
USER-DEFINED SOIL MODELS

1 USER-DEFINED SOIL MODELS

1.1 INTRODUCTION

PLAXIS has a facility for user-defined (UD) soil models. This facility allows users to
implement a wide range of constitutive soil models (stress-strain-time relationship) in
PLAXIS. Such models must be programmed in FORTRAN (or another programming
language), then compiled as a Dynamic Link Library (DLL) and then added to the
PLAXIS program directory.

In principle the user provides information about the current stresses and state variables
and PLAXIS provides information about the previous ones and also the strain and time
increments. In the material data base of the PLAXIS input program, the required model
parameters can be entered in the material data sets.

σt+∆t
ij , κt+∆t current stresses and state variables

σt
ij , κ

t previous stresses and state variables

∆εij , ∆t strain and time increments

As an example, a UD subroutine based on the Drucker-Prager material model is provided
in the user-defined soil models directory, which is included in the program installation
package. In this section, a step-by-step description on how a user-defined soil model can
be formed and utilised in PLAXIS is presented.

Hint: Please note that the PLAXIS organization cannot be held responsible for any
malfunctioning or wrong results due to the implementation and/or use of
user-defined soil models.

1.2 IMPLEMENTATION OF UD MODELS IN CALCULATIONS PROGRAM

The PLAXIS calculations program has been designed to allow for User-defined soil
models. There are mainly four tasks (functionalities) to be performed in the calculations
program:

• Initialisation of state variables

• Calculation of constitutive stresses (stresses computed from the material model at
certain step)

• Creation of effective material stiffness matrix

• Creation of elastic material stiffness matrix

These main tasks (and other tasks) have to be defined by the user in a subroutine called
'User_Mod'. In this subroutine more than one user-defined soil model can be defined. If a
UD soil model is used in an application, the calculation program calls the corresponding
task from the subroutine User_Mod. To create a UD soil model, the User_Mod subroutine
must have the following structure:

PLAXIS 2014 | Material Models Manual 1

MATERIAL MODELS MANUAL

Subroutine User_Mod (IDTask, iMod, IsUndr, iStep, iTer, Iel,Int, X,

Y, Z, Time0, dTime, Props, Sig0, Swp0, StVar0,

dEps, D, Bulk_W, Sig, Swp, StVar, ipl, nStat,

NonSym, iStrsDep, iTimeDep, iTang, iPrjDir,

iPrjLen, iAbort)
where:

IDTask = Identification of the task (1 = Initialise state variables; 2 =
Calculate constitutive stresses; 3 = Create effective material
stiffness matrix; 4 = Return the number of state variables; 5 =
Return matrix attributes (NonSym, iStrsDep, iTimeDep, iTang);
6 = Create elastic material stiffness matrix)

iMod = User-defined soil model number (This option allows for more
than one UD model, up to 10.)

IsUndr = Drained condition (IsUndr = 0) or undrained condition (IsUndr =
1). In the latter case, PLAXIS will add a large bulk stiffness for
water.

iStep = Current calculation step number

iter = Current iteration number

Iel = Current element number

Int = Current local stress point number (1..3 for 6-noded elements, or
1..12 for 15-noded elements)

X,Y,Z = Global coordinates of current stress point

Time0 = Time at the start of the current step

dTime = Time increment of current step

Props = Array(1..50) with User-defined model parameters for the current
stress point

Sig0 = Array(1..20) with previous (= at the start of the current step)
effective stress components of the current stress point (σ'0xx , σ'0yy ,

σ'0zz , σ'0xy , σ'0yz , σ'0zx , psteady , ΣMstage0, ΣMstage, Sat , Sat0,
Suc, Suc0, ΣMsf 0, ΣMsf , 0, 0, 0, 0, 0). In 2D calculations σyz
and σzx should be zero.

Swp0 = Previous excess pore pressure of the current stress point

StVar0 = Array(1..nStat) with previous values of state variables of the
current stress point

2 Material Models Manual | PLAXIS 2014

USER-DEFINED SOIL MODELS

dEps = Array(1..12) with strain increments of the current stress point in
the current step (∆εxx , ∆εyy , ∆εzz , ∆γxy , ∆γyz , ∆γzx , ε0xx , ε0yy ,
ε0zz , γ0

xy , γ0
yz , γ0

zx). In 2D calculations ∆γyz , ∆γzx , γ0
yz and γ0

zx
should be zero. In PLAXIS 2D this array may also contain non-
local strains. Contact Plaxis for more details.

D = Effective material stiffness matrix of the current stress point (1..6,
1..6)

Bulk_W = Bulk modulus of water for the current stress point (for undrained
calculations and consolidation)

Sig = Array (1..6) with resulting constitutive stresses of the current
stress point (σ'xx , σ'yy , σ'zz , σ'xy , σ'yz , σ'zx)

Swp = Resulting excess pore pressure of the current stress point

StVar = Array(1..nStat) with resulting values of state variables for the
current stress point

ipl = Plasticity indicator: 0 = no plasticity, 1 = Mohr-Coulomb (failure)
point; 2 = Tension cut-off point, 3 = Cap hardening point, 4 = Cap
friction point, 5 = Friction hardening point.

nStat = Number of state variables (unlimited)

NonSym = Parameter indicating whether the material stiffness matrix is non-
symmetric (NonSym = 1) or not (NonSym = 0) (required for
matrix storage and solution).

iStrsDep = Parameter indicating whether the material stiffness matrix is
stress-dependent (iStrsDep = 1) or not (iStrsDep = 0).

iTimeDep = Parameter indicating whether the material stiffness matrix is
time-dependent (iTimeDep = 1) or not (iTimeDep = 0).

iTang = Parameter indicating whether the material stiffness matrix is a
tangent stiffness matrix, to be used in a full Newton-Raphson
iteration process (iTang = 1) or not (iTang = 0).

iPrjDir = Project directory (for debugging purposes)

iPrjLen = Length of project directory name (for debugging purposes)

iAbort = Parameter forcing the calculation to stop (iAbort = 1).

In the above, 'increment' means 'the total contribution within the current step' and not per
iteration. 'Previous' means 'at the start of the current step', which is equal to the value at
the end of the previous step.

PLAXIS 2014 | Material Models Manual 3

MATERIAL MODELS MANUAL

In the terminology of the above parameters it is assumed that the standard type of
parameters is used, i.e. parameters beginning with the characters A-H and O-Z are
double (8-byte) floating point values and the remaining parameters are 4-byte integer
values.

The parameters IDTask to dEps and iPrjDir and iPrjLen are input parameters; The
values of these parameters are provided by PLAXIS and can be used within the
subroutine. These input parameters should not be modified (except for StVar0 in case
IDTask = 1). The parameters D to iTang and iAbort are output parameters. The values of
these parameters are to be determined by the user. In case IDTask = 1, StVar0 becomes
output parameter.

The user subroutine should contain program code for listing the tasks and output
parameters (IDTask = 1 to 6). After the declaration of variables, the User_Mod subroutine
must have the following structure (here specified in pseudo code):

Case IDTask of

1 Begin

{ Initialise state variables StVar0 }

End

2 Begin

{ Calculate constitutive stresses Sig (and Swp) }

End

3 Begin

{ Create effective material stiffness matrix D }

End

4 Begin

{ Return the number of state variables nStat }

End

5 Begin

{ Return matrix attributes NonSym, iStrsDep,

iTimeDep }

End

6 Begin

{ Create elastic material stiffness matrix De }

End

End Case

If more than one UD model is considered, distinction should be made between different
models, indicated by the UD model number iMod.

Initialise state variables (IDTask = 1)

State variables (also called the hardening parameters) are, for example, used in
hardening models to indicate the current position of the yield loci. The update of state
variables is considered in the calculation of constitutive stresses based on the previous
value of the state variables and the new stress state. Hence, it is necessary to know
about the initial value of the state variables, i.e. the value at the beginning of the
calculation step. Within a continuous calculation phase, state variables are automatically
transferred from one calculation step to another. The resulting value of the state variable
in the previous step, StVar, is stored in the output files and automatically used as the
initial value in the current step, StVar0. When starting a new calculation phase, the initial

4 Material Models Manual | PLAXIS 2014

USER-DEFINED SOIL MODELS

value of the state variables is read from the output file of the previous calculation step and
put in the StVar0 array. In this case it is not necessary to modify the StVar0 array.

However, if the previous calculation step does not contain information on the state
variables (for example in the very first calculation step), the StVar0 array would contain
zeros. For this case the initial value has to be calculated based on the actual conditions
(actual stress state) at the beginning of the step. Consider, for example, the situation
where the first state variable is the minimum mean effective stress, p' (considering that
compression is negative). If the initial stresses have been generated using the
K0-procedure, then the initial effective stresses are non-zero, but the initial value of the
state variable is zero, because the initialization of this user-defined variable is not
considered in the K0-procedure. In this case, part 1 of the user subroutine may look like:

1 Begin

{ Initialise state variables StVar0}

p = (Sig0[1] + Sig0[2] + Sig0[3]) / 3.0

StVar0[1] = Min(StVar0[1] ,p)

End

Calculate constitutive stresses (IDTask = 2)

This task constitutes the main part of the user subroutine in which the stress integration
and correction are performed according to the user-defined soil model formulation. Let us
consider a simple example using a linear elastic D-matrix as created under IDTask = 3.

In this case the stress components, Sig, can directly be calculated from the initial
stresses, Sig0, the material stiffness matrix, D, and the strain increments, dEps: Sig[i]=
Sig0[i] +

∑
(D[i , j]*dEps[j]). In this case, part 2 of the user subroutine may look like:

2 Begin

{ Calculate constitutive stresses Sig (and Swp) }

For i=1 to 6 do

Sig[i] = Sig0[i]

For j=1 to 6 do

Sig[i] = Sig[i] + D[i,j]*dEps[j]

End for {j}

End for {i}

End

Create effective material stiffness matrix (IDTask = 3)

The material stiffness matrix, D, may be a matrix containing only the elastic components
of the stress-strain relationship (as it is the case for the existing soil models in PLAXIS),
or the full elastoplastic material stiffness matrix (tangent stiffness matrix). Let us consider
the very simple example of Hooke's law of isotropic linear elasticity. There are only two
model parameters involved: Young's modulus, E, and Poisson's ratio, ν. These
parameters are stored, respectively, in position 1 and 2 of the model parameters array,
Props(1..50). In this case, part 3 of the user subroutine may look like:

3 Begin

{ Create effective material stiffness matrix D}

E = Props[1]

v = Props[2]

PLAXIS 2014 | Material Models Manual 5

MATERIAL MODELS MANUAL

G = 0.5*E/(1.0+v)

Fac = 2*G/(1.0-2*v) { make sure that v < 0.5 !! }

Term1 = Fac*(1-v)

Term2 = Fac*v

D[1,1] = Term1

D[1,2] = Term2

D[1,3] = Term2

D[2,1] = Term2

D[2,2] = Term1

D[2,3] = Term2

D[3,1] = Term2

D[3,2] = Term2

D[3,3] = Term1

D[4,4] = G

D[5,5] = G

D[6,6] = G

End

(By default, D will be initialized to zero, so the remaining terms are still zero; however, it is
a good habit to explicitly define zero terms as well.)

If undrained behaviour is considered (IsUndr = 1), then a bulk stiffness for water
(Bulk_W) must be specified at the end of part 3. After calling the user subroutine with
IDTask = 3 and IsUndr = 1, PLAXIS will automatically add the stiffness of the water to the
material stiffness matrix D such that: D[i=1..3, j=1..3] = D[i ,j]+ Bulk_W. If Bulk_W is
not specified, PLAXIS will give it a default value of 100*Avg(D[i=1..3, j=1..3]).

Return the number of state variables (IDTask = 4)

This part of the user subroutine returns the parameter nStat, i.e. the number of state
variables. In the case of just a single state parameter, the user subroutine should look
like:

4 Begin

{ Return the number of state variables nStat }

nStat = 1

End

Return matrix attributes (IDTask = 5)

The material stiffness matrix may be stress-dependent (such as in the Hardening Soil
model) or time-dependent (such as in the Soft Soil Creep model). When using a tangent
stiffness matrix, the matrix may even be non-symmetric, for example in the case of
non-associated plasticity. The last part of the user subroutine is used to initialize the
matrix attributes in order to update and store the global stiffness matrix properly during
the calculation process. For the simple example of Hooke's law, as described earlier, the
matrix is symmetric and neither stress- nor time-dependent. In this case the user
subroutine may be written as:

5 Begin

{ Return matrix attributes NonSym, iStrsDep, }

{ iTimeDep, iTang }

NonSym = 0

6 Material Models Manual | PLAXIS 2014

USER-DEFINED SOIL MODELS

iStrsDep = 0

iTimeDep = 0

iTang = 0

End

For NonSym = 0 only half of the global stiffness matrix is stored using a profile structure,
whereas for Nonsym = 1 the full matrix profile is stored.

For iStrsDep = 1 the global stiffness matrix is created and decomposed at the beginning
of each calculation step based on the actual stress state (modified Newton-Raphson
procedure).

For iTimeDep = 1 the global stiffness matrix is created and decomposed every time when
the time step changes.

For iTang = 1 the global stiffness matrix is created and decomposed at the beginning of
each iteration based on the actual stress state (full Newton-Raphson procedure; to be
used in combination with iStrsDep=1).

Create elastic material stiffness matrix (IDTask = 6)

The elastic material stiffness matrix, De, is the elastic part of the effective material
stiffness matrix as described earlier.

In the case that the effective material stiffness matrix was taken to be the elastic stiffness
matrix, this matrix may just be adopted here. However in the case that an elastoplastic or
tangent matrix was used for the effective stiffness matrix, then the matrix to be created
here should only contain the elastic components.

The reason that an elastic material stiffness matrix is required is because PLAXIS
calculates the current relative global stiffness of the finite element model as a whole
(CSP = Current Stiffness Parameter). The CSP parameter is defined as:

CSP =
Total work

Total elastic work

The elastic material stiffness matrix is required to calculate the total elastic work in the
definition of the CSP. The CSP equals unity if all the material is elastic whereas it
gradually reduces to zero when failure is approached.

The CSP parameter is used in the calculation of the global error. The global error is
defined as:

Global error =
|unbalance force|

|currently activated load |+ CSP ·|previously activated load |

The unbalance force is the difference between the external forces and the internal
reactions. The currently activated load is the load that is being activated in the current
calculation phase, whereas the previously activated load is the load that has been
activated in previous calculation phases and that is still active in the current phase.

Using the above definition for the global error in combination with a fixed tolerated error
results in an improved equilibrium situation when plasticity increases or failure is
approached. The idea is that a small out-of-balance is not a problem when a situation is
mostly elastic, but in order to accurately calculate failure state, safety factor or bearing
capacity, a stricter equilibrium condition must be adopted.

PLAXIS 2014 | Material Models Manual 7

MATERIAL MODELS MANUAL

Part 6 of the user subroutine looks very similar to part 3, except that only elastic
components are considered here. It should be noted that the same variable D is used to
store the elastic material stiffness matrix, whereas in Part 3 this variable is used to store
the effective material stiffness matrix.

6 Begin

{ Create elastic material stiffness matrix D }

D[1,1] =

D[1,2] =

D[1,3] =

.....

D[6,6] =

End

Using predefined subroutines from the source code

In order to simplify the creation of user subroutines, a number of FORTRAN subroutines
and functions for vector and matrix operations are available in the source code (to be
included in the file with the user subroutine). The available subroutines may be called by
User_Mod subroutine to shorten the code. An overview of the available subroutines is
given in Appendix C.

Definition of user-interface functions

In addition to the user-defined model itself it is possible to define functions that will
facilitate its use within the Plaxis user-interface. If available, Plaxis Input will retrieve
information about the model and its parameters using the procedures described hereafter.

procedure GetModelCount(var C:longint) ;

C = number of models (return parameter)

This procedure retrieves the number of models that have been defined in the DLL.
PLAXIS assumes that model IDs are successive starting at model ID = 1.

procedure GetModelName(var iModel : longint;

var Name : shortstring) ;

iModel = User-defined soil model number to retrieve the name for (input
parameter)

Name = model name (return parameter)

This procedure retrieves the names of the models defined in the DLL.

procedure GetParamCount(var iModel : longint; var C :longint) ;

iModel = User-defined soil model number (input parameter)

C = number of parameters for the specified model (return parameter)

This procedure retrieves the number of parameters of a specific model.

procedure GetParamName(var iModel,iParam : longint;

var Name : shortstring);

8 Material Models Manual | PLAXIS 2014

USER-DEFINED SOIL MODELS

iModel = User-defined soil modelnumber (input parameter)

iParam = Parameter number (input parameter)

Name = parameter name (return parameter)

This procedure retrieves the parameter name of a specific parameter.

Procedure GetParamUnit(var iModel,iParam : longint;

var Units : shortstring) ;

iModel = User-defined soil model number (input parameter)

iParam = Parameter number (input parameter)

Units = Parameter units (return parameter)

This procedure retrieves the parameter units of a specific parameter. Since the chosen
units are dependent on the units of length, force and time chosen by the user the
following characters should be used for defining parameter units:

'L' or 'l' for units of length 'F' or 'f' for units of force 'T' or 't' for units of time.

For model names, model parameter names and model parameter units special
characters can be used for indicating subscript, superscript or symbol font (for instance
for Greek characters).

^ : From here characters will be superscript

_ : From here characters will be subscript

@ : From here characters will be in symbol font

: Ends the current superscript or subscript.

Pairs of '^..#', '_. . . #' and '@. . . #' can be nested.

For example:

A UD model parameter uses the oedometer stiffness as parameter. The parameter name
can be defined as 'E_oed#' and its units as 'F/L^2#'.

When defining a unit containing one of the letters 'l', 'f' or 't', like 'cal/mol', these letters will
be replaced by the unit of length, the unit of force or the unit of time respectively. To avoid
this, these letters should be preceded by a backslash. For example 'cal/mol' should be
defined as 'ca\l/mo\l' to avoid getting 'cam/mom'.

The state variables to be displayed in the Output program can be defined.

procedure GetStateVarCount(var iModel : longint; var C :longint) ;

iModel = User-defined soil model number (input parameter)

C = number of state variables for the specified model (return
parameter)

This procedure retrieves the number of state variables of a specific model.

procedure GetStateVarName(var iModel,iParam : longint;

var Name : shortstring);

PLAXIS 2014 | Material Models Manual 9

MATERIAL MODELS MANUAL

iModel = Used-defined soil model number (input parameter)

iParam = Parameter number (input parameter)

Name = parameter name (return parameter)

This procedure retrieves the state parameter name of a specific parameter.

Procedure GetStateVArUnit(var iModel,iParam : longint;

var Units : shortstring) ;

iModel = User-defined soil model number (input parameter)

iParam = Parameter number (input parameter)

Units = Parameter units (return parameter)

This procedure retrieves the state parameter units of a specific parameter.

All procedures are defined in Pascal but equivalent procedures can be created, for
instance in a Fortran programming language. Please make sure that the data format of
the parameters in the subroutine headers is identical to those formulated before. For
instance, the procedures mentioned above use a "shortstring" type; a "shortstring" is an
array of 256 characters where the first character contains the actual length of the
shortstring contents. Some programming languages only have null-terminated strings; in
this case it may be necessary to use an array of 256 bytes representing the ASCII values
of the characters to return names and units. An example of Fortran subroutines is
included in the software package.

Compiling the user subroutine

The user subroutine User_Mod has to be compiled into a DLL file using an appropriate
compiler. Note that the compiler must have the option for compiling DLL files. Below are
examples for two different FORTRAN compilers. It is supposed that the user subroutine
User_Mod is contained in the file USRMOD.FOR.

After creating the user subroutine User_Mod, a command must be included to export
data to the DLL.

The following statement has to be inserted in the subroutine just after the declaration of
variables:

• Using Lahey Fortran (LF95, ...): DLL_Export User_Mod

• Using Intel Visual Fortran: !DEC$ ATTRIBUTES DLLExport,StdCall,Reference ::
User_Mod

In order to compile the USRMOD.FOR into a DLL file, the following command must be
executed:

• Using Lahey Fortran 90: LF90 -win -dll USRMOD.FOR -lib LFUsrLib -ml bd

• Using Lahey Fortran 95: LF95 -win -dll USRMOD.FOR -lib LFUsrLib -ml bd

• Using Intel Visual Fortran: ifort /winapp USRMOD.FOR DFUsrLib.lib /dll

• Using GCC compiler: g55 USRMOD.FOR -o usermod.dll -shared -fcase -upper
-fno-underscoring -mrtd

10 Material Models Manual | PLAXIS 2014

USER-DEFINED SOIL MODELS

In all cases USRMOD.DLL file will be created. It can be renamed to 'any' .dll. This file
should be placed in the usdm folder under the PLAXIS program directory, thereafter it
can be used together with the existing PLAXIS calculations program (PLASW.EXE in
PLAXIS 2D or PLASW3DF.EXE in PLAXIS 3D). Once the UD model is used, PLAXIS will
execute the commands as listed in the USRMOD.DLL file.

In order to compile as 64-bit, you need both a 32-bit compiled 'USRMOD.DLL' and a
64-bit compiled ' USRMOD64.DLL' file in the usdm folder under the PLAXIS program
directory. The last one only needs to contain the 'User_Mod' subroutine.

Debugging possibilities

When making computer programs, usually some time is spent to 'debug' earlier written
source code. In order to be able to effectively debug the user subroutine, there should be
a possibility for the user to write any kind of data to a file. Such a 'debug-file' is not
automatically available and has to be created in the user subroutine.

After the debug-file is created, data can be written to this file from within the user
subroutine. This can be done by using, for example, the availably written subroutines
(Section A).

1.3 INPUT OF UD MODEL PARAMETERS VIA USER-INTERFACE

Input of the model parameters for user-defined soil models can be done using PLAXIS
material data base. In fact, the procedure is very similar to the input of parameters for the
existing PLAXIS models.

When creating a new material data set for soil and interfaces in the material data base, a
window appears with three tabsheets: General, Parameters, Interface, Figure 1.1. A
user-defined model can be selected from the Material model combo box in the General
tabsheet.

After inputting general properties, the appropriate UD model can be chosen from the
available models that have been found by PLAXIS Input.

The Parameters tabsheet shows two combo boxes; the top combo box lists all the DLLs
that contain valid UD models and the next combo box shows the models defined in the
selected DLL. Each UD model has its own set of model parameters, defined in the same
DLL that contains the model definition.

When an available model is chosen PLAXIS will automatically read its parameter names
and units from the DLL and fill the parameter table below.

Interfaces

The Interfaces tabsheet, Figure 1.2, contains the material data for interfaces.

Normally, this tabsheet contains the Rinter parameter. For user-defined soil models the
interface tabsheet is slightly different and contains the interface oedometer modulus,
E ref

oed , and the interface strength parameters cinter ,ϕinter and ψinter . Hence, the interface
shear strength is directly given in strength parameters instead of using a factor relating
the interface shear strength to the soil shear strength, as it is the case in PLAXIS models.

After having entered values for all parameters, the data sets can be assigned to the

PLAXIS 2014 | Material Models Manual 11

MATERIAL MODELS MANUAL

a. Selection of user-defined soil models

b. Input of parameters

Figure 1.1 Selection window

corresponding soil clusters, in a similar way as for the existing material models in
PLAXIS. The user-defined parameters are transmitted to the calculation program and
appear for the appropriate stress points as Props(1..50) in the User_Mod subroutine.

12 Material Models Manual | PLAXIS 2014

USER-DEFINED SOIL MODELS

Figure 1.2 Interface tabsheet

PLAXIS 2014 | Material Models Manual 13

MATERIAL MODELS MANUAL

14 Material Models Manual | PLAXIS 2014

APPENDIX A - FORTRAN SUBROUTINES FOR USER-DEFINED SOIL MODELS

APPENDIX A - FORTRAN SUBROUTINES FOR USER-DEFINED SOIL MODELS

In this appendix, a listing is given of the subroutines and functions which are provided by
PLAXIS in libraries and source code in the User-defined soil models directory. These can
be called by the User_Mod subroutine:

Subroutines

MZeroR(R, K):

To initialize K terms of double array R to zero
MZeroI(I, K):

To initialize K terms of integer array I to zero
SetRVal(R, K, V):

To initialize K terms of double array R to V
SetIVal(I, K, IV):

To initialize K terms of integer array I to IV
CopyIVec(I1, I2, K):

To copy K values from integer array I1 to I2
CopyRVec(R1, R2, K):

To copy K values from double array R1 to R2
MulVec(V, F, n):

To multiply a vector V by a factor F , n values
MatVec(xMat, im, Vec, n, VecR):

Matrix (xMat)-vector(Vec) operation.

First dimension of matrix is im; resulting vector is VecR
AddVec(Vec1, Vec2, R1, R2, n, VecR):

To add n terms of two vectors; result in VecR

VecR i = R1 · Vec1i + R2 · Vec2i
MatMat(xMat1, id1, xMat2, id2, nR1, nC2,

nC1, xMatR, idR):

Matrix multiplication xMatR ij = xMat 1ik ·xMat 2kj

id1, id2, idR : first dimension of matrices

nR1 number of rows in xMat1 and resulting xMatR

nC2 number of column in xMat2 and resulting xMatR

nC1 number of columns in xMat2 =rows in xMat2
MatMatSq(n, xMat1, xMat2, xMatR):

Matrix multiplication xMatR ij = xMat 1ik ·xMat 2kj

Fully filled square matrices with dimensions n
MatInvPiv(AOrig, B, n):

Matrix inversion of square matrices AOrig and B with dimensions n.

AOrig is NOT destroyed, B contains inverse matrix of AOrig.

Row-pivoting is used.
WriVal(io, C, V):

PLAXIS 2014 | Material Models Manual 15

MATERIAL MODELS MANUAL

To write a double value V to file unit io (when io > 0)

The value is preceded by the character string C.
WriIVl(io, C, I):

As WriVal but for integer value I
WriVec(io, C, V, n):

As WriVal but for n values of double array V
WriIVc(io, C, iV, n):

As WriVal but for n values of integer array iV
WriMat(io, C, V, nd, nr, nc):

As WriVal but for double matrix V . nd is first dimension of V , nr and nc are the

number of rows and columns to print respectively.
PrnSig(iOpt, S, xN1, xN2, xN3, S1, S2, S3, P, Q):

To determine principal stresses and (for iOpt=1) principal directions.

iOpt = 0 to obtain principal stresses without directions

iOpt = 1 to obtain principal stresses and directions

S array containing 6 stress components (XX, YY, ZZ, XY, YZ, ZX)

xN1, xN2, xN3 array containing 3 values of principal normalized directions

only when iOpt=1.

S1, S2, S3 sorted principal stresses (S ≤ S2 ≤ S3)

P isotropic stress (negative for compression)

Q deviatoric stress
CarSig(S1, S2, S3, xN1, xN2, xN3, SNew):

To calculate Cartesian stresses from principal stresses and principal directions.

S1, S2, S3 principal stresses

xN1, xN2, xN3 arrays containing principal directions (from PrnSig)

SNew contains 6 stress components (XX, YY, ZZ, XY, YZ, ZX)
CrossProd(xN1, xN2, xN3):

Cross product of vectors xN1 and xN2
SetVecLen(xN, n, xL):

To multiply the n components of vector xN such that the length of xN becomes

xL (for example to normalize vector xN to unit length).

Functions

Logical Function LEqual(A, B, Eps):

Returns TRUE when two values A and B are almost equal, FALSE otherwise.

LEqual = |A-B| < Eps * (|A| + |B| + Eps) / 2
Logical Function Is0Arr(A, n):

Returns TRUE when all n values of real (double) array A are zero, FALSE

otherwise
Logical Function Is0IArr(IArr, n):

16 Material Models Manual | PLAXIS 2014

APPENDIX A - FORTRAN SUBROUTINES FOR USER-DEFINED SOIL MODELS

Returns TRUE when all n values of integer array IArr are zero, FALSE otherwise
Double Precision Function DInProd(A, B, n):

Returns the dot product of two vectors with length n

PLAXIS 2014 | Material Models Manual 17

MATERIAL MODELS MANUAL

18 Material Models Manual | PLAXIS 2014

	1 User-defined soil models
	1.1 Introduction
	1.2 Implementation of UD models in calculations program
	1.3 Input of UD model parameters via user-interface

	Appendix A - Fortran subroutines for User-defined soil models

