head of -1.0 m at the bottom of the model and 1.0 m at the top 
generates unsaturated starting conditions. The right hand side picture shows the 
boundary conditions for the later time period. Boundary conditions change to 2.0 
m at the top of the model, the bottom condition is not changed. Haverkamp clay 
and Haverkamp sand models describe hydraulic behaviour of clay and sand 
materials for which cubic Hermit spline interpolation are applied. The properties 
of the layers are given in Table C1.1, Table C1.2, Table C2.1 and Table C2.2.   
 
The following steps are performed in this case: 

13. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure.  

14. Transient: The top boundary head is set. Infiltration takes place and the 
model gets more saturated in time. The infiltration front move downward 
in time until a new steady state situation is reached. Figure C4.2 to C4.4 
show a vertical cross section of the calculated pore pressures, degree of 
saturation and relative permeability in time. The infiltration profiles are 
shown for steps given in Table C4.1.  

15. Steady state: Steady state groundwater flow calculation to generate 
ultimate pore pressure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C4.1: Geometry of case C4 
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Tab. C4.1: Input data for case C4 
 

Step Time (day) 
9 Steady state 

174 1.157 

207 2.314 

240 3.471 

273 4.628 

306 5.785 

339 6.942 

372 8.099 

439 11.571 

476 Steady state 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C4.2: Active pore pressure in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C4.3: Degree of saturation in time vs height in PLAXIS 2D 
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Fig. C4.4: Relative permeability in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C4.5: Active pore pressure in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C4.6: Degree of saturation in time vs height in PLAXIS 3D 
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Fig. C4.7: Relative permeability in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C4.8: Active pore pressure in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C4.9: Degree of saturation in time vs height (existing PlaxFlow) 
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Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.10 Case D1: Seepage face boundary  
 
Case D1 involves a seepage problem and is shown in Figure D1.1. In this 
example the column is wetted from the bottom in opposite direction of the 
gravitational force. The left picture presents the initial boundary conditions from 
which suction pore pressure of 0 kPa at the bottom and 20 kPa at the top are 
generated. This is performed by imposing a head of 0 m at the bottom of the 
model and a seepage boundary condition at the top of the column. The middle 
and the right hand side pictures show the boundary condition used for later 
stages. For t=0 to 4.053 day the middle model is applied, in which a head of 3.0 
m is imposed for the head of the bottom boundary, and then the head boundary at 
the bottom is changed to 0 m. The seepage boundary condition prescribes a 
closed boundary condition as long as the condition remains unsaturated, the 
condition changes to a pressure 0 Pa condition when the boundary starts to 
become saturated. For this condition, outflow may occur. Staring series O1 sand 
model describes hydraulic behaviour of material for which Van Genuchten 
relationship is applied. The properties of the soil are given in Table D1.1.  
 
The following steps are performed in this case: 

1. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure.  

2. Transient: The bottom head boundary is changed to 3.0 for time until 
4.053 day and then is changed to 0. Wetting and drying takes place. Figure 
D1.2 and D1.3 show a vertical cross section of the calculated pore 
pressures and degree of saturation in time. The results are shown for steps 
given in Table D1.2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D1.1: Geometry of case D1 
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Tab. D1.1: Input data for case D1 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1521 

initial void ratio einit [-] 0.5625 

Elastic storage Kw,ref/n [kN/m2] 98.39 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.06203 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 
 
Tab. D1.2: Input data for case D1 
 

Step Time (day) 
1 Steady state 

271 0.579 

360 1.158 

425 1.737 

477 2.316 

523 2.895 

555 3.474 

592 4.053 

670 4.632 

698 5.211 

726 5.790 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D1.2: Active pore pressure in time vs height in PLAXIS 2D 
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Fig. D1.3: Degree of saturation in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D1.4: Pore pressure at the Gauss point at the top of the column in time in 

PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D1.5: Active pore pressure in time vs height in PLAXIS 3D 
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Fig. D1.6: Degree of saturation in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D1.7: Pore pressure at the Gauss point at the top of the column in time in 

PLAXIS 3D 
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Fig. D1.8: Active pore pressure in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D1.9: Degree of saturation in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D1.10: Pore pressure at the Gauss point at the top of the column in time 

(existing PlaxFlow) 
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Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.11 Case D2: Generalised seepage face boundary   
 
Case D2 involves a generalised seepage problem and is shown in Figure D2.1. In 
this example the column is wetted from the bottom in opposite direction of the 
gravitational force. When the column is fully saturated, the top boundary is 
imposed to a harmonic head variation and simultaneously the column is imposed 
drainage from the bottom boundary. The left picture presents the initial boundary 
conditions from which suction pore pressure of 0 kPa at the bottom and 20 kPa at 
the top are generated. This is performed by imposing a head of 0 m at the bottom 
of the model and a seepage boundary condition at the top of the column. The 
middle and the right hand side pictures show the boundary condition used for 
later stages. For t=0 to 4.053 day the middle model is applied, in which a head of 
3.0 m is imposed for the head of the bottom boundary and a seepage boundary 
condition with constant head is applied to the top boundary. The seepage 
boundary condition prescribes a closed boundary condition as long as the 
condition remains unsaturated, the condition changes to a pressure 0 Pa condition 
when the boundary starts to become saturated. For this condition, outflow may 
occur. After this stage (t>4.053 day) the right boundary conditions are plied, i.e. 
the bottom head is set to 0 and a seepage boundary condition with harmonic head 
is applied to the top boundary. As long as the top boundary is wet, the harmonic 
head is applied and when suction occurs the boundary becomes closed. For the 
harmonic function, H=0.4 m, ω0 = 4.52 rad/day (T=1.39 day) and ϕ0=0. Staring 
series O1 sand model describes hydraulic behaviour of material for which Van 
Genuchten relationship is applied. The properties of the soil are given in Table 
D2.1.  
 
The following steps are performed in this case: 

1. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure.  

2. Transient: The bottom head boundary is changed to 3.0 for time until 
4.053 day and a seepage boundary condition is applied to the top.  

3. Transient: The bottom head boundary is changed to 0.0 for time greater 
than 4.053 day and a seepage boundary condition with harmonic head is 
applied to the top.  
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Fig. D2.1: Geometry of case D2 
 
 
Tab. D2.1: Input data for case D2 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1521 

initial void ratio einit [-] 0.5625 

Elastic storage Kw,ref/n [kN/m2] 98.39 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.06203 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 
 
Tab. D2.2: Input data for case D2 
 

Step Time (day) 
1 Steady state 

163 0.579 

279 1.158 

291 1.737 

331 2.316 

354 2.895 

357 3.474 

360 4.053 

432 4.632 

451 5.211 

470 5.790 
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Fig. D2.2: Active pore pressure in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D2.3: Degree of saturation in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D2.4: Pore pressure the top of the column in time in PLAXIS 2D 
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Fig. D2.5: Active pore pressure in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D2.6: Degree of saturation in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D2.7: Pore pressure the top of the column in time in PLAXIS 3D 
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Summary: 

For this case, the existing PlaxFlow does not generate proper results and its 
results are different from the results of PlaxFlow verification report. However, it 
seems that PLAXIS 2D and PLAXIS 3D are capable of simulating this example 
and provide similar results to the above-mentioned report. In the case of PLAXIS 
3D results at 4.632 day and 5.211 day are not shown because the harmonic phase 
is simulated in one phase.  
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7.12 Case D3: Infiltration boundary, ponding condition 
 
Case D3 involves an infiltration problem driven by a constant influx restricted by 
a ponding condition as is shown in Figure D3.1. As long as the soil is able to 
handle the inflowing water the boundary flux will equal to the prescribed flux. 
As the column becomes more saturated the column capacity will decrease and 
depressions in the terrain get filled with water. Under these conditions the 
ponding depth gives the driving force. The left picture presents the initial 
boundary conditions from which a steady state flow situation is calculated. This 
condition generates suction pore pressure of 10 kPa in entire column. The right 
hand side picture shows the boundary condition used for later stages. Boundary 
conditions change to a time dependent influx given in Table D3.1 (and Figure 
D3.2) and restricted by a ponding depth of 0.1 m at the top of the model. The 
bottom condition is not altered during the simulation. Staring series O1 sand 
model describes hydraulic behaviour of material for which Van Genuchten 
relationship is applied. The properties of the soil are given in Table D3.2.  
 
The following steps are performed in this case: 

1. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure.  

2. Transient: The top boundary is changed to prescribed flux. Figure D3.3 
and D3.4 show a vertical cross section of the calculated pore pressures and 
degree of saturation in time. The results are shown for steps given in Table 
D3.3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D3.1: Geometry of case D3 
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Tab. D3.1: Prescribed flux 

Time (day) Q (m/day) 
0 0.0432 

0.2315 0.0432 

0.2315 0.0864 

0.463 0.0864 

0.463 0.1296 

0.6944 0.1296 

0.6944 0.1728 

0.9259 0.1728 

0.9259 0.216 

1.1574 0.216 

1.1574 0.1728 

2.3148 0.1728 

2.3148 0.1296 

3.4722 0.1296 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. D3.2: Prescribed flux 
 
Tab. D3.2: Input data for case D3 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1521 

initial void ratio einit [-] 0.5625 

Elastic storage Kw,ref/n [kN/m2] 487.5e3 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.06203 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 
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Tab. D3.3: Input data for case D3 
 

Step Time (day) 
2 Steady state 

48 0.23 

95 0.465 

141 0.695 

187 0.925 

234 1.16 

280 1.39 

464 2.31 

692 3.45 

701 3.494 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D3.3: Active pore pressure in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D3.4: Degree of saturation in time vs height in PLAXIS 2D 
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Fig. D3.5: Pore pressure at node and Gauss point at the top of the column in time 

in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D3.6: Active pore pressure in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D3.7: Degree of saturation in time vs height in PLAXIS 3D 
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Fig. D3.8: Pore pressure at node and Gauss point at the top of the column in time 

in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D3.9: Active pore pressure in time vs height (existing PlaxFlow) 
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Fig. D3.10: Degree of saturation in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D3.11: Pore pressure at the Gauss point at the top of the column in time 

(existing PlaxFlow) 

Summary: 

As seen the results from PLAXIS 2D, PLAXIS 3D and PlaxFlow are similar.  
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7.13 Case D4: (evapo)transpiration boundary, ultimate 
condition 

 
Case D4 involves a drying problem driven by a time dependent outflux restricted 
by a ponding condition as is shown in Figure D4.1. As long as the soil is able to 
handle the outflowing water the boundary flux will equal to the prescribed flux. 
As the column becomes more unsaturated the column capacity will decrease. 
Under these conditions the evapotranspiration depth gives the driving force. The 
left picture presents the initial boundary conditions from which a steady state 
flow situation is calculated. This condition generates suction pore pressure of 10 
kPa in entire column. The right hand side picture shows the boundary condition 
used for later stages. Boundary conditions change to a time dependent outfluxes 
given in Table D4.1 (and Figure D4.2) and restricted by an evapotranspiration 
depth of -10. m at the top of the model. The bottom condition is not altered 
during the simulation. Staring series O1 sand model describes hydraulic 
behaviour of material for which Van Genuchten relationship is applied. The 
properties of the soil are given in Table D4.2.  
 
The following steps are performed in this case: 

1. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure.  

2. Transient: The top boundary is changed to prescribed flux. Figure D4.3 
and D4.4 show a vertical cross section of the calculated pore pressures and 
degree of saturation in time. The results are shown for steps given in Table 
D3.3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D4.1: Geometry of case D4 
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Tab. D4.1: Prescribed flux 

Time (day) Q (m/day) 
0 -0.0432 

0.6944 -0.0432 

0.6944 -0.00043 

1.1574 -0.00043 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D4.2: Prescribed flux 
 
Tab. D4.2: Input data for case D4 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1521 

initial void ratio einit [-] 0.5625 

Elastic storage Kw,ref/n [kN/m2] 487.5e3 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.06203 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 
 
Tab. D4.3: Input data for case D4 

Step Time (day) 
2 Steady state 

48 0.23 

95 0.465 

141 0.695 

187 0.925 

234 1.16 
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Fig. D4.3: Active pore pressure in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D4.4: Degree of saturation in time vs height in PLAXIS 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D4.5: Pore pressure at node and Gauss point at the top of the column in time 

in PLAXIS 2D 
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Fig. D4.6: Active pore pressure in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D4.7: Degree of saturation in time vs height in PLAXIS 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D4.8: Pore pressure at node and Gauss point at the top of the column in time 

in PLAXIS 3D 
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Fig. D4.9: Active pore pressure in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D4.10: Degree of saturation in time vs height (existing PlaxFlow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. D4.8: Pore pressure at the Gauss point at the top of the column in time 
(existing PlaxFlow) 
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Summary: 

The example given in this section is not a practical problem. In this example, it is 
intended to extract water from a very dry zone. By imposing a prescribed outflow 
boundary conditions, soil in the near of the boundary gets more unsaturated and 
the relative permeability becomes smaller and consequently extracting water 
becomes more difficult.  
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7.14 Conclusions 
 
Results of 13 one dimensional flow problems, solved by the new PLAXIS 2D 
and 3D kernels, are shown in this chapter and most of them are compared with 
PlaxFlow results. As seen, results are in agreement in most cases with the results 
from PlaxFlow kernel.  
 
For all examples very fine meshes with 15 noded elements in 2D and 10-noded 
tetrahedral elements in 3D are used.  
 
The following features have been tested: 
 

1. Hydraulic models. Van Genuchten and spline models have been tested. 
It has been found that the predefined parameters of linearised Van 
Genuchten relationship do not produce similar results to Van 
Genuchten relationship. Therefore, it is suggested to use Van 
Genuchten model and not the approximated one. 

2. Different material set. The capability of the code to simulate hydraulic 
behaviour of soils has been shown for two types of material, namely 
sands and clay. It has been found that the models usually need finer 
mesh for sands compared to clays, as variation of relative permeability 
is higher for sands. 

3. Boundary conditions. Almost all boundary conditions have been tested 
in this chapter, namely prescribed boundary head, seepage boundary 
condition, varying head (in PLAXIS 2D and 3D codes, this is a part of 
seepage boundary condition), inflow, outflow, precipitation and 
evaporation. The rest boundary conditions, namely wells and drains 
are tested in chapter 10 where groundwater flow analyses are verified 
against two and three dimensional problems. 

4. Automatic time stepping. PLAXIS 2D and 3D kernels use an automatic 
time stepping. The kernel calculates the first (critical) time, maximum 
and minimum time steps in the beginning of calculation based on 
elements size and material parameters.  

5. Steady state and transient calculation. Both steady state and transient 
types of calculations have been tested. 

6. Permeability contrasts. Results of two cases, namely low-high and 
high-low permeability contrasts have been shown.    
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8 Verification of groundwater flow: Two 
and three dimensional problems 

 
This chapter presents the results of 10 groundwater flow calculations for which a 
specific feature of flow problem has been solved. All examples have been 
analysed by both two and three dimensional codes (i.e. PLAXIS 2D and PLAXIS 
3D). It is intended here to present the most important features of the code and to 
verify them against analytical solutions. In some case for which an analytical 
solution does not exist the results are compared with the results from the old 2D 
groundwater flow code developed by GeoDelft (PlaxFlow). In all cases the Van 
Genuchten model is used.  
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8.1 Case G1: Potato field moisture 
 
This lesson demonstrates the applicability of PLAXIS to agricultural problems. 
The potato field lesson involves a loam layer on top of a sandy base. Regional 
conditions prescribe a water level at the position of the material interface. The 
water level in the ditches remains unchanged. The precipitation may vary on a 
daily basis due to weather conditions. The calculation aims to predict the 
variation of the water content in the loam layer in time as a result of time-
dependent boundary conditions. 
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0.75

precipitationprecipitation
15

0.75
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loam

15

0.50

0.75
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Fig. G1.1: Potato field geometry 
 
Staring series B9 and O2 represent the top and the bottom layers. The parameters 
are given in Table G1.1 and G1.2, respectively.  
 
 Tab. G1.1: Input data for loam layer (B9) 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.0154 

initial void ratio einit [-] 0.754 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 

Van Genuchten  gn [-] 1.325 

Van Genuchten  ga [m-1] 0.650 

Van Genuchten  gl [-] -2.161 
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Tab. G1.1: Input data for sand layer (O2) 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1270 

initial void ratio einit [-] 0.62 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 

Van Genuchten  gn [-] 1.951 

Van Genuchten  ga [m-1] 2.13 

Van Genuchten  gl [-] 0.168 
 
The precipitation fluxes are given in Table G1.3. The threshold values for 
ponding and precipitation (evapotranspiration) are chosen as 1 m and 0 at the top 
of the boundary, respectively.  
 
Tab. G1.3: Prescribed flux (ϕmin = 0 and ϕmax= 1 m) 
 

Time (day) Q (m/day) 
0 0 

1 0 

1 0.01 

2 0.01 

2 0.03 

3 0.03 

3 0 

4 0 

4 0.03 

5 0.03 

5 0 

6 0 

6 0.01 

8 0.01 

8 0 

9 0 

9 0.01 
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Fig. G1.2: Prescribed flux 
 
Due to the symmetry of the problem, it is sufficient to simulate a strip with a 
width of 15.0 m, as indicated in Figure G1.3. The thickness of the loam layer is 
2.0 m and the sand layer is 3.0 m deep.  
 
The finite element mesh used for the calculation is depicted in Figure G1.3. The 
2D and 3D meshes consists of 1032 15-noded elements and 20648 10 noded 
tetrahedral elements, respectively.  
 
The following steps are performed in this case: 

1. Steady state: Steady state groundwater flow calculation to generate initial 
pore pressure, (the bottom head is imposed to 3 m).  

2. Transient: The top boundary head is set to influx.  
 
Active pore pressure and degree of saturation are shown in Figures G1.4 to G1.9 
for steady state, after 4.5 and after 9 days. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G1.3.2D: Finite element mesh (PLAXIS 2D - 15 noded elements) 
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Fig. G1.4.2D: Active pore pressure after steady state calculation (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G1.5.2D: Degree of saturation after steady state calculation (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G1.6.2D: Active pore pressure after 4.5 days (PLAXIS 2D) 
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Fig. G1.7.2D: Degree of saturation after 4.5 days (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G1.8.2D: Active pore pressure after 9 days (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G1.9.2D: Degree of saturation after 9 days (PLAXIS 2D) 
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Fig. G1.3.3D: Finite element mesh (PLAXIS 3D - 10 noded elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G1.4.3D: Active pore pressure after steady state calculation (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G1.5.3D: Degree of saturation after steady state calculation (PLAXIS 3D) 
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Fig. G1.6.3D: Active pore pressure after 4.5 days (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G1.7.3D: Degree of saturation after 4.5 days (PLAXIS 3D) 
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Fig. G1.8.3D: Active pore pressure after 9 days (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G1.9.3D: Degree of saturation after 9 days (PLAXIS 3D) 
 

Summary: 

This example has been chosen from the PlaxFlow manual. By comparing the 
results, it can be observed that the results from PLAXIS  2D, PLAXIS 3D and 
PlaxFlow (see the PlaxFlow manual) are similar.  
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8.2 Case G2: Triangular Earth dam 
 
This exercise illustrates groundwater flow in a triangular earth dam underlain by 
an impervious base. On the left side of the dam the water table is at the crest 
level and on the right side the water table is at the surface level. The base angles 
are 45° and the top angle is 90°, Figure G2.1.  

 
 
 
 
 
 
 
 
 
 
 
Fig. G2.1: Triangular earth dam with a constant head on the left side and seepage 

on the right side 
 
In this case the entire slope CB is a seepage surface and no free surface exist, 
leading to a confined groundwater flow. Such a geometry and boundary 
conditions allow for solving the problem analytically. The solution of the 
problem was first introduced by Davison (see Harr, 1962). Here, the total 
discharge calculated by the analytical solution will be compared with that 
computed by PLAXIS. The total flow through the dam can be calculated as 
follows: 
Boundary conditions: 

Side AC : Constant pressure head (h = constant) 

Side AB : No normal flow, specific discharge 0yq =  

Side CB : Seepage h = y 

A(x,y) = (0,0), B(x,y) = (2L,0), C(x,y) = (L,L) 

In ns-system: 
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In xy-system: 
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To compare results obtained from the analytical solution with that obtained from 
PLAXIS, a triangular dam, 2 m wide and 1 m high is considered. The head at the 
left side is assumed to be 1 m and the coefficient of permeability is 1 m/day. The 
geometry of the problem and the finite element mesh are presented in Figure 
G2.2. The width of the model is 1 m in the 3D calculations. 
 
Following the analytical solution, the total discharge through the dam at sides CD 
and BC is:  

Q = 0.50 m3/day/m 
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Fig. G2.2.2D: FE mesh, 15-noded elements (PLAXIS 2D)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G2.2.3D: FE mesh, 10-noded tetrahedral elements (PLAXIS 3D)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G2.3.2D: Groundwater head (PLAXIS 2D) 
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Fig. G2.4.2D: Groundwater flow field (PLAXIS 2D) 
 
 

 

 

 

 

 

 

 

 

Fig. G2.5.2D: Total discharge at cross section A-A: Q=0.5000 m3/day/m 
(PLAXIS 2D) 

 
 
 
 
 
 
 

 

 

 

 

 
 
Fig. G2.6.2D: Total discharge at cross section B-B: Q=0.5010 m3/day/m 

(PLAXIS 2D) 
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Fig. G2.3.3D: Groundwater head (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G2.4.3D: Groundwater flow field (PLAXIS 3D) 
 
 

 

 

 

 

 

 

 

 

 
 
 
Fig. G2.5.3D: Total discharge at cross section A-A: Q=0.5001 m3/day/m 

(PLAXIS 3D) 
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Fig. G2.6.3D: Total discharge at cross section B-B: Q=0.4982 m3/day/m 

(PLAXIS 3D) 
 
To determine the total discharge in PLAXIS, two cross sections have been made 
(see Figure G2.1). The cross sections A-A and B-B are along CD and BC 
respectively. The total discharges in the cross sections A-A and B-B are given in 
Table G2.1 (see Figures G2.5 and G2.6): 
 
Tab. G2.1: Total discharge 
 

 Analytical 
PLAXIS 

2D 

(A-A)  

PLAXIS 

2D 

(B-B) 

PLAXIS 

3D 
(A-A) 

PLAXIS 

3D 
(B-B) 

discharge 0.5000 0.5000 0.5010 0.5001 0.4982 

error 0 0 % 0.2 % 0.02 % 0.36 % 
 

Summary: 

Apparently the results of both analytical and PLAXIS calculations are similar. It 
should be noted that some error may occur during numerical integration in output 
program. 
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8.3 Case G3: Confined Flow around a cutoff wall 
 
The following example illustrates the problem of confined flow around an 
impermeable wall  

Figure G3.1 shows the geometry and boundary conditions of the problem. As 
indicated in the figure there is a 10 m wide impermeable dam founded on a soil 
layer of 10m thick. The bottom of the soil layer is considered to be impermeable. 
A 5.0 m wall is placed under the dam. At the left side of the dam (as shown in 
figure) the water level is 15.0 m while at the right side the water level is 13.0 m. 
The wall is simulated by means of an impermeable interface. The element mesh 
is locally refined around the wall particularly at the tip of the wall. 6 noded and 
15 noded elements are alternately used. The problem is also simulated with 
PlaxFlow to compare outputs. Permeability of soil is 1.0 m/day. 
 
 
 
 
 
 

 

 

 

 

Fig. G3.1: Geometry of the problem 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. G3.2.2D: Finite element mesh (PLAXIS 2D) 
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Fig. G3.2.3D: Finite element mesh (PLAXIS 3D) 
 
Analytical solution: A closed form solution has been given for the discharge of 
the problem of confined flow around a wall for different geometrical ratios by 
Harr (1962). Figure G3.1 shows the closed form solution. In this situation (s/T 
=0.5 and b/T=0.5) the solution is: 
 

4.0≈

∆h

k
Q

  

 
which gives a total discharge of roughly 0.8 m3/day/m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Fig. G3.3: Closed form solution 
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Fig. G3.4.2D: Groundwater head (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. G3.5.2D: Flow filed (PLAXIS 2D) 
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Fig. G3.4.3D: Groundwater head (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. G3.5.3D: Flow filed (PLAXIS 3D) 
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Tab. G3.1: Total discharge 
 

 
Analytical 
 
 

PlaxFlow 
 
 

PLAXIS  
2D 

 15 noded 

PLAXIS 

2D 
 6 noded 

PLAXIS  
3D 

 10 noded 

discharge 0.800 0.818 0.815 0.822 0.819 

error 0 2.25 % 1.87 % 2.75 % 2.32 % 

 

Summary: 

PLAXIS 2D with 15 noded elements produces the most accurate result. However, 
the accuracy can be improved by refining the mesh.  
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8.4 Case G4: Flow through a sand layer 
 
This example illustrates leakage from a canal into a nearby river through a sand 
structure.  

Figure G4.1 shows the geometry and finite element mesh for the problem. The 
thickness of the layer is 3.0 m and the length is 10.0 m. The bottom of the layer is 
impermeable. On the left hand side the groundwater head is prescribed 2.0 m and 
at the right hand side 1.0 m. The permeability is 1.0 m/day.  

 
 
 
 
 

 

 

 

 

Fig. G4.1: Geometry of the problem 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. G4.2.2D: Finite element mesh (PLAXIS 2D) 
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Fig. G4.2.3D: Finite element mesh (PLAXIS 3D) 
 
Analytical solution: Under the assumption of a hydrostatic pore pressure 
distribution for each vertical cross-section the total discharge, Q, through the 
layer can be approximated with Dupuit’s formula for unconfined flow: 
 

L
kQ

2

2
2

2
1 ϕϕ −

=   

 
where k is the permeability, L is the length of the layer and ϕ1 and ϕ2 are the 
ground water head at the left and right boundary, respectively. For the current 
situation this results in a theoretical solution of 0.150 m3/day/m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G4.3.2D: Groundwater head (PLAXIS 2D) 
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Fig. G4.4.2D: Flow field (PLAXIS 2D - 15 noded elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G4.5.2D: Total discharge Q=0.1497 m3/day/m (PLAXIS 2D - 15 noded 

elements)  
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Fig. G4.3.3D: Groundwater head (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G4.4.3D: Flow field (PLAXIS 3D - 10 noded tetrahedral elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G4.5.3D: Total discharge Q=0.1531 m3/day/m (PLAXIS 3D - 10 noded 

tetrahedral elements)  
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Tab. G4.1: Total discharge 
 

 
Analytical 
 

PlaxFlow 
 

PLAXIS 2D 
15 noded 

PLAXIS 2D 
 6 noded 

PLAXIS 3D 
 10 noded 

discharge 0.150 0.152 0.1497 0.1546 0.1531 

error 0 1.3 % 0.2 % 3.0 % 2.06 % 

 

Summary: 

Since the total discharge is calculated in the output program which uses linear 
interpolation, the accuracy strongly depends on the size of elements. Therefore 
the results can be improved by refining the mesh. 



142 8 Verification of groundwater flow: 2D & 3D 
 

8.5 Case G5: Seepage length 
 
The purpose of this example is to determine the length of the seepage face, l, in 
an inclined river bank, knowing the location of a point P on the phreatic surface. 
The slope of the river bank is at an angle α. The location of point P is defined by 
the distances L and H, Fig G5.1.  

 

 
 
 
 
 

 

 

 

 

 
 
 
Fig. G5.1: Geometry of the problem 
 
Analytical solution: A closed form solution of this problem is given by Strack 
and Asgain (1978) with the following assumptions: 
 

1. The river bank is presented as an infinite slope at an angle α 
2. Unconfined ground water flows from far away towards the river 

bank. 
3. The flow is two dimensional, i.e., no flow occurs in the direction 

parallel to the river. 
4. The permeability is homogeneous and isotropic. 
5. Flow is steady 
6. The soil is saturated bellow the phreatic surface and is dry above it.  
 

The solution is presented in the form of a chart. This chart plots l/L as a function 
of H/L for different values of α. For this particular problem, H/L = 0.5 and α 
=45°. Therefore l/L = 0.255. 

The Finite element mesh and geometry of the problem is shown in Fig. G5.2. It is 
assumed that L =100 m. Therefore the analytical length of seepage face is 
l=25.5m. 
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Fig. G5.2.2D: Finite element mesh (PLAXIS 2D - 15 noded elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G5.2.3D: Finite element mesh (PLAXIS 3D - 10 noded tetrahedral 

elements) 
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Fig. G5.3.2D: Active pore pressure (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 
Fig. G5.4.2D: Flow field (PLAXIS 2D) 
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Fig. G5.3.3D: Active pore pressure (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
Fig. G5.4.3D: Flow field (PLAXIS 3D) 
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Tab. G5.1: Seepage length 
 

 
Analytical 
 

PLAXIS 2D  
15 noded 

PLAXIS 3D  
10 noded 

Seepage length 25.5 m 25.73 m 25.74 m 

error 0 0.9 % 0.94 % 
 

Summary: 

PLAXIS 2D with 15 noded elements produces the most accurate result. 
However, the accuracy can be improved by refining the mesh. 
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8.6 Case G6: Muskat problem (Dam with vertical 
faces) 

 
In this example a vertical cross section of an unconfined groundwater flow 
system in a homogeneous earth dam underlain by an impervious base is 
considered (Fig. G6.1). Such a problem is commonly known as the Muskat 
problem where the free phreatic surface and the seepage face are unknown, 
leading thus to a set of nonlinear equations. Permeability of soil is 1.00 m/day. 

 

 

 

 

 

 
 
 
 
 

 

 

 

Fig. G6.1: Geometry of the problem 
 
In this section the solution of the Muskat equation for the seepage face (s) has 
been compared with the non-linear solution of PLAXIS. 
 
Analytical solution: For Muskat equations, monographs which describe the 
relationship between the geometry of the structure, the heads and the length of 
the seepage face have been presented by many researchers. Here, the monograph 
presented by Kang-Kun Lee and Darrell I. Leap, 1997 (Figure G6.2) has been 
used. 
 
The geometry and boundary conditions of the problem illustrated in Figure G6.1 
are simulated by PLAXIS as shown in Figure G6.3. The Finite element mesh 
consists of 699 15 noded elements with a fourth order of integration. The 
groundwater flow field and the active pore pressures and seepage surface are 
shown in Figure G6.4 and Figure G6.5, respectively. 
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Fig. G6.2: Monograph for Muskat problem (Kang–Kun Lee and Darrell I. Leap, 

1997) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G6.3.2D: Finite element mesh (PLAXIS 2D - 15 noded elements) 
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Fig. G6.3.3D: Finite element mesh (PLAXIS 3D - 10 noded tetrahedral 

elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. G6.4.2D: Flow field (PLAXIS 2D) 
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Fig. G5.3.2D: Active pore pressure (PLAXIS 2D) 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. G6.4.3D: Flow field and phreatic surface (PLAXIS 3D) 
 
 
 
 

Phreatic line 
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Fig. G5.3.3D: Active pore pressure (PLAXIS 3D) 
 
 
Tab. G5.1: Seepage length 
 

 
Analytical 
 

PlaxFlow 
 

PLAXIS 2D  
15 noded 

PLAXIS 3D 
10 noded 

Seepage length 1.54 m 1.68 m 1.63 m 1.69 m 

error 0 9.1 % 4.6 % 9.7 % 

 
Summary: 

As seen the deviation from the analytical solution is pretty high in all cases. 
Calculation of seepage face is usually affected by the element size of seepage 
boundaries. In this example, where the seepage boundary is vertical, the effect of 
the element size is higher.  
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8.7 Case G7: Well  
 
In this example a column of soil with a well inside is simulated. Geometry of the 
problem and the finite element mesh is shown in Figure G7.1. Phreatic line is at 
the top boundary to generate fully saturated soil. The side and the bottom 
boundaries are closed for flow, therefore inflow or outflow can only occur 
through the top boundary. The total discharge of well is consider 1 m3/day. This 
example is calculated in PLAXIS 2D (plane strain and axi-symmetric) and in 
PLAXIS 3D.  

 

 

 

 

 

 

 

 

 
 
 
 
 
Fig. G7.1.2D: Geometry and FE mesh (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G7.1.3D: Geometry and FE mesh (PLAXIS 3D) 



8 Verification of groundwater flow: 2D & 3D 153 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G7.2.2D.1: Flow field (PLAXIS 2D – plane strain) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G7.2.2D.2: Flow field (PLAXIS 2D – axi-symmetric) 
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Fig. G7.3.2D.1: Total discharge leaving the domain; Q=1.0 m3/day/m (PLAXIS 

2D – plane strain)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G7.3.2D.2: Total discharge leaving the domain; Q=1.0 m3/day/rad (PLAXIS 

2D – axi-symmetric)  
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Fig. G7.2.3D: Flow field (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G7.3.3D: Total discharge leaving the domain; Q=1.0 m3/day (PLAXIS 3D)  

Summary: 

Figure G7.2 and Figure G7.3 show flow filed and total discharge after activation 
of the well. As seen the total discharge is exactly the same as total discharge 
imposed in the well.  
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8.8 Case G8: Drain  
 
In this example a block of soil with a drain inside is simulated with PLAXIS 2D 
and PLAXIS 3D.  Geometry of the problem and the finite element mesh is shown 
in Figure G8.1. The block is 50 m long, 20 m high (and 10 m wide in case of 3D) 
and the drain is exactly in the middle. The initial water level is at 18 m. 
Permeability of soil is 1 m/day and coarse material (from standard data set) is 
used for retention curve. Steady state type of calculation is used. The minimum 
head of drain is 10 m.  

 

 

 

 

 

 
 
 
 
 

 

 

 
Fig. G8.1.2D: Geometry and FE mesh (PLAXIS 2D) 
 
 

 

 

 

 

 
 
 
 
 

 

 
Fig. G8.1.3D: Geometry and FE mesh (PLAXIS 3D) 
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Fig. G8.2.2D: Active pore pressure (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G8.3.2D: Degree of saturation (PLAXIS 2D) 
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Fig. G8.4.2D: Flow field (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G8.5.2D: Total discharge in soil; Q=4.473 m3/day/m (PLAXIS 2D) 
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Fig. G8.2.3D: Active pore pressure (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G8.3.3D: Degree of saturation (PLAXIS 3D) 
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Fig. G8.4.3D: Flow field (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G8.5.3D: Total discharge in soil; Q=4.476 m3/day/m (PLAXIS 3D) 
 
Analytical solution: Under the assumption of a hydrostatic pore pressure 
distribution for each vertical cross-section the total discharge, Q, through the 
layer can be approximated with Dupuit’s formula for unconfined flow: 
 

L
kQ

2

2
2

2
1 ϕϕ −

=   

 
where k is the permeability, L is the distance between the left boundary (or the 
right boundary) and the drain and ϕ1 and ϕ2 are the ground water head at the left 
(or right) and at the drain boundary, respectively. For the current situation this 
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results in a theoretical solution of 4.48 m3/day/m. Therefore the total amount of 
water leaving from the drain is 8.96 m3/day/m. The comparison between the total 
discharges simulated with PLAXIS 2D and 3D and the analytical solution are 
given in Table G8.1.  
 
Tab. G8.1: Total discharge 
 

 
Analytical 
 

PLAXIS 2D 
15 noded 

PLAXIS 3D 
 10 noded 

In soil 4.48  4.473 (0.16 % error) 4.476 (0.09 % error) 

drain 8.96  8.975 (0.17 % error) 8.966 (0.07 % error) 

 

Summary: 

It can be seen that both PLAXIS 2D and PLAXIS 3D are capable of simulating 
drains with a given head. The errors in the total discharge leaving the domain are 
quite low in both 2D and 3D simulations.  
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8.9 Case G9: Flow through an earth dam  
 
The following problem illustrates water seepage through an earth dam with a toe 
drain. Due to the unknown phreatic level and the unknown size of the seepage 
surface the flow is an unconfined flow. The flow net technique can be used to 
solve this problem. 

The water level on the upstream side is at a level of 12.2 m while on the down 
stream side the water level is at the surface level. The coefficient of permeability 
of the soil is 1.52×10-5 m/sec. Figure G9.1 shows the geometry of the problem. 
The material for drainage at the toe is simulated by a relatively high coefficient 
of permeability, 0.3048 m/sec. The saturated model is used to describe the 
hydraulic behavior of the soil.  

 

 

 

 

 
 
 
 
 

 

Fig. G9.1: Geometry of the problem  
 
Analytical solution: The total discharge as calculated by the flow net is 
Q = 4.708 m3/day/m.  
 
The geometry and finite element mesh used for the calculation in PLAXIS is 
shown in Figure G9.2. The model is 10 m wide in the 3D simulations. In 2D 
calculations both 6 noded and 15 noded elements are used. Figures G9.3 to G9.4 
show the active pore pressures and the total discharge at the middle of the dam 
for 2D (6-noded and 15 noded elements) and 3D simulations.  
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Fig. G9.2.2D: Geometry and FE mesh (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G9.2.3D: Geometry and FE mesh (PLAXIS 3D) 
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Fig. G9.3.2D6: Active pore pressures (6-noded elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G9.4.2D6: Total discharge at the middle of the earth dam for 6-noded 

elements mesh (Q = 4.787 m3/day/m) 
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Fig. G9.3.2D15: Active pore pressures (15-noded elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G9.4.2D15: Total discharge at the middle of the earth dam for 15-noded 

elements mesh (Q = 4.749 m3/day/m) 
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Fig. G9.3.3D: Active pore pressures (15-noded elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G9.4.3D: Total discharge at the middle of the earth dam; Q = 4.773 

m3/day/m (PLAXIS 3D) 
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Fig. G9.5.3D: Flow field and calculated phreatic surface (PLAXIS 3D) 
 
Tab. G9.1: Total discharge 
 

 Analytical 
PLAXIS  

2D 
6 noded 

PLAXIS 

2D  
15 noded 

PLAXIS 
3D  

10 noded 

Total discharge 
4.708 

m3/day/m 
4.787 

m3/day/m 
4.749 

m3/day/m 
4.773 

m3/day/m 
error 0 1.68 % 0.87 % 1.38 % 

 
 

Summary: 

Apparently the results of both analytical and PLAXIS calculations are similar. 
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8.10 Case G10: Non-homogeneous rectangular dam 
 
This is an example used by different researchers to show the capability of the 
groundwater flow codes to solve unconfined problems (e.g. Oden and Kikuchi 
(1980); Lacy and Prevost (1987); Borja and Kishnani (1991); Bardet and Tobita 
(2002)). Figure G10.1 shows the geometry of the problem which is 5 m wide and 
10 m high (and 2.5 m thick in 3D). This dam consists of two blocks with 
different saturated permeability. Permeability of soil is 1.0 m/day for the left 
block and 10.0 m/day for the right block. The left, top and the right boundaries 
are considered as seepage boundary and the bottom is closed for flow.  

To investigate the effect of retention curve on the results, four cases have been 
considered, namely fully saturated, staring set (sand O1), Hypres coarse top soil 
and USDA sand, see the PlaxFlow manual. The Van Genuchten parameters are 
given in Table G10.1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G10.1.2D: Geometry, boundary conditions and FE mesh (6 noded elements) 
 
 
 
 
 
 
 
 
 

10 m 

2.5 m 2.5 m 

K1 K2=10K1 

2 m 
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Fig. G10.1.3D: FE mesh (PLAXIS 3D 10 noded elements) 
 
Tab. G10.1: Van Genuchten parameters 
 

Data set 
Ssat 

[-] 
Sres 

[-] 
ga 

[m-1] 
gl  
[-] 

gn 

[-] 
Staring (O1) 1.0 0.02 2.240 0.000 2.286 

Hypres (coarse-top soil) 1.0 0.02 3.830 1.250 1.3774 

USDA (sand)  1.0 0.02 14.500 0.500 2.680 
 
Figure G10.2 shows a comparison of the calculated phreatic levels for the 
problem from different codes (Bardet & Tobita, 2002).    
 
The location of phreatic level calculated with PLAXIS 2D is shown in Figure 
G10.3 and G10.4 for different types of material. As seen the shape of the phreatic 
line (or surface) is affected by the type of material used for the soils. The phreatic 
levels in Figure G10.3b and G10.3d are similar to the results of Bradet & Tobita 
(2002) and Oden and Kikuchi (1980) while by using Staring sand (O1) material, 
PLAXIS 2D provides results similar to the results of Borja & Kishnani (1991).  
 
 
 
 
 
 
 
 



170 8 Verification of groundwater flow: 2D & 3D 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. G10.2: Comparison of phreatic level for non-homogeneous rectangular 

dam made by Bardet & Tobita (2002) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            (a)                            (b)                           (c)                          (d) 

 

Fig. G10.3.2D: Active pore pressures calculated with PLAXIS 2D. In all cases 
line L is the phreatic line; (a) fully saturated; (b) Hypres coarse top 
soil; (c) Staring sand (O1); (d) USDA sand  
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               (a)                                                              (b)                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               (c)                                                             (d) 

 

Fig. G10.3.3D: Active pore pressures calculated with PLAXIS 3D; (a) fully 
saturated; (b) Hypres coarse top soil; (c) Staring sand (O1); (d) USDA 
sand  
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               (a)                                                              (b)                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               (c)                                                             (d) 

 

Fig. G10.4.3D: Phreatic surface calculated with PLAXIS 3D; (a) fully saturated; 
(b) Hypres coarse top soil; (c) Staring sand (O1); (d) USDA sand  
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8.11 Conclusions 
 
Results of 10 two and three dimensional flow problems, solved by the new 
PLAXIS 2D and 3D kernels, are shown in this chapter and most of them are 
compared with analytical solutions or PlaxFlow results.  
 
The following features have been tested: 
 

1. Boundary conditions. Almost all boundary conditions have been tested 
in the chapter of one dimensional groundwater flow. However, 
seepage boundary condition, inflow, precipitation and well are tested 
here.  

2. Steady state and transient calculation. Both steady state and transient 
types of calculations have been tested. 

3. Confined and unconfined groundwater flow calculations. Confined 
groundwater flow calculations are linear and unconfined groundwater 
flow calculations are usually nonlinear. It has been shown that 
PLAXIS is capable of calculating both types of calculations. 

4. Seepage face calculation. Calculation of seepage face is highly 
nonlinear and needs additional procedures. In the case of higher order 
elements, as used in PLAXIS, the problem is more difficult due to 
irregular distribution of discharge at nodes. As shown in several 
problems, PLAXIS is capable of calculating seepage face with a 
reasonable accuracy.  

5. Drain. The kind of boundary condition has been tested and validated 
with PLAXIS 2D and 3D.  

6. Element types. Both types of elements, namely 15 noded with a fourth 
order of integration for pore pressure and 6-noded with a second order 
of integration for pore pressure can be used for groundwater flow 
calculation.   
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9 Verification of coupled flow – 
deformation analysis  

 
This chapter presents the results of 5 two dimensional and three dimensional 
coupled flow - deformation calculations and one calculation of gravity loading 
based on Bishop stress. In the case of one dimensional consolidation, the results 
are compared with analytical solutions but for the rest the results are compared 
with other codes like combination of PLAXIS with PlaxFlow (semi-coupled) and 
PLAXIS 3D Foundation (recently developed for fully saturated consolidation 
based on total pore pressure approach by John Van Esch from Deltares). As the 
same flow boundary conditions are used for the groundwater flow and coupled 
calculations, here it is not necessary to test all boundary conditions for flow. It is 
intended to demonstrate that the coupled flow-deformation analysis is stable and 
accurate.   
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9.1 Case CA1: Bishop effective stress  

As Bishop effective stress is used in PLAXIS when unsaturated behaviour of soil 
is simulated, this example shows the capability of the code to calculate Bishop 
effective stress. Figure CA1.1 shows the geometry of the problem. This picture 
presents the initial boundary conditions from which a steady state flow situation 
is calculated. Imposing a head of -1.0 m at the bottom of the model and 1.0 m at 
the top generates unsaturated starting conditions. This condition leads to have a 
constant suction of 10 kPa in entire the domain. The corresponding degree of 
saturation is 0.3398.  

Table CA1.1 gives the input parameters used for the calculation.  

The following steps are performed in this case: 
1. Steady state: Steady state groundwater flow calculation to generate initial 

pore pressure, (suction pore pressure of 10 kPa in the entire column).  
2. Gravity loading: To generate initial stress  

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA1.1: Geometry of case CA1 
 
 
Verfication: 
Bishop stress reads: 

 ( )wpSmσσ +′=                                                                                                      (1.12) 

The vertical total stress at the bottom is: 

kPah 40202 −=×−=⋅= γσ   

As the degree of saturation is constant in entire the model and is equal to 0.3398, 
Bishop effective stresses at the top and bottom are: 
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kPapS wtoptop 398.3103398.00 −=×−=⋅−=′ σσ                                                                                               

kPapS wbottombottom 398.43103398.040 −=×−−=⋅−=′ σσ                                                                                               
                                                                                                
Figure CA1.2 shows the effective stresses calculated by PLAXIS 2D and 3D. As 
seen the maximum and minimum effective stresses are -3.398 kPa and -43.40 
kPa which are very close to the analytical solution. 
 
Tab. CA1.1: Input data (Linear elastic model) 
 

Description Symbol Unit Value 
Elastic modulus Eref [kN/m2] 10000 

Poisson’s ratio ν [-] 0.2 

initial void ratio einit [-] 0.5625 

Saturated saturation Ssat [-] 1.0 

Residual saturation Sres [-] 0.02 

Van Genuchten  gn [-] 2.286 

Van Genuchten  ga [m-1] 2.24 

Van Genuchten  gl [-] 0 

Water weight  γw [kN/m3] 10.0 

Soil weight (sat)  γsat [kN/m3] 20.0 

Soil weight (dry)  γunsat [kN/m3] 20.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA1.2.2D: Vertical effective stresses (PLAXIS 2D) 
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Fig. CA1.2.3D: Vertical effective stresses (PLAXIS 3D) 
 
The horizontal effective stresses are shown in Figure CA1.3. As linear elastic 
model is used, the lateral stresses can be obtained from:  

yyxx σ
ν

νσ 








′−
′

=′
1

                                                                                               

which provides -0.8495 kPa for the top and -10.85 for the bottom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA1.3.2D: Horizontal effective stresses (PLAXIS 2D) 
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Fig. CA1.3.3D: Horizontal effective stresses (PLAXIS 3D) 
 
Figure CA1.4 shows the vertical total stresses calculated by the output program 
of PLAXIS. The minimum and maximum vertical total stresses should be 0 kPa 
and -40 kPa. As seen the results are very close to the analytical solution. The 
horizontal total stresses are plotted in Figure CA1.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA1.4.2D: Vertical total stresses (PLAXIS 2D) 
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Fig. CA1.4.3D: Vertical total stresses (PLAXIS 3D) 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA1.4.2D: Horizontal total stresses (PLAXIS 2D) 
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Fig. CA1.4.3D: Horizontal total stresses (PLAXIS 3D) 

 

Summary: 

As seen the results from PLAXIS 2D and 3D kernels and the output (total 
stresses) are correct.  
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9.2 Case CA2: One dimensional consolidation in 
saturated soil  

 
Input : Figure CA2.1 shows PLAXIS finite element mesh for one dimensional 
consolidation problem. The side and the bottom are kept undrained by applying 
closed boundary condition while the top surface is allowed to drain. Initial 
effective stresses and initial pore pressures are not generated. To generate an 
excess pore pressure, po, an external load Po is applied on the upper surface in 
the first phase (plastic calculation) followed by seven consolidation analyses of 
ultimate times 0.1, 0.5, 1.0, 2.0, 5.0, 10.0 and 50 days respectively which were 
performed with the coupled flow deformation formulation in PLAXIS 2D and 3D 
(based on Total Pore Pressure). Note: Phreatic line is on the top of the model to 
generate fully saturated soil.  
 
The following steps are performed in this case: 

1. Gravity loading: To generate initial active pore pressure and Bishop 
effective stresses.  

2. Plastic calculation: 10 kPa is applied on the top of the model to generate 
additional pore pressure in the model. 

3. Consolidation: Consolidation phases with different time intervals are 
performed (ultimate times 0.1, 0.5, 1.0, 2.0, 5.0, 10.0 and 50 days).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA2.1: Geometry and finite element mesh of case CA2 
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Verification : The problem of one dimensional consolidation can be formulated 
by a differential equation (Terzaghi, 1923): 
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The consolidation phenomenon will be practically finished when the argument of 
the exponential function is about 4 or 5 (Verruijt, 1993). This will be the case 
when 2T ≈ . 
 
This analytical solution is indicated along with the PLAXIS finite element 
calculation results in Figures CA2.3. As seen, the results from consolidation 
based on total pore pressure are more accurate compared to the EPP results. For 
saturated soils, the formulations of both types of calculations are the same. The 
reason is only due to selecting smaller time steps in the TPP analysis which leads 
to calculate pore pressure more accurate.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1.2: Active pore pressure vs height 
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9.3 Case CA3: One dimensional varying mechanical 
loading  

 
This example involves two cases, in which on the top of a column, the 
mechanical loads are varying. Different situations have been considered. Figure 
CA3.1 shows the geometry and boundary conditions for the problem. The 
column is 1 m high. In case 1a, the top boundary is open for flow and in case 1b 
the top boundary is closed for flow. In both cases the side boundaries are closed 
for flow. The material data are given in Table CA3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.1: Geometry boundary conditions for problem CA3 
 
 
Tab. CA3.1: Input data  
 

Description Symbol Unit Value 
Young’s modulus E [kN/m2] 10000 

Poisson’s ratio ν [-] 0 

Soil weight (sat) γsat [kN/m3] 10 

Soil weight (dry) γunsat [kN/m3] 0 

Permeability kx, ky, kz [m/day] 0.001 

initial void ratio einit [-] 0.5 

Elastic storage Kw,ref/n [kN/m2] 4.95×105 
 
The mechanical loading is applied according to the following function (Figure 
CA3.F): 

1 m 



9 Verification of coupled analysis 185 
 

( )




≥
<−+

=
11

11010 /

ttif

ttiftt
c τ

ττττ  (9.5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.F: Applied load vs time in problem CA3 
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This example has also been calculated with PLAXIS 3D Foundation by John Van 
Esch. Here the results of all calculations are given.  
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Results of case 1a: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.2: Active pore pressure for case 1a (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.3: Vertical displacement for case 1a (PLAXIS 2D) 
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Fig. CA3.4: Active pore pressure for case 1a (PLAXIS 3D Foundation) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.5: Vertical displacement for case 1a (PLAXIS 3D Foundation) 
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Fig. CA3.6: Active pore pressure for case 1a (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.7: Vertical displacement for case 1a (PLAXIS 3D) 
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Results of case 1b:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.8: Active pore pressure for case 1b (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.9: Vertical displacement for case 1b (PLAXIS 2D) 
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Fig. CA3.10: Active pore pressure for case 1b (PLAXIS 3D Foundation) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.11: Vertical displacement for case 1b (PLAXIS 3D Foundation) 
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Fig. CA3.12: Active pore pressure for case 1b (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.13: Vertical displacement for case 1b (PLAXIS 3D) 
 

Summary: 

As seen the results from PLAXIS 2D kernel and PLAXIS 3D are similar. The 
differences are due to the different time steps used during the calculations.  
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9.4 Case CA4: One dimensional varying hydraulic 
loading  

 
This example involves two cases, in which on the top of a column, the hydraulic 
loads are varying. Different situations have been considered. Figure CA4.1 
shows the geometry and boundary conditions for the problem. The column is 1 m 
high. In case 1a, the top boundary is open for flow and in case 1b the top 
boundary is closed. In both cases the side boundaries are closed for flow. The 
material data are given in Table CA4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA4.1: Geometry boundary conditions for problem CA4 
 
Tab. G1.1: Input data  
 

Description Symbol Unit Value 
Young’s modulus E [kN/m2] 10000 

Poisson’s ratio ν [-] 0 

Soil weight (sat) γsat [kN/m3] 10 

Soil weight (dry) γunsat [kN/m3] 0 

Permeability kx, ky, kz [m/day] 0.001 

initial void ratio einit [-] 0.5 

Elastic storage Kw,ref/n [kN/m2] 4.95×105 
 
The hydraulic loading is applied according to the following function. It should be 
noted that the following loading is applied after 0.1 day (see Figure CA4.F): 

1 m 
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Fig. CA4.F: Increase of water head as a function of time in problem CA4 
 
Case 2a: Increase of water head on the top and bottom boundary. 
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Case 2b: Increase of water head on the top boundary. 
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kPaptop 0.521 −=    

 
This example has also been calculated with PLAXIS 3D by John Van Esch. Here 
the results of both calculations are given.  
 
Results of case 2a: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA4.2: Active pore pressure for case 2a (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA4.3: Vertical displacement for case 2a (PLAXIS 2D) 
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Fig. CA4.4: Active pore pressure for case 2a (PLAXIS 3D Foundation) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA4.5: Vertical displacement for case 2a (PLAXIS 3D Foundation) 
 
 
 
 
 
 
 
 
 



196 9 Verification of coupled analysis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA4.6: Active pore pressure for case 2a (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA4.7: Vertical displacement for case 2a (PLAXIS 3D Foundation) 
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Results of case 2b:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA4.8: Active pore pressure for case 2b (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA3.9: Vertical displacement for case 2b (PLAXIS 2D) 
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Fig. CA4.10: Active pore pressure for case 2b (PLAXIS 3D Foundation) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA4.11: Vertical displacement for case 2b (PLAXIS 3D Foundation) 
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Fig. CA4.12: Active pore pressure for case 2b (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA4.13: Vertical displacement for case 2b (PLAXIS 3D) 
 
 

Summary: 

As seen the results from PLAXIS 2D and 3D kernels are similar. The differences 
are due to different time steps used during the calculations.  
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9.5 Case CA5: Potato field moisture 
 
The example of Potato filed which is calculated by transient calculation, is 
chosen for fully coupled flow-deformation analysis (example G1). This lesson 
demonstrates the applicability of PLAXIS to agricultural problems. The potato 
field lesson involves a loam layer on top of a sandy base. Regional conditions 
prescribe a water level at the position of the material interface. The water level in 
the ditches remains unchanged. The precipitation may vary on a daily basis due 
to weather conditions. The calculation aims to predict the variation of the water 
content in the loam layer in time as a result of time-dependent boundary 
conditions. 
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Fig. CA5.1: Potato field geometry 
 
Staring series B9 and O2 represent the top and the bottom layers. The parameters 
are given in Table CA5.1 and CA5.2, respectively.  
 
 Tab. CA5.1: Input data for loam layer (B9) 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.0154 

initial void ratio einit [-] 0.754 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 

Saturation (saturated) Ssat [-] 1.0 

Saturation (residual) Sres [-] 0.06831 

Van Genuchten gn [-] 1.325 

Van Genuchten  ga [m-1] 0.650 

Van Genuchten  gl [-] -2.161 

Young’s modulus E [kN/m2] 20000 

Poisson’s ratio ν [-] 0.2 

Soil weight (sat) γsat [kN/m3] 19 

Soil weight (dry) γunsat [kN/m3] 17 
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Tab. CA5.1: Input data for sand layer (O2) 
 

Description Symbol Unit Value 
Permeability kx, ky, kz [m/day] 0.1270 

initial void ratio einit [-] 0.62 

Elastic storage Kw,ref/n [kN/m2] 4.875×105 

Saturation (saturated) Ssat [-] 1.0 

Saturation (residual) Sres [-] 0.06203 

Van Genuchten gn [-] 1.951 

Van Genuchten  ga [m-1] 2.13 

Van Genuchten  gl [-] 0.168 

Young’s modulus E [kN/m2] 13000 

Poisson’s ratio ν [-] 0.2 

Soil weight (sat) γsat [kN/m3] 19 

Soil weight (dry) γunsat [kN/m3] 17 
 
The precipitation fluxes are given in Table CA5.3. The threshold values for 
ponding and precipitation (evapotranspiration) are chosen as 1 m and 0 at the top 
of the boundary, respectively.  
 
Tab. CA5.3: Prescribed flux (ϕmin = 0 and ϕmax = 1 m) 
 

Time (day) Q (m/day) 
0 0 

1 0 

1 0.01 

2 0.01 

2 0.03 

3 0.03 

3 0 

4 0 

4 0.03 

5 0.03 

5 0 

6 0 

6 0.01 

8 0.01 

8 0 

9 0 
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Fig. CA5.2: Prescribed flux 
 
Due to the symmetry of the problem, it is sufficient to simulate a strip with a 
width of 15.0 m, as indicated in Figure CA5.3. The thickness of the loam layer is 
2.0 m and the sand layer is 3.0 m deep.  
 
The finite element mesh used for the calculation is depicted in Figure CA5.3. The 
mesh consists of 735 15-noded elements in case of 2D and 20648 10 noded 
tetrahedral elements in case of 3D.  
 
The following steps are performed in this case: 

1. Gravity loading: Gravity loading is performed to generate initial stresses. 
2. Steady state + Plastic drained: a Steady sate calculation followed by a 

plastic drained to obtain equilibrium (the bottom head is imposed to 3 m). 
The initial displacement is set to zero. 

3. Coupled analysis: The top boundary head is set to influx. The initial 
displacement is set to zero. 

 
Active pore pressure, degree of saturation and flow fields are shown in the 
following for steady state, after 5 and after 9 days. 
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Fig. CA5.3.2D: Finite element mesh (15 noded elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.4.2D: Active pore pressure after steady state phase (imposing head) 
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Fig. CA5.5.2D: Degree of saturation after steady state phase (imposing head) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.6.2D: Flow field after steady state phase (imposing head) 
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Fig. CA5.7.2D: Active pore pressure and external water load after 5 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.8.2D: Degree of saturation after 5 days 
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Fig. CA5.9.2D: Deformed mesh after 5 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.10.2D: Flow field after 5 days 
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Fig. CA5.11.2D: Active pore pressure after 9 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.12.2D: Degree of saturation after 9 days 
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Fig. CA5.13.2D: Deformed mesh after 9 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.14.2D: Flow field after 9 days 
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Fig. CA5.3.3D: Finite element mesh (10 noded elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.4.3D: Active pore pressure after steady state phase (imposing head) 
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Fig. CA5.5.3D: Degree of saturation after steady state phase (imposing head) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.6.3D: Flow field after steady state phase (imposing head) 
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Fig. CA5.7.3D: Active pore pressure and external water load after 5 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.8.3D: Degree of saturation after 5 days 
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Fig. CA5.9.3D: Deformed mesh after 5 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.10.3D: Flow field after 5 days 
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Fig. CA5.11.3D: Active pore pressure after 9 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.12.3D: Degree of saturation after 9 days 
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Fig. CA5.13.3D: Deformed mesh after 9 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA5.14.3D: Flow field after 9 days 
 

Summary: 

This example cannot be verified. However by comparing the flow results, it can 
be seen that the flow response is similar to what calculated with transient 
calculation. As displacements are set to zero in the beginning of each phase, the 
deformation is only due to change in water pore pressure in the phase. In the 
third phase, heave can be seen which is because of raining that leads to decrease 
suction and consequently to decrease Bishop effective stress. Results from 
PLAXIS 2D and 3D are similar.  
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9.6 Case CA6: Rapid draw down 
 
This example concerns the stability of a reservoir dam under conditions of drawn 
down. Fast reduction of the reservoir level may lead to instability of the dam due 
to high pore water pressures that remain inside the dam. To analyse such a 
situation using the finite element method, a coupled flow – deformation 
calculation is required. This example demonstrates how coupled flow – 
deformation analysis and stability analysis can interactively be performed in 
PLAXIS. 
 
Input: 

The dam to be considered is 30 m high and the width is 167.5 m at the base and 5 
m at the top. The dam consists of a clay core with a well graded fill to both sides. 
The geometry of the dam is depicted in Fig. CA6. The normal water level behind 
the dam is 25 m high. A situation is considered where the water level drops to 
only 5 m. The normal phreatic level at the right hand side of the dam is 10 m 
below ground surface. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.1: Geometry of the dam  
 
 
The sub-soil consists of overconsolidated silty sand. The data of the dam 
materials and the sub-soil are given in Table CA6.1 

Geometry Model: 

The situation can be modelled with a geometry model in which the sub-soil is 
modelled to a depth of 30 m. The left hand boundary can be taken 50 m left of 
the dam toe and the right hand boundary can be taken 37.5 m right of the other 
dam toe. The proposed geometry model is presented in Figure CA6.2 for both 2D 
and 3D calculations. For 3D calculations the width of the geometry is taken 50 
m. 
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Fig. CA6.2.2D: Geometry and finite element mesh of the dam and sub-soil 

(PLAXIS 2D – 6 noded elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.2.3D: Geometry and finite element mesh of the dam and sub-soil 

(PLAXIS 3D) 
 
The calculation consists of nine phases. In the first phase the dam is constructed. 
In the second phase the reservoir is filled up, bringing the water level to the 
standard level of 25m. For this situation the water pressure distribution is 
calculated using a steady-state groundwater flow calculation. The third and 
fourth phase both start from this standard situation (i.e. a dam with a reservoir 
level at 25 m) and the water level is lowered to 5 m. A distinction is made in the 
time interval at which this is done (i.e. different speeds of water level reduction; 
rapid drawdown and slow drawdown). In both cases the water pressure 
distribution is calculated using a coupled flow – deformation calculation. The 
fifth calculation phase also starts from the second phase and considers the long-
term behaviour of the dam at the low reservoir level of 5 m, which involves a 
steady-state groundwater flow calculation to calculate the water pressure 
distribution. 
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Finally, for all four water pressure situations the safety factor of the dam is 
calculated by means of phi-c reduction. This leads to the following cases being 
considered: 

• water level remains at 25m. 
• water level drops quickly from 25 to 5m. 
• water level drops slowly from 25 to 5m. 
• water level drops extremely slowly to 5m and remains there. 

Material properties: 

The material data sets of the clay core, the fill material and the sub-soil are 
shown in table CA6.1.  

Tab. CA6.1: Dam and soil properties (Mohr-Coulomb model) 

Parameter Symbol Core Fill Sub-soil Unit 

Material model Model Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb - 

Type of behaviour Type Undrained Undrained Undrained - 

Unsaturated weight γunsat 16.0 16.0 17.0 kN/m3 

Saturated weight γsat 20.0 20.0 21.0 kN/m3 

Permeability  kx, ky, kz 1.0·10-4 0.25 0.02 m/d 

Young's modulus E 8000 20000 50000 kN/m2 

Poisson's ratio ν 0.35 0.33 0.3 - 

Cohesion c΄ 5.0 5.0 10.0 kN/m2 

Friction angle ϕ΄ 25.0 30.0 32.0 ° 

Dilatancy angle ψ 0.0 0.0 0.0 ° 

Void ratio  einit 0.5 0.5 0.5 - 

Flow data set  
Standard 

(very fine) 

Standard 

(coarse) 

Standard 

(Medium) 
 

Lateral earth pressure K0 n/a n/a 0.47 - 

 

Calculation phases: 

Phase 1: Steady state groundwater flow calculation. 
• Create a closed flow boundary at the bottom of the model 
• Generate groundwater head conditions at the other model boundaries by 

creating a general water level. The left head must be at a level of 25 m 
above the ground surface and the right boundary at a level of 10 m below 
the ground surface. 

 
Phase 2: Gravity loading 
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Fig. CA6.3.2D: Steady-state pore pressure for high reservoir level (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.4.2D: Degree of saturation for high reservoir level (PLAXIS 2D) 
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Fig. CA6.5.2D: Flow field for high reservoir level (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.3.3D: Steady-state pore pressure for high reservoir level (PLAXIS 3D) 
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Fig. CA6.4.3D: Degree of saturation for high reservoir level (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.5.3D: Flow field for high reservoir level (PLAXIS 2D) 
 
Phase 3: Rapid drawdown: 
In this phase rapid drawdown of the reservoir level is considered. 
• In the Parameters tab, select Reset displacements to zero and set the Loading 

input to Stage construction. Enter a value of 5 days for the Time interval.  
 
Figure CA6.4 shows active pore pressures. It can be seen that, although the 
reservoir level has dropped down to 5 m, there are still high pore pressures in the 
dam, especially in the clay core. Other output options may be used to view the 
groundwater head, the degree of saturation and the flow field. The development 
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of various quantities in time may be viewed using the Animation option or the 
Curves option in the view menu.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.6.2D: Active pore pressure after rapid drawdown (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.7.2D: Degree of saturation after rapid drawdown (PLAXIS 2D) 
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Fig. CA6.8.2D: Flow field after rapid drawdown (PLAXIS 2D) 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.6.3D: Active pore pressure after rapid drawdown (PLAXIS 3D) 
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Fig. CA6.7.3D: Degree of saturation after rapid drawdown (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.8.3D: Flow field after rapid drawdown (PLAXIS 3D) 
 
Phase 3: Slow drawdown: 
In this phase slow draw down of the reservoir level is considered. 
• Set the Start from phase parameter to Phase 1. 
• In the Parameters tab, select Reset displacements to zero and set the Loading 

input to Stage construction. Enter a value of 50 days for the Time interval.  
 
Figure CA6.5 shows active pore pressures. 
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Fig. CA6.9.2D: Active pore pressure after slow drawdown (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.10.2D: Degree of saturation after slow drawdown (PLAXIS 2D) 
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Fig. CA6.11.2D: Flow field after slow drawdown (PLAXIS 2D) 
 
 
 
 
 
 
  
 
 
 
 

 
 
 
 
 
 
 
 
Fig. CA6.9.3D: Active pore pressure after slow drawdown (PLAXIS 3D) 
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Fig. CA6.10.3D: Degree of saturation after slow drawdown (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. CA6.11.3D: Flow field after slow drawdown (PLAXIS 3D) 
 
Phase 4: Steady state calculation: 
This phase considers the steady-state situation of a low reservoir level.  

• Set the Start from phase parameter to Phase 1. 
 
• In the staged construction mode, switch to the water conditions mode. 

Generate proper boundary conditions for a steady-state groundwater flow 
calculation in the following way: 

• Make sure that the bottom of the model is still closed. 
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• Generate groundwater head conditions at the other model boundaries by 
creating a new general water level. The very left side at a level of 5 m above 
the ground surface and the right boundary at a level of 10 m below the ground 
surface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.12.2D: Steady-state pore pressure for low reservoir level (PLAXIS 2D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.13.2D: Degree of saturation for low reservoir level (PLAXIS 2D) 
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Fig. CA6.14.2D: Flow field for low reservoir level (PLAXIS 2D)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.12.3D: Steady-state pore pressure for low reservoir level (PLAXIS 3D) 
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Fig. CA6.13.3D: Degree of saturation for low reservoir level (PLAXIS 3D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.14.3D: Flow field for low reservoir level (PLAXIS 3D)  
 
Phase 5 to 8: Stability calculations: 
In Phases 5 to 8 stability calculations are defined for the phases 1 to 4 
respectively. Therefore, select the corresponding phase in the Start from phase 
parameter and set the Calculation type to Phi-c reduction. In the Parameter tab 
set the number of additional steps to 50 and select Reset displacement to zero. 
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Output:  

The results of the four groundwater flow calculations in terms of pore pressure 

distribution have been shown in previous figures. Four different situations were 
considered:  

1. The steady-state situation with a high (standard) reservoir level.  
2. The coupled analysis after rapid drawdown of the reservoir level.  
3. The coupled analysis after slow drawdown of the reservoir level.  
4. The steady-state situation with a low reservoir level. 
  
When the change of pore pressure is taken into account in a deformation 
analysis, some additional deformation of the dam will occur. These deformations 
and the effective stress distribution can be viewed on the basis of the results of 
phases 1 to 4. Here, attention is focused on the variation of the safety factor of 
the dam for the different situations. Therefore, the development of ΣMsf is 
plotted for the phases 5 to 8 as a function of the displacement of the dam crest 
point (see Fig. CA6.15.2D and CA6.15.3D). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CA6.15.2D: Safety factors for different situations (PLAXIS 2D) 
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Fig. CA6.15.3D: Safety factors for different situations (PLAXIS 3D) 
 
Summary:  

Rapid drawdown of a reservoir level can reduce the stability of a dam 

significantly. It follows from Figure CA6.6 that using suction and Bishop stress 

may increase factor of safety significantly. It has been shown that if Terzaghi 

stress without suction is used, factor of safety in case of reservoir at low level is 

around 1.6 while this factor is 2.0 if Bishop stress is utilised. It should be noted 

that the difference between these two factors of safety is mainly dependent on the 

soil water characteristic curve used for the soil layers. As seen in Figures CA6.12 

and CA6.13 (both 2D and 3D) the minimum degree of saturation in the core is 

around 60% and the maximum suction is around 300 kPa which means that in 

case of Bishop stress, the effective stress in this layer is about 180 kPa 

(300kPa×0.60) more than the corresponding Terzaghi stress. This additional 

stress makes the embankment more stable. It follows from the formulation of 

Bishop stress (degree of saturation is used in the formulation) that the factor of 

safety might be significantly dependent on the SWCC utilised for the unsaturated 

soil layers. 

In the following groundwater flow results of PlaxFlow are given: 
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Fig. CA6.16.PF: Steady-state pore pressure distribution for high reservoir level 

(PlaxFlow) 
 
 
 
 

 

 

Fig. CA6.17.PF: Pore pressure distribution after rapid draw down (PlaxFlow) 

 

 

 

 

 
 
 
Fig. CA6.18.PF: Pore pressure distribution after slower draw down (PlaxFlow) 
 
 
 
 
 
 
 
 
 
Fig. CA6.19.PF: Steady-state pore pressure distribution for low reservoir level 

(PlaxFlow) 
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9.7 Conclusions 
 
Results of 5 coupled flow – deformation analyses and one gravity loading with 
Bishop stress, solved by the new PLAXIS 2D and 3D kernels, are shown in this 
chapter. Some of them have been verified against analytical solution.  
 
The following features have been tested: 
 

1. Boundary conditions. All boundary conditions have been tested in the 
chapters of groundwater flow. However, seepage boundary condition, 
inflow, precipitation are tested here.  

2. Bishop stress: Bishop effective stress has been tested in this chapter 
and it has been shown that PLAXIS is capable of calculating Bishop 
effective stress. 

3. One dimensional consolidation. Results of one-dimensional 
consolidation are very close to the analytical ones 

4. Safety factor with suction. It has been shown that if Bishop stress is 
used, the factor of safety might be higher than the factor of safety if 
Terzaghi stress without suction is used. For practical application, 
this should be changed and suction should not be considered in 
phi/c reduction! For transient from Bishop to Terzaghi, a nil phase 
may be needed because of the out of balance force.  
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235 

10  Verification of unsaturated soil model  
 
In this chapter two examples are presented to show the capability of the proposed 
formulations, which consists of the fully coupled flow-deformation analysis and 
the unsaturated soil model. At first some uncoupled numerical element tests 
using the Barcelona Basic Model are performed and then the capability of the 
coupled analysis and its algorithm is shown by numerical simulation of a footing 
problem.     
 



236 10 Verification of unsaturated soil model 
 

10.1 Case USM1: Drained compression triaxial tests at 
different suctions   

An example presented by Sheng et al. (2003) is used to show the capability of the 
constitutive soil model to simulate mechanical behaviour of unsaturated soils. As 
the unsaturated model used in the calculation is not the same as the model used 
by Sheng et al. (2003), the material data are calibrated. The material data are 
given in Table USM1. 

To perform the test, the initially saturated soil is isotropically compressed to -24 
kPa and unloaded to -20 kPa to produce an overconsolidated soil with OCR of 
1.2, (point A in Figure USM1.1).  Then suction is slowly increased such that the 
total axial and radial stresses are kept at 20 kPa, (point B in Figure USM1.1). 
Three different values are applied for suction, namely 0, 100 and 200 kPa. After 
applying the suction, the axial stress is increased under undrained conditions 
(point C in Figure USM1.1). At this stage, the total confining stress and the 
suction are kept constant. 

Results: 

Figures USM1.2 to USM1.5 show the predicted curves for different amount of 
suction calculated with Plaxis 2D. The corresponding results provided by 
Gonzalez & Gens (2008) and Sheng et al. (2003) show in Figures USM1.6 To 
USM1.11.  

Tab. USM1.1:   Material properties used for triaxial tests (After Sheng et al., 
2003) 

 
Parameter Unit Value 
ν [-] 0.3 
κ [-] 0.05 
λ0 [-] 0.25 
κs [-] 0 
ks [-] 0 
Μ [-] 0.772 
e0 [-] 1.21 
Pr [kPa] 1.0 
P´0 [kPa] 24 
r [kPa] 0.75 
β [kPa-1] 0.012 
ga [m-1] 1.0 
gn [-] 0.5 
gc [-] -1.0 
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Fig. USM1.1: Stress path in triaxial compression test (After Sheng et al, 2003) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. USM1.2: Shear stress versus axial strain for different suction (Plaxis) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. USM1.3: Suction versus deviatoric stress q (Plaxis)  
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Fig. USM1.4: Stress path in p´-q space (Plaxis) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. USM1.5: Specific volume versus mean effective stress p  ́(Plaxis)  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. USM1.6: Shear stress versus axial strain for different suction (Gonzalez & 

Gens, 2008) 
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Fig. USM1.7: Suction versus deviatoric stress q (Gonzalez & Gens, 2008)  
 
 
 
 
 
 
 
 
 
 
Fig. USM1.8: Stress path in p´-q space (Gonzalez & Gens, 2008) 
 
 
 
 
 
 
 
 
 
 
Fig. USM1.9: Specific volume versus mean effective stress p  ́(Gonzalez & 

Gens, 2008)  
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Fig. USM1.10: Shear stress versus axial strain for different suction (Sheng et al., 

2003) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. USM1.11: a) Suction versus mean effective stress p’; b) suction versus 

deviatoric stress q; c) stress path in p´-q space; d) specific volume 
versus mean effective stress p  ́(Sheng et al., 2003)  

 

It follows from the figures that by increasing the suction, the deviatoric stress 
increases. The corresponding stress paths in the space p´-q are shown in Figure 
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USM1.2b. It follows from the figure that the stress paths reach the critical state 
line at the axial strain 50%. 

Summary: 

As seen, results from Plaxis are in agreement with the results provided by 
Gonzalez & Gens (2008) and Sheng et al. (2003).  

 
 
 



242 10 Verification of unsaturated soil model 
 

10.2 Case USM2: Footing problem  
 
In this section numerical simulation of a flexible footing on a partially saturated 
soil which collapses on wetting is presented. The fully coupled flow-deformation 
analysis is applied.  Figure 3 shows the FE mesh and the boundary conditions 
used for the analysis. The mesh consists of 575 15-noded triangular elements 
with a fourth order interpolation for displacements and for pore pressures and 12 
Gauss points (stress points) for each element. The width and height of the model 
are 10 m and a distributed load with width of 1 m is applied on top of the model. 
The initial position of phreatic line is at 5 m high. This level will be changed 
during drying and wetting processes. 

In this example, soil is dried so that the suction reaches 100 kPa at the surface 
nodes and then the footing is vertically loaded to 100 kPa. After this loading 
phase, the soil is imposed to wetting. The top, left and right boundaries are closed 
for flow, and drying and wetting are only applied through the bottom boundary 
by linearly changing the water head in time (in drying phase, the head reduces 
from 5 m to 0 and in wetting phase the head increases to 5 m). All phases are 
performed slowly in order to maintain drained conditions (in 1000 days). 

The material data of the soil is given in Table 2. For initialisation 100 kPa is 
assumed for preoverburden pressure (POP). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. USM2.1: Geometry and FE mesh used for footing problem  
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The results of the fully coupled flow-deformation analysis are shown in Figure 4. 
The predicted settlements of the ground surface are plotted in Figure 4a. Figure 
4b shows the amount of suction at the centre of the footing. During drying phase 
the ground surface settles roughly 9 cm. Applying the flexible footing (the 
distributed load) causes the centre of the footing settles 13.6 cm. Wetting of the 
soil leads to significantly increase the displacements of the nodes below the 
footing while the ground surface at x=10 m settles and rises a little. The 
maximum displacement occurs at the centre of the footing, 17 cm. Figure 5 
shows the deformed mesh after the loading and wetting phases. 

Tab. USM2.:   Material properties used for triaxial tests (After Sheng et al., 
2003) 

 
Parameter Unit Value 
γsat [kN/m3] 18.0 
γdry [kN/m3] 16.0 
kx & ky [m/day] 0.086 
ν [-] 0.3 
κ [-] 0.02 
λ0 [-] 0.20 
κs [-] 0 
ks [-] 0 
Μ [-] 0.984 
e0 [-] 1.17 
Pr [kPa] 1.0 
P´0 [kPa] 1.0 
r [kPa] 0.70 
β [kPa-1] 0.012 
ga [m-1] 1.0 
gn [-] 0.5 
gc [-] -1.0 
gl [-] 0.0 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. USM2.2: Footing problem: a) Settlement of the ground surface in time; b) 

Variation of suction at the centre of the footing  
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Fig. USM2.3: Deformed mesh; a) after loading phase; b) after wetting phase 
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10.3 Conclusions 
 
Results of one plastic calculation and one coupled flow – deformation analysis 
using unsaturated soil model (Barcelona Basic Model), solved by the new Plaxis 
2D kernel are shown in this chapter. The former one has been verified against 
numerical results provided by Gonzalez & Gens (2008) and Sheng et al. (2003).  
 
The following features have been tested: 
 

1. Effect of suction. The effect of suction has been investigated by 
numerical modelling of drained triaxial tests. As shown, results are 
very similar to the results of Gonzalez & Gens (2008) and Sheng et al. 
(2003).  

2. Drying and wetting: Drying and wetting have been tested in the 
footing problem. It can be seen that the model is capable of simulating 
collapse upon wetting. 

3. Different calculation types. The model has been tested with both 
plastic and fully coupled flow-deformation analyses. 
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11 Undrained analysis in PLAXIS   
 
Numerical modelling of undrained response of soils as used in PLAXIS is 
described here. New features have been added to PLAXIS that may affect 
“undrained analysis” of soil, such as the new feature considered for unsaturated 
soil modelling. The main difference between the new and the previous versions 
of PLAXIS is using Bishop stress in the advanced mode (to describe partially 
saturated behaviour of soils) and changing water conditions (as groundwater flow 
calculation has been integrated in the calculation kernel the resulting pore 
pressures might be input pore pressures for the next phase).  

Before describing the numerical modelling of undrained behaviour, the 
calculation modes in the new version of PLAXIS should be defined. 

11.1 Calculation modes 
Three modes have been implemented in PLAXIS which enables the user to 
perform particular types of calculations. The calculations modes are as follows: 

1. Classical mode: This mode uses Terzaghi’s stress and is very similar to 
the old PLAXIS. The idea is to offer a mode in which old projects can be 
modelled. Pore pressures are divided into steady state and excess pore 
pressures. Steady state pore pressures are input data, i.e. generated based 
on phreatic levels or groundwater flow. Excess pore pressures are 
generated during plastic or consolidation calculations. The weight of soil 
is calculated according to the position of the phreatic level. Saturated 
weight of soil γwet is utilised for below the phreatic level and unsaturated 
weight of soil γunsat for above the phreatic level.  

The types of calculations which can be done in this mode are: 
• Plastic undrained 
• Plastic drained  
• Consolidation based on Excess Pore Pressure (EPP) 
• Dynamics 
• Free vibration 
• Phi/C reduction 

2. Advanced mode: This mode uses Bishop’s stress and is suitable for 
calculating unsaturated response of soils and for performing fully coupled 
hydro-mechanical behaviour of soils. Bishop’s stress is defined by: 

( )wpχmσσ +′=                                                                                               (1) 

χ is an effective stress parameter called matric suction coefficient and 
varies from 0 to 1 covering the range from dry to fully saturated 



248 11 Undrained analysis in PLAXIS 

conditions. The matric suction coefficient χ is generally determined 
experimentally. This parameter depends on the degree of saturation, 
porosity and on the matric suction (pa – pw). In the current version of 
PLAXIS, this parameter is assumed to be equal to the effective saturation, 
i.e.: 

( )we pSmσσ +′=                                                                                                 

(2) 

in which Se is the effective saturation which is a function of the suction 
pore pressure. This relationship (i.e. relation between degree of saturation 
and suction) is known as Soil Water Characteristic Curve (SWCC). 
PLAXIS uses, Van Genuchten, simplified Van Genuchten and user 
defined relationships. It follows from the above statements that in the 
partially saturated zone, effective stresses may change by changing 
SWCC parameters. This causes that the results from the advanced mode 
are different from the classical mode, if the user calculates the same 
example in the above mentioned modes.  

To calculate the weight of soil, the following formula is utilised to 
calculate the weight of soil: 

weteunsate SS γγγ +−= )1(                                                                              (3) 

The types of calculations which can be done in this mode are as follows: 
• Plastic undrained 
• Plastic drained  
• Consolidation based on Total Pore Pressure (TPP) 
• Dynamics 
• Free vibration 
• Phi/C reduction 

3. Flow mode: This mode is for calculating pure groundwater flow 
calculations. 

The types of calculations in this mode are: 
• Steady state groundwater flow  
• Transient groundwater flow  

11.2 Undrained and drained behaviour 
To generate proper excess pore water pressure in the advanced mode of PLAXIS, 
different bulk moduli of water are used depending on the type of material and on 
the type of calculation. In the following those cases are discussed.  

During the undrained analysis, the changes in pore water pressure, dpw is 
calculated based on the equivalent bulk modulus of pore fluid according to: 
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volew dKdp ε⋅=                                                                                                   (4) 

Ke is the equivalent bulk modulus of pore fluid and is derived from: 
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where Ku and K΄ denote the undrained and drained bulk moduli of the soil 
respectively. G is the elastic shear modulus, ν΄ is the drained Poisson’s ratio and 
νu is the undrained Poisson’s. n is porosity of the soil.  

In PLAXIS, it is possible to use effective parameters for undrained calculations. 
The undrained elastic moduli of soil can be related to the effective parameters 
according to  
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Eq. (7) shows the relationship between the undrained Poisson’s ratio, the 
effective Poisson’s ratio, the bulk modulus of water, the bulk modulus of soil 
skeleton and porosity of the soil. It follows form Eq. (7) that if water is assumed 
to be incompressible (Kw→∞), then (νu→0.5) which leads to singularity of 
stiffness matrix. Therefore it is assumed νu to be 0.495 for fully saturated. In 
reality, the bulk modulus of water is very large, but not infinite. The bulk 
modulus of pure water (without bubbles of air) is K0

w =2×106 kPa).  

The generation of excess pore water pressure can be studied by means of the 
Skempton B-parameter which is defined as the ratio of excess pore water pore 
pressure increment to the mean total stress increment: 
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dp

dp
B w=                                                                                                            (10) 

By substituting (4) into (10), we have 

dpn

dK
B volw

⋅
=

ε
                                                                                                    (11) 

and the mean total stress is 

volu dKdp ε=                                                                                                      (12) 

where Ku is the undrained bulk modulus of soil which can be obtained from 
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By substituting (13) and (5) in (11) the Skempton B-parameter as a function of 
the undrained Poisson’s ratio (or the undrained Poisson’s ratio as a function of 
the Skempton B-parameter) can be obtained: 
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As seen, B varies between 1 (for fully saturated conditions) and 0 (for fully dry 
condition) when νu=0.5 and νu= ν΄, respectively. Experimental data show that the 
parameter B decreases by decreasing the degree of saturation (Figure 1). 

In the advanced mode of PLAXIS, the value of Skempton’s B-parameter is 
unknown but the degree of saturation is known. Therefore the bulk modulus of 
water is estimated from:  

sat
wair

air
sat
wunsat

w
KSSK

KK
K

)1( −+
=                                                                              (16) 

in which Kair is the bulk modulus of air which is about 100 kPa under 
atmospheric pressure. In PLAXIS, it is assumed that pa (air pore pressure) is 
equal to 0 for practical application and therefore an artificial and small value (1 
kPa) is used for the bulk modulus of air. Kw

sat and Kw
unsat are bulk moduli of 

water in saturated and unsaturated conditions, respectively. Kw
sat is calculated 



11 Undrained analysis in PLAXIS   251 
 

based on νu which is equal to 0.495 when the standard setting is being used. 
PLAXIS always checks the value of Kw

sat to ensure that Kw
sat is less than the bulk 

modulus of pure water (Kw
0 =2×106).  

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 1: Skempton’s B-parameter versus degree of saturation 

 
In the following the above mentioned relationships are reviewed in different 
modes. 

11.3 Classical mode 
In the classical mode of PLAXIS, it is assumed that the degree of saturation is 1 
when soil is undrained and is 0 when soil is drained in all types of calculation 
excepting in the consolidation type of calculation, therefore Ke is either Kw/n or 0. 
Thus when the material is undrained, Ke is Kw/n for plastic undrained and Ke is 0 
for plastic drained. In consolidation type of calculation, all materials are assumed 
to be fully saturated and the bulk modulus of water is calculated according to Eq. 
(5) for drained and undrained types of materials. In this case, the mechanical 
behaviour of soil is mainly governed by the permeability of layers. Therefore, if 
the user needs to reduce the bulk modulus of water in a layer, which is the case 
for considering partially saturated soils (degree of saturation less than 1), the user 
needs to lower Skempton’s B-parameter (Eq 15) in the respective layer. This is 
one of the main differences between the new kernel and the previous one (version 
9.0). Because in the old kernel, the bulk modulus of water for drained materials is 
assumed to be 10% of the bulk modulus of water of the undrained material. 

For the newly activated cluster, due to the fact that the soil is not fully saturated, 
the bulk modulus of water is neglected to avoid generation of excess water pore 
pressure.  
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Tables 1 shows the summary of the bulk moduli of water used in the classical 
mode of PLAXIS. As seen, in this mode, the same Kw is utilised for below and 
above the phreatic level. This means that, in this mode, it is possible to generate 
high excess pore water pressure in the area where lower amount of water exists.  

11.4 Advanced mode  
In the advanced mode, Kw is reduced in partially saturated zones according to Eq. 
(16). This reduction is done for undrained materials in the undrained calculations. 
However, it is possible to reduce the bulk modulus of water by reducing 
Skempton B-parameter in the material database according to Eq. (15). Therefore 
Kw

sat is not always based on νu=0.495.  

Since the degree of saturation depends on the amount of active pore pressures, all 
undrained calculations are suction dependent and therefore the global stiffness 
matrix has to be updated in the beginning of each load step. 

Eq. (17) shows the finite element formulation of the consolidation used in the 
advanced mode.  
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The bulk modulus of water appears in Eq (17.3). Here, the bulk modulus of water 
is not reduced because the saturation is involved in the matrix S. Therefore, for 
partially saturated zones, the storage is reduced according to the degree of 
saturation.  

Similar to the classical mode, the bulk modulus of water is decreased in all types 
of calculations for materials which are just switched on to decrease the generation 
of excess water pore pressure.  

Tables 2 shows the summary of the bulk moduli of water used in the advanced 
mode of PLAXIS.  

11.5 Flow mode  
In the flow mode, Kw is only reduced in the transient type of calculation for the 
materials just switched on to prevent flow in the material which is almost dry. 
Similar to the other modes the bulk modulus of water can be modified by 
changing Skempton B-parameter in the material database according to Eq. (15). 
Therefore Kw

sat is not always based on νu=0.495.  

Tables 3 shows the summary of the bulk moduli of water used in the flow mode 
of PLAXIS.  
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Tab. 1: Bulk modulus of water in the classical mode 
 

Classical mode 

Type of 
material 

Plastic 
(drained) 

Plastic (undrained) Consolidation Safety or 
dynamics 
(drained) 

Safety or dynamics (undrained) 

Undrained 
(below and 

above 
phreatic 

level) 

0=wK  








′−
′+−

−
+⋅=

ν
ν

ν
ν

21

1

21

1

3

2

u

u
w

G
K  









′−
′+−

−
+⋅=

ν
ν

ν
ν

21

1

21

1

3

2

u

u
w

G
K  0=wK  









′−
′+−

−
+⋅=

ν
ν

ν
ν

21

1

21

1

3

2

u

u
w

G
K  

Drained 
(below and 

above 
phreatic 

level) 

0=wK  0=wK  








′−
′+−

−
+⋅=

ν
ν

ν
ν

21

1

21

1

3

2

u

u
w

G
K  0=wK  0=wK  

Material 
just 

switched 
on 

(below and 
above 

phreatic 
level) 

0=wK  0=wK  8101
21

1

21

1

3

2 −×⋅








′−
′+−

−
+⋅=

ν
ν

ν
ν

u

u
w

G
K  Not relevant. Not relevant. 

Non-
porous or 
dry cluster 

0=wK  0=wK  0=wK  0=wK  0=wK  
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Tab. 2: Bulk modulus of water in the advanced mode 
 

Advanced mode 

Type of 
material 

Plastic 
(drained) 

Plastic (undrained) Consolidation Safety or 
dynamics 
(drained) 

Safety or dynamics (undrained) 

Undrained 
(pw<=0) 

0=wK  




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1
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−
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Material 
just 

switched 
on 

(below 
and 

above 
phreatic 

level) 

0=wK  0=wK  ( ) 8101 −×⋅= sat
ww KK  Not 

relevant. 
Not relevant. 

Non-
porous or 

dry 
cluster 

0=wK  0=wK  0=wK  0=wK  0=wK  
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Tab. 3: Bulk modulus of water in flow mode 
 

Flow mode 

Type of material 
Steady state Transient 
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11.6 Examples 
 

In this section one example has been chosen to show effects of the new 
formulation in generating excess water pore pressures in the advanced mode. It is 
attempted to show how the Soil Water Characteristic Curve affects the undrained 
behaviour of soil.  

Figure 2 shows the geometry of the problem which is 1 m wide and 2 m high. 
The initial phreatic level is at 1 m high. This example is performed in two phases 
as follows: 

1. Phase 0: Gravity loading 
2. Phase 1: Activating a distributed load of 10 kPa on top of the model and 

doing plastic analysis 
 

 

 

 

 

 

                        Phreatic level 

 

 

 

 

 

 

Fig. 2: Geometry and finite element model of the problem 

Three cases are studied here, namely fully saturated behaviour, partially saturated 
behaviour by using coarse material and partially saturated behaviour by using 
fine material. The terms coarse and fine are defined according to the similar 
names used in the upper soils of Hypres series, Table 3.1, PlaxFlow manual.  

The mechanical and hydraulic properties of the materials are given in Tables 4 to 
6. As the Van Genuchten parameter gl is not used in these calculations, because 
this parameter is related to the relative permeability kr which is not the case in 
this example, it is not reported in the tables.  

 

Tab. 4: Input data (fully saturated behaviour) 
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Description Symbol Unit Value 
Elastic modulus Eref [kN/m2] 1000 

Poisson’s ratio ν [-] 0 

initial void ratio einit [-] 0.50 

Water weight  γw [kN/m3] 10.0 

Soil weight (sat)  γsat [kN/m3] 20.0 

Soil weight (dry)  γunsat [kN/m3] 20.0 
 
Tab. 5: Input data (partially saturated behaviour-coarse material) 
 

Description Symbol Unit Value 
Elastic modulus Eref [kN/m2] 1000 

Poisson’s ratio ν [-] 0 

initial void ratio einit [-] 0.50 

Van Genuchten  gn [-] 1.3774 

Van Genuchten  ga [m-1] 3.830 

Water weight  γw [kN/m3] 10.0 

Soil weight (sat)  γsat [kN/m3] 20.0 

Soil weight (dry)  γunsat [kN/m3] 20.0 
 
Tab. 6: Input data (partially saturated behaviour-fine material) 
 

Description Symbol Unit Value 
Elastic modulus Eref [kN/m2] 1000 

Poisson’s ratio ν [-] 0 

initial void ratio einit [-] 0.50 

Van Genuchten  gn [-] 1.1012 

Van Genuchten  ga [m-1] 3.670 

Water weight  γw [kN/m3] 10.0 

Soil weight (sat)  γsat [kN/m3] 20.0 

Soil weight (dry)  γunsat [kN/m3] 20.0 
 

11.7 Case 1: Fully saturated behaviour 
 
Figure 3 shows the results of the initial phase. As this example is done in the 
advanced mode, Bishop’s stress is used (Eq. 2). It can be seen, the results are in 
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agreement with Eq. (2). It should be noted that in this example, everywhere is 
fully saturated (S=1.0). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Results after the initial phase for fully saturated soil: left) vertical total 
stress; middle) vertical effective stress; right) active pore pressure  

 
The external load is applied in phase 1 which is a distributed load of 10 kPa on 
top of the model. As the material is defined as undrained, this causes to generate 
excess pore pressure. Eq. 16 is used for calculating the bulk modulus of water. It 
follows from this equation when S=1 the Kw

usat = Kw
sat. Therefore, there is no 

distinction between below and above the phreatic level. The bulk modulus of 
water in this example is Ke

sat=Kw
sat/n = 49.5e3 kPa (Eq. 5).  

Figure 4 shows the results of phase 1. By applying 10 kPa on top of the model, 
the vertical total stress increases by 10 kPa as expected. From the undrained 
elastic moduli (Eqs. 6), it can be found that the Eoed,u=50499.99 kPa and therefore 
∆εy=∆εv=0.198×10-3 and Pexcess=9.802 kPa (Figure 5). The difference between the 
total stress and the excess pore pressure is added to the effective stress (10 -9.802 
= 0.2 kPa). As seen, the results are the same as analytical solution.  
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Fig. 4: Results after the phase 1 for fully saturated soil: left) vertical total stress; 
middle) vertical effective stress; right) active pore pressure  

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 5: Excess water pore pressure after the phase 1 for fully saturated soil 
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11.8 Case 2 and 3: Unsaturated behaviour - coarse and 
fine materials 

 
In case of unsaturated behaviour, as the behaviour is governed by the SWCC 
parameters, here two different types of material are analysed, namely coarse and 
fine materials. The mechanical and hydraulic properties can be found in Tables 5 
and 6. Usually, the degree of saturation is degraded faster with increasing suction 
in coarse material and therefore less excess pore pressure is expected in 
unsaturated area.  

First of all, results of each case are provided and then the results are compared 
with each other. Figure 6 shows the stresses and active water pore pressures at 
the end of the initial phase (gravity loading). As Bishop stress is used, to explain 
how the effective stresses are calculated, degree of saturation is needed (Eq. 2) 
which is plotted in Figure 7.  
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 6: Results after the initial phase for coarse material: left) vertical total stress; 
middle) vertical effective stress; right) active pore pressure  

 
Verification: 
Bishop stress reads: 

 ( )wpSmσσ +′=                                                                                                      (2) 

As the same weight for dry and saturated soil is used, the vertical total stress at 
the bottom can be simply calculated by: 

kPah 40202 −=×−=⋅= γσ   
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The degree of saturation is 1 at the bottom and 0.6049 at the top. Therefore 
Bishop’s effective stresses at the top and bottom are: 

kPapS wtoptop 049.6106049.00 −=×−=⋅−=′ σσ                                                                                               

kPapS wbottombottom 0.3010140 −=×−−=⋅−=′ σσ                                                                            
 

It can be seen that the calculated results from PLAXIS are the same as the 
analytical solution.  

It should be noted that the degree of saturation is not linear in the unsaturated 
area and consequently the resulting effective stress is not linear in this area 
(Figure 6).  

 
 
 
 
 
 
 
 

 

 

 

 

Fig. 7: Results after the initial phase for coarse material: Degree of saturation  

 

Figure 8 and 9 show the results of the fine material after the initial phase. In the 
same manner done for the coarse material, the results can be verified. As seen in 
this case, higher degree of saturation and higher effective stresses are generated 
in the unsaturated area.  
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Fig. 8: Results after the initial phase for fine material: left) vertical total stress; 
middle) vertical effective stress; right) active pore pressure  

 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 9: Results after the initial phase for fine material: Degree of saturation  

In phase 1, undrained behaviour is assumed and consequently excess water pore 
pressure is generated. As the bulk modulus of water, weight of soil, degree of 
saturation and the effective stress are suction dependent, the undrained 
calculations are always non-linear in the advanced mode even for linear elastic 
materials as used in this example.   

The total and effective stresses as well as the active pore pressures of phase 1 in 
coarse material are plotted in Figure 10.  
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Fig. 10: Results after the phase 1 for coarse material: left) vertical total stress; 
middle) vertical effective stress; right) active pore pressure  

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 11: Excess water pore pressure in coarse material at the end of phase 1.  

 
In the same way done in for phase 0, the stresses can be verified in this phase. 
Due to the highly non-linearity behaviour, it is difficult to verify water excess 
pore pressure analytically as done for the saturated case.  

In Figure 10, it can be observed that the vertical total stress on top of the model is 
9.968 kPa which slightly less than the analytical solution, 10 kPa (error = 0.32%). 
This difference is due to the non-linearity mentioned above.  
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Fig. 12: Results after phase 1 for coarse material: Degree of saturation  

 
Results of the fine material at the end of phase 1 are plotted in Figures 13-15. By 
comparing the results from the coarse and fine materials, it can be seen that more 
excess pore pressure (and consequently less effective stress) is developed in the 
fine material which is in agreement with reality. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 13: Results after the phase 1 for fine material: left) vertical total stress; 
middle) vertical effective stress; right) active pore pressure  
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Fig. 14: Excess water pore pressure in fine material at the end of phase 1.  

 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 15: Results after phase 1 for fine material: Degree of saturation  

 

The results of the coarse material (effective stress, total stress, degree of 
saturation, active and excess pore pressures versus depth) are plotted in Figures 
16-20 and the results of the fine material in Figures 21-25. It can be seen that, 
according to the SWCC used in the calculation, different effective stresses are 
developed in the model. As the degradation of the degree of saturation increases 
with increasing suction, effective stress in the unsaturated zone are increases and 
the problem becomes more non-linear (because the properties of the soil changes 
more by changing the suction). 
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Fig. 16: Effective stresses at the end of phase 0 (step 1) and phase 1 (step 104) in 
coarse material  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 17: Vertical total stress at the end of phase 0 (step 1) and phase 1 (step 104) 
in coarse material  
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Fig. 18: Degree of saturation at the end of phase 0 (step 1) and phase 1 (step 104) 
in coarse material  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 19: Active pore pressure at the end of phase 0 (step 1) and phase 1 (step 104) 
in coarse material  
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Fig. 20: Excess pore pressure at the end of phase 0 (step 1) and phase 1 (step 
104) in coarse material  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 21: Effective stresses at the end of phase 0 (step 1) and phase 1 (step 113) in 
fine material  
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Fig. 22: Vertical total stress at the end of phase 0 (step 1) and phase 1 (step 113) 
in fine material  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Fig. 23: Degree of saturation at the end of phase 0 (step 1) and phase 1 (step 113) 
in fine material  
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Fig. 24: Active pore pressure at the end of phase 0 (step 1) and phase 1 (step 113) 
in fine material  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Fig. 25: Excess pore pressure at the end of phase 0 (step 1) and phase 1 (step 
113) in fine material  
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Appendix A 
 
In the following definitions of invariants and first and second derivatives of yield 
function and plastic potential used in Barcelona Basic Model are given. 

Definitions of invariants  

Stress tensor: 

i j i j i jσ δ= +p s  

Volumetric stress tensor:  

ij kk
ij
3 3

p
δ σσ= =  

Deviatoric stress tensor:  

i j i j i js pσ δ= −  

 

Second invariant of deviatoric stress tensor: 

( ) ( ) ( )

( ) ( ) ( )
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Square root of second invariant of deviatoric stress tensor:  2J J=  

Third invariant of deviatoric stress tensor: 
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Lode angle: 

1 3

3

1 3 3
sin
3 2
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J
θ −  −=  

 
 

Derivatives of invariants  

First derivatives of invariants: 
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Derivatives of gradients to the plastic potential: ijm σ∂ ∂ kl  

a) Derivatives of gradients to the plastic potential ∇ iQ with respect to stress 

vector jσ  
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where: 
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b) Derivatives of gradients to the plastic potential∇ iQ with respect to 

hardening parameters jχ  
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First and second derivatives of yield function and 
plastic potential  
 
First derivatives: 
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Appendix B 
 
Here it is shown how Skempton B-parameter, the undrained Poisson’s ratio νu 
and the equivalent bulk modulus of pore fluid Kw/n can be derived if one of them 
is known.  
 
Note: In all cases, the effective Poisson’s ratio ν' and shear stiffness G are 
known. 
 

• Case 1: 
 
 Known Unknown 
Parameters B νu, Kw/n 
Conditions 0 ≤ B ≤ 0.995 ν' ≤ νu ≤ 0.4988 

 
 Step 1: Calculate the undrained Poisson’s ratio νu 
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• Case 2: 
 
 Known Unknown 
Parameters νu  B, Kw/n 
Conditions ν' ≤ νu ≤ 0.4988 0 ≤ B ≤ 0.995 

 
 Step 1: Calculate Skempton B-parameter 

( )( )
( )( )νν

νν
′−+

−′+
−=

211

211
1

u

uB                                                                                     (14) 

 Step 2: the equivalent bulk modulus of pore fluid Kw/n 










′−
′+−

−
+⋅=

ν
ν

ν
ν

21

1

21

1

3

2

u

uw G

n

K
                                                                         (5) 



284 Appendix B 

 
• Case 3: 
 
 Known Unknown 

Parameters Kw/n  B, νu 
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Here it is shown how to convert old PlaxFlow material data set to the new one. In 
the new material data set, Csat is removed because it can simply be derived from 
the equivalent bulk modulus of water Kw/n and water weight γw: 
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How to convert: 
 Step 1: Choose “linear elastic” material. 

 Step 2: Choose “Undrained (A)” as type of drainage. 
 Step 3: Set ν’=0.3 and νu=0.495 (standard setting of undrained behaviour). 
 Step 4: Calculate α: 
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 Step 5: Calculate E’: 
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