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Introduction

Hoek & Brown (HB) failure criterion has been often employed over the past decades in practical engineering
applications due to its intrinsic capability to capture the non-linear behavior of different types of rocks. The
former idea of HB (Hoek, 1968 (on page 39); Hoek and Brown, 1980 (on page 39)), was to link some
concepts of fracture mechanics and the macroscopic response resulting from the non-linear trend of the initial
yielding. To formulate a mathematical expression of the initial yield surface and describe the rock-mass
behavior, the Uniaxial Compression Strength (UCS) of the intact rock and some dimensionless constants
obtained from empirical correlations (i.e., the constants mb, s and a) have been used to define the HB criterion:

σ1 = σ3 + σci mb(σ3 / σci) + s a Eq. [1]

where
σ1 = Major principal effective stress.
σ3 = Minor principal effective stress.
σci = UCS of the intact material.
a, mb, s = Dimensionless coefficient prescribing the non-linear trend of the

initial yield surface obtained from empirical correlations.
This approach has been further improved by several authors (Marinos et al., 2005 (on page 39)) who have
used empirical data recorded from field observations at different environmental conditions to characterize the
mechanical properties of the rock-mass. For this purpose, the Geological Strength Index (GSI) and the Damage
factor (D) have been used to define the material parameters of the HB yield surface:

{mb = miexp ( GSI - 100
28 - 14D ),

s = exp ( GSI - 100
9 - 3D ),

a = 1
2 + 1

6 exp (- GSI
15 ) - exp (- 20

3 )
 Eq. [2]

In these equations, mi is the value of mb corresponding to the intact rock (i.e., mb≡mi for GSI=100). Hereafter, the
Hoek & Brown model implemented in PLAXIS refers to the formulation proposed by Jiang (2017) (on page 39)
which can guarantee at the same time smoothness and convexity of the yield surface and plastic potential. The
underlying implementation is further enhanced with the following constitutive features:
• The initial non-associativity with the ability to simulate the non-linear evolution of the dilation in the post-

peak regime.
• A softening rule implemented through two different formulations.
• A tension cut-off in the tensile regime of the stress space.
• A rate-dependent version of the HB model is here used to solve the mesh-dependency of the numerical

solution when the brittle failure is characterized by a strong concentration of strain in narrow shear bands.
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A sketch of the material response is illustrated in Figure 1 and Figure 2 where the corresponding mechanical
material behavior is depicted in combination with the interplay of the softening mechanisms governing the post-
peak regime.
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Figure 1: Material behavior under triaxial stress path: (a) Initial and residual yield surfaces during the stress path,
(b) The peak and residual strength in the stress-strain space.
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Figure 2: Effects of the Softening process on the variables (a) mb and (b) s on the yield surface.

In the following sections, after presenting the mathematical formulation of the constitutive equations ( Model
Formulation (on page 8)) with particular focus on the material parameters used in the modeling ( UDSM
implementation in PLAXIS finite element code (on page 17)) some numerical analyses are computed to study
the model performance at the Gauss point level ( Model Performance (on page 20)), thus highlighting the effect
of some parameters during the material degradation process and the ability of the model in simulating
laboratory experiments. The performance of the viscous regularization method to restore the mesh-objectivity
during the post-peak regime is illustrated in Modeling Strain Localization (on page 28) and then employed in 
Simulation of Tunnel Excavation (on page 34) to simulate a tunnel excavation problem.

Introduction
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General concepts
Before detailing the proposed implementation of the model, some general concepts related to the elasto-plastic
theory are recalled hereafter:
• The strain is additively split in the elastic and plastic components, respectively:

εij
t = εij

el + ε
ij ⋅
pl

• The stress σij is computed with isotropic linear elasticity:
σij = Cijklεkl ⋅

el

• The yield surface f is used to define the elastic domain and admissibility of the stress state.
• The plastic flow of the model is prescribed through a flow rule:

ε̇ij
pl = Λ( ∂ g

∂σij )
where g represents the plastic potential function and prescribes the direction of the plastic flow. Λ stands for the
plastic multiplier which allows one to calculate the amount of plastic strain.
• A similar equation is also defined to govern the evolution of the variable Γi of the model: Γi = Λh i, where hi

is the softening vector of the model.
• The state of the material is governed by the so-called Khun-Tucker hardening conditions:

f (σij, Γk ) ≤ 0, Λ f (σij, Γk ) = 0, Λ ≥ 0

if f < 0 then the material state is elastic (i.e., Λ = 0), while if f = 0 the state of the material can be
potentially plastic loading (i.e., Λ > 0). To determine if the material state is in plastic loading the same logic
can be used by considering further conditions, the so-called persistency conditions:

ḟ (σij, Γk ) ≤ 0, Λ ḟ (σij, Γk ) = 0, Λ ≥ 0
where

ḟ < 0 = Elastic unloading.
ḟ = 0, Λ > 0 = Plastic loading.
ḟ = 0, Λ = 0 = Neutral loading.

The proposed implementation allows users to adopt the model also within a visco-plastic framework.
Specifically, reference will be made to the over-stress theory formulated by Perzyna (1966) (on page 39) in
which the stress is not constrained to lay on the yield surface as in the elasto-plastic theory. In this framework,
the increment of visco-plastic strain is computed as:

ε̇ij
vp = Φ( f )( ∂ g

∂σij )
where

Φ( f ) = Viscous nucleus function, which represents a measure of the distance
between the current stress state and the yield surface.

Introduction
General concepts
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Mathematical Notation
It is common practice in geomechanical modeling to express the stress dependency of the yield and plastic
potential surfaces as a function of stress invariants, i.e., the mean stress p, the stress deviator q and the Lode's
angle θ. They are defined as:

{p = tr (σ)
3 =

σijδij
3 =

σxx + σyy + σyy
3

q = 3
2 (sijsij) = 3

2 s

θ = 1
3 arcsin 6( tr (s 3)

tr (s 2)3/2 )  

where sij is the deviator component of the stress state (i.e., sij = σij - p·δij , δij is Kronecker's symbol) and the trace
tr(·) gives the sum of the diagonal terms of the matrix (i.e., tr(σij) = σxx + σyy + σzz = 3P).
A general representation of the stress deviator and its norm is reported as:

sij =

σxx - p σxy σxz

σyx σyy - p σyz

σzx σzy σzz - p

s = (σxx - p)2 + (σyy - p)2 + (σzz - p)2 + 2(σxy
2 + σzy

2 +  σzx
2 )

Analogously, similar quantities are defined also for the strain tensor εij:

{εv = εxx + εyy + εzz

εq =  2
3 (εsij

εsij) = 2
3 εs

where ευ represents the volumetric strain, εsij
 is the strain deviator which is defined as: εsij

= εij - (εv ⋅ δij) / 3  .

εsij
=

εxx - εv / 3 εxy εxz

εyx εyy - εv / 3 εyz

εzx εzy εzz - εv / 3

εs = (εxx -
εv
3 )2

+ (εyy -
εv
3 )2

+ (εzz -
εv
3 )2

+ 2(εxy
2 + εzy

2 +  εzx
2  )

For triaxial stress paths (σxx = σyy < σzz, σxz = σxy = σyz = 0), the general definition of invariants can be simplified
as:

p = (σzz + 2σxx) / 3 q = |σzz - σxx|
εv = (εzz + 2εxx) / 3 εq = 2|εzz - εxx| / 3

In this context, the deviatoric and volumetric plastic strain are computed as:

Introduction
Mathematical Notation
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ε̇v
p = Λ( ∂ g

∂ p ); ε̇v
p = Λ( ∂ g

∂q )
Hereafter, a positive compression convention will be adopted by following the usual soil mechanics framework.

Introduction
Mathematical Notation
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 2
Model Formulation

A Hoek & Brown model with Softening (HBS)
To consider the effect of the intermediate principal stress in the yield surface the generalization of the classical
HB in terms of stress invariants (i.e., the mean stress p, the deviator stress q and the Lode's angle θ) has been
considered according to mathematical formalism reported in Jiang and Zhao (2015) (on page 39):

f = ( q 1/a

σci
(1/a-1) ) + A(θ)( q

3 mb) -  mbp - sσci Eq. [6]

The function A(θ) considered in the following formulation corresponds to the expression proposed by Jiang
(2017) (on page 39) which is defined as:

A(θ) =
cos

1
3 arcos(κcos3θ)

cos
1
3 arcos(κ)       with - 1 < κ ≤ 0  Eq. [7]

The parameter κ can be considered as a further parameter of the model enabling a better calibration of the rock
sample behavior in the deviatoric plane (i.e., κ=0 corresponds to a circular section while κ➟-1 corresponds to
the section defined by Jiang and Zhao (2015) (on page 39)). Although the parameter κ➟-1 can guarantee a
closer approximation of the original HB surface (i.e., Eq. 1), this surface is characterised by a discontinuity of its
first derivate (i.e., the gradient of yield surface ∂f / ∂ σij) along compressive triaxial stress paths. Therefore, it is
recommended to avoid this particular value of κ when computing general three-dimensional IBVPs (Initial
Boundary Value Problems) or during triaxial stress path. By default, this parameter is fixed to κ=-0.9999 if the
selected value is out of the range -1<κ≤0. A representation of the HB criterion proposed by Jiang (2017) (on page
39) is plotted in the deviatoric plane (Figure 3(a)) where the yield surface corresponding to the specific value
of κ=-0.9 has been compared to the original HB formulation and a Drucker-Prager surface. By observing this
figure, it is worth noting that for axisymmetric stress paths, the 3D generalization proposed by Jiang (2017) (on
page 39) (i.e., Eq. 7) converges to the original formulation of the model reported in Eq. 1. In Figure 3(b), the
function A(θ) is also plotted for several value of the parameter κ.
To calculate the plastic strain, the plastic potential has been defined by using the same mathematical
characteristics of the yield surface in which they differ only on the basis of the variable mψ, thus enabling to
recover the associated plasticity in case mψ ≡ mb.

g = q 1/a

σci
(1/a-1) + A(θ) q

3 mψ -  mψ p, {ε̇v
p = Λ( - mψ)

ε̇q
p = Λ 1

a ( q
σci )1/a-1 +

mψ
3

 Eq. [8]
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Figure 3: (a) Section of the yield criterion proposed by Jiang (2017) in the deviatoric plane, (b) Evolution of the
function A(θ, κ) (figures rearranged after Jiang, 2017)

An overview of the material properties characterizing the HB formulation (i.e., σci, mi) for different types of rocks
is reported in the Appendix (on page 41). This includes also a representation of the GSI system, as well as a
range of values of the disturbance factor D characterizing several engineering problems.

Softening Rules
The material degradation due to shearing is simulated by means of a softening rule in which a reduction of the
hardening variables Γj is prescribed as a function of the equivalent plastic strain εeq

p  (i.e., a cumulated value of
deviatoric plastic strain), thus enabling to describe the material destructuration due to shearing. Specifically, a
hyperbolic decay of Γj has been enforced to approach its residual value for large values of plastic strain
accordingly with the softening rule proposed by Barnichon (1988) (on page 38) and Collin (2003) (on page
38) .

Γ j = Γ jo
- ( Γ jo

- Γ jr
B j + εeq

p )εeq
p, εeq

p = ∫0
t ε̇q

pdt Eq. [9]

where
o, r = Subscripts indicating the initial and the residual values of Γ.
Bj = Material parameter governing the rate of softening of the corresponding

j-th hardening variable.
Figure 4 shows the normalized change of Γj for different values of the parameters Bj, where Bj= εeq

p  represents
the specific value for which Γj reaches the 50% degradation (i.e., Γj=0.5 · (Γj0 + Γjr)).
Two different approaches are considered to implement the softening rule reported in Eq. [9].
1. By defining the decrease of the material properties mb and s (Alonso et al., 2003 (on page 38); Zou et al.,

2016 (on page 40)), hereinafter referred to as Strength Softening Model (SSM),
2. By defining the decrease of the GSI index following the suggestion of Cai et al. (2007) (on page 38) (see also 

Ranjbarnia et al., 2015 (on page 39); Manouchehrian and Cai, 2017 (on page 39)), hereinafter referred to
as GSI Softening Model (GSM).

Model Formulation
Softening Rules
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Figure 4: Evolution of the softening variable Γj normalized by its initial value. The curves correspond to different
values of Bj (i.e., BA

j, BB
j, and BC

j) to show the influence of the parameter Bj on the rate of softening.

Strength Softening Model (SSM)

In this approach the decrease of the material properties is applied explicitly to the variables mb and s as
implemented in Marinelli et al. (2019) (on page 39), thus enabling to rearrange Eq. 10 as Eq. [9]:

Γ =
mb

s
=

mbo
- ( mbo

- mbr
Bm + εeq

p ) εeq
p

so - ( so - sr

Bs + εeq
p ) εeq

p
Eq. [10]

GSI Softening Model (GSM)

A different strategy to enforce the material degradation consists to use the GSI index as a hardening variable of
the model, thus applying the decrease of the material softening through the empirical relations reported in Eq. 2.
This strategy is consistent with the investigation proposed by Cai et al. (2004, 2007) (on page 38) to determine
the residual properties of the rock mass in which the softening process is associated with a combination of two
main factors:
1. The development of micro-cracks, fractures and discontinuities.
2. The smoothing of the joint surface, affecting the joint strength (see Figure 5).
According to this approach, the degradation of the rock quality is reflected through a decrease of the GSI:

GSI = GSI o - ( GSI o - GSI r
BGSI + εeq

p ) εeq
p Eq. [11]

where
GSIo, GSIr = Initial and the residual values of GSI.
BGSI = Parameter controlling the rate of softening.

Model Formulation
Softening Rules

PLAXIS 10 User Defined Soil Models - HBS: Hoek-Brown model
with softening



0.1

1

10

100

1000

10E+3

100E+3

1E+6 (1m3)

10E+6

B
lo

ck
 V

ol
um

e 
Vb

 (c
m

3 )

Blocky - very well inte rlocked
undis turbed rock mass  cons is ting
of cubica l blocks  formed by three
orthogonal discontinuity se ts
Joint spacing 30 - 100 cm

Very Blocky - inte rlocked, partia lly
dis turbed rock mass  with multiface ted
angular blocks  formed by four or more
discoutinuity se ts
Joint spacing 10 - 30 cm

Blocky/dis turbed - folded and/or
faulted with angula r blocks  formed by
many inte rsecting discontinuity se ts
Joint spacing 3 - 10 cm

Dis integrated - poorly inte rlocked,
heavily broken rock mass  with a
mixture  or angula r and rounded
rock pieces
Joint spacing  3 cm

Mas s ive - very well inte rlocked
undis turbed rock mass  blocks  formed
by three  or less  discontinuity se ts
with very wide  joint spacing
Joint spacing  100 cm

Foliated/laminated/s heared - thinly
lamina ted or folia ted, tectonica lly sheared
weak rock; close ly spaced schis tos ity
preva ils  over any other discontinuity se t,
resulting in comple te  lack of blockiness
Joint spacing  1 cm

Ve
ry

 g
oo

d
Ve

ry
 ro

ug
h,

 fr
es

h 
un

w
ea

th
er

ed
 s

ur
fa

ce
s

G
oo

d
R

ou
gh

, s
lig

ht
ly

 w
ea

th
er

ed
,

iro
n 

st
ai

ne
d 

su
rfa

ce
s

Fa
ir

Sm
oo

th
, m

od
er

at
el

y 
w

ea
th

er
ed

 o
r

al
te

re
d 

su
rfa

ce
s

Po
or

Sl
ic

ke
ns

id
ed

, h
ig

hl
y 

w
ea

th
er

ed
 s

ur
fa

ce
s 

w
ith

co
m

pa
ct

 c
oa

tin
g 

or
 fi

llin
gs

 o
f a

ng
ul

ar
 fr

ag
m

en
ts

Ve
ry

 p
oo

r
Sl

ic
ke

ns
id

ed
, h

ig
hl

y 
w

ea
th

er
ed

 s
ur

fa
ce

s 
w

ith
so

ft 
cl

ay
 c

oa
tin

gs
 o

r f
illi

ng
s

12 4.5 1.7 0.67 0.25 0.09
Joint Condition Factor Jc

20

30 cm

60

100 cm

40

50

10 cm

70
80
90

5

2

1 cm

3

150

(1 dm )3

Block Size

Joint or Block Wall Condition

Residual
20

40

60

80
Peak

Residual

GSI

Peak

Figure 5: Evolution of GSI during the degradation process of the rock mass (figure after Cai et. al [2017])
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By replacing Eq. 12 in Eq. 2, it is possible to obtain a generalized expression of the softening rule for the GSM
approach:

Γ =
mb

s
= {mbo

exp ( GSI r - GSI o
28 - 14D )( εeq

p

BGSI + εeq
p )

soexp ( GSI r - GSI o
9 - 3D )( εeq

p

BGSI + εeq
p ) }  Eq. [12]

It is important to remark that, to be consistent with the definition of the parameters defining the yield criterion
and the GSI system (see Eq. 2), the exponent a might be added between the hardening variables reported in the
vector Γ, thus having a further dependency between a and GSI. For the sake of simplicity, and also due to the
limited range of variability of a, this coefficient will be kept constant and, accordingly, will be defined by using
the initial GSI value (i.e., a = 0.5 + exp ( - GSI o / 15) - exp ( - 20 / 3) / 6).
In the last decades, to evaluate the residual values of mb and s, several empirical relations have been proposed in
literature. Ribacchi (2000) (on page 39) proposed to compute mbr and sr as a fraction of their initial values (i.e.,
mbr= 0.65mbo and sr=0.04so), while Crowder and Bawden (2004) (on page 39) improved this logic by
suggesting different residual values in relation to different values of the GSI. Along these lines, Cai et al. (2007)
(on page 38) and Alejano et al. (2010) (on page 38) have proposed the following empirical relation of GSIr as
a function of GSIo:

GSI r = GSI oe
-0.0134GSI o, 25 < GSI o < 75 Cai et al. (2007)

GSI r = 17.34e
0.0107GSI o, 25 < GSI o < 75 Alejano et al. (2010)

Eq. [13]

The evolution of GSIr according to Eq. 14 is plotted in Figure 6 where the quality of the rock is reported in
relation to the initial value of GSIo. By observing this figure, it is worth remarking that, for values of GSIo smaller
than GSIO = 25 it is suggested to consider a cut-off of Eq. 14 as shown in Figure 6, due to the lack of variability of
the parameters mbo , so and a calculated with GSIo ≤25.
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Figure 6: Evolution of GSIr according to Cai et al. (2007) and Alejano et al. (2010).
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A cut-off function for the tensile behaviour
In order to introduce a cut-off function in the tensile regime, the value of the mean stress p̄ at the corner of the
HB surface (i.e., p̄= soσci / mbo) is reduced through the parameter α which ranges of values between 0 to 1
(Figure 7), thus defining the mean stress p* limiting the maximum tensile stress of the model:

0 ≤ α ≤ 1 {α = 1 : no cut − off function → p * = p̄

α = 0 : no tensile domain → p * = 0
Eq. [14]

An associated plastic flow is considered in the tensile zone of the stress-space (i.e., f ≡ g  ) which is
characterized by a perfect plastic mechanism (i.e., mb≡ mbo and s ≡ so). The user can estimate the value of α and
the corresponding value of p* starting from the tensile strength σt obtained from laboratory tests. For this
purpose, if the tensile strength σt is available from a uniaxial tension test, the mean stress p* at which the
material fails due to tensile strength is equal to p*=σt /3. As a result, the value of α corresponding to the specific
tensile strength σt is calculated as:

p * = α p̄ =
σt
3 = α( σci

σt
), α = 1

3 ( σt
σci

) mbo
so

 Eq. [15]

For intact rock, Eq. 16 is rewritten as α = (σt / σci) ⋅ (mi / 3).
By default, a value of α=0.5 is suggested.

p

q
Elastic domain

Tensile cut-off

Figure 7: Sketch of the cut-off function in the tensile regime

Model Formulation
A cut-off function for the tensile behaviour
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A non-linear dilation model for rock masses
Understanding the post-yielding behavior of a rock mass and the evolution of strains are critical ingredients for
geostructure design. For tunneling problems, an accurate prediction of the strain field and the corresponding
plastic radius have a strong influence on support and reinforcement design. As a result, a detailed modeling of
the evolution of volumetric strain during the post-peak regime is required. For this purpose, it is common
practice to introduce the dilation angle ψ defined as (Vermeer and De Borst, 1984 (on page 39)):

sin ψ =  
ε̇v

p

-2ε̇1
p + ε̇v

p , or equivalently, ε̇v
p = 2ε̇1

p( sin ψ
sin ψ - 1 )  Eq. [16]

By substituting the plastic potential (i.e., Eq. 9) in Eq. 17, it is possible to relate the dilation angle with the
parameters of a HB model:

sin ψ =
mψ

2
a ( q

σci
)1/a-1

+ mψ 
 Eq. [17]

Under triaxial conditions Eq. 18 is equivalent to the classical formulation reported in Eq. 1, which can be used to
rearrange the dilatancy as:

sin ψ =
mψ

2
a (mb

σ3
σci

+ s)1-a
+ mψ 

 Eq. [18]

or equivalently:

mψ = 2
a

sin ψ
1 - sin ψ (mb

σ3
σci

+ s)1-a
 Eq. [19]

In Eq. 20, the non-linear variability of mψ can be prescribed by using explicitly one of the formulations proposed
in literature for the dilation angle to define the evolution of mψ as a function of plastic strain (Alejano and
Alonso, 2005 (on page 38); Zhao and Cai, 2010 (on page 40) ; Walton and Diederichs, 2015 (on page 40); 
Rahjoo et al., 2016 (on page 39)). In the proposed model the trend of behaviour of the dilation angle is
enforced through an explicit variability of mψ for both the SSM and GSM formulations, thus guaranteeing a
smooth transition between associated and a non-associated plasticity, as well as the reduction of the dilantancy
angle along the degradation process. Although Eq. 20 is not considered for the modeling of the dilatant
behaviour of the rock, this equation will be taken into account to determine the initial values of the parameter
mψ0 .

A dilation model within a HB framework

The evolution of the variable mψ for the two approaches is expressed as:

mψ =  mψo
-  ( mψo

- mψr

Bψ + εeq
p )εeq

p; SSM approach
¯

Eq. [21]

This equation can be further rearranged by assuming a vanishing value of mψr (i.e., mψr≈ 0) which enables the
following simplification:

Model Formulation
A non-linear dilation model for rock masses
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mψ = ( Bψ

Bψ + εeq
p )mψo

 Eq. [20]

Along these lines, a similar dependency employed to define the evolution of mb and GSI, is proposed to formulate
the variable mψ in the GSM approach:

mψ = mψo
GSI - 100

Fψ(28 - 14D)  ; GSM approach
¯

Eq. [21]

where
Fψ = Parameter introduced to control the decrease of mψ with the reduction of

the GSI.
By substituting Eq. 12 into Eq. 23, it is possible to rewrite mψ analogously to Eq. 13:

mψ =  mψo
exp ( GSI r - GSI o

Fψ(28 - 14D) )( εeq
p

BGSI +εeq
p )  Eq. [22]

Furthermore, to separate the effect of the parameter accounting for the quality of the rock mass from the
contribution of the intact rock, Fψ is rewritten as:

Fψ = ( GSI o - GSI r
GSI o

i - GSI r
i )Fψ

i  Eq. [23]

where
GSIo

i, GSIr
i = Initial and residual values of GSI of the intact rock sample (i.e., GSIo

i

= 100 and GSIr
i≈ 35).

Fψ
i = Dilation rate of the intact rock, thus enabling its calibration with

experimental tests.
Although the user can determine the value of mψo by calibrating this parameter with results obtained from
laboratory tests (as in the calibration proposed by Marinelli et al., 2019 (on page 39)), in the next section a
strategy enabling a qualitative evaluation of mψo is presented to link the selected formulation with empirical
relations proposed in literature.

Derivation of the parameter mψ0

In this section, a possible strategy to introduce the dependency of the GSI on the value of the initial dilation angle
is presented. For this purpose, Eq. 20 is considered to characterize the dilation at the initial yielding (i.e., the
values of the parameters mbo and ψo):

mψo
= 2

a

sin (ψo
rm)

1 - sin (ψo
rm) (mbo

σ3
σci

+ so)1-a
 Eq. [24]

In this equation, the effect of the rock mass will emerge not only on the parameters of the HB yield criterion (i.e.,
mbo and so) but also on the expression of the initial dilation angle ψo

rm  (the apex rm stands for rock mass). The
rock mass effect will be introduced through a scalar quantity ξ consistently with formulation proposed by 
Alejano et al. (2010) (on page 38) (i.e., ψo

rm ≡ ξψo
ir  where the apex ir stands for intact rock).

Model Formulation
A non-linear dilation model for rock masses
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Intact rock
In the proposed model, both the strength degradation and the evolution of the dilatant behaviour of the intact
rock neglect the potential dissipative phenomena before the peak. For this reason, the initial dilation angle can
be considered coincident with its peak value (i.e., ψo

ir ≡ ξψpeak
ir ) which can be used to calculate mψo (the apex ir

stands for intact rock). Instead of calibrating the parameter mψo with experimental results, it is possible to
employ formulations proposed in literature to evaluate the peak dilation angle. Hereafter, the Eq.27 proposed by 
Walton and Diederichs (2015) (on page 40) is considered:

ψpeak = {φpeak (1 - β'
Ω σ3 ), if  σ3 <  Ω 

φpeak (β0 - β' ln σ3),  if  σ3 >  Ω} with Ω = e
-(1-β0-β')/β'  Eq. [25]

where
β0 , β' = Parameters that control the pressure sensitivity for high and low

confinements respectively (recommended values for crystaline rocks
are β0 = 1 and β'= 0.1, Walton and Diederichs [2015] (on page 40)).

φpeak = Peak friction angle of the material.
In this equation, it is necessary to calculate also the peak friction angle which can be related to the material
properties of the HB model (Alejano and Alonso, 2005 (on page 38)):

sin φpeak =
mb

2
a ( mb

σ3
σci

+ s)
1-a

+ mb

 Eq. [26]

For rock samples, intact rock parameters (i.e., a=0.5, mb≡mi) are be replaced in Eq. 28, thus obtaining:

sin φpeak =
mi

4 mi(
σ3
σci

) + 1 + mi

 Eq. [27]

Effect on the rock mass
To re-scale the value of the peak dilation angle due to the effect of discontinuities characterizing a rock mass,
ψo

rm  is calculated on the basis of ψo
ir and the scalar quantity ξ which is expressed as function of the GSI index

(Hoek and Brown, 1997 (on page 39); Alejano and Alonso, 2005 (on page 38)). For this reason, a linear trend
has been assumed, consistently with the variability of the average dilation angle proposed by Alejano et al.
(2010) (on page 38).

ψo
rm = ξ ⋅ ψ peak

ir , ξ = {0,             GSI o ≤ 25
(GSI o - 25) / 50, 25 ≥  GSI o < 75

1,             GSI o ≥ 75
 Eq. [28]

where
ξ = Coefficient accounting for the initial condition of the rock mass and it is

defined through the Geological Strength Index (i.e., the value of GSIo ).
Eq. 30, emphasizes the dilatant characteristics of a rock mass in relation to its mechanical quality. Rock masses
characterized by poor quality (i.e., GSIo≤25) are associated to a zero-dilatancy, while rock masses in good
conditions (i.e., GSIo≥75) the value of the dilation angle is the same than the dilation angle of the intact rock.

Model Formulation
A non-linear dilation model for rock masses
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 3
UDSM implementation in PLAXIS finite element

code

The HBS has been implemented as a User Defined Soil Model (UDSM) for Plaxis through a DLL format. Both the
softening rules have been introduced in the same DLL subroutine and they can be selected as shown in Figure 8
and Figure 9.

Parameters in common 
with the GSM softening

Parameters in common 
with the GSM softening

Parameters specific for 
the SSM softening

Figure 8: Model parameters in PLAXIS for the SSM formulation. The Parameters in common with both softening
rules are framed within a black rectangle while the parameters specific for the SSM softening are framed within a

red rectangle.
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Parameters in common 
with the SSM softening

Parameters in common 
with the SSM softening

Parameters specific for 
the GSM softening

Figure 9: Model parameters in PLAXIS for the GSM formulation. Parameters in common with both softening rules
are framed within a black rectangle while the parameters specific for the GSM softening are framed within a red

rectangle.

The specific meaning of each parameter is reported below:
• Parameters in common with both softening rules:

E Young modulus.

ν Poisson ratio.
D Disturbance factor.

GSIini Initial GSI (ie., the variable GSIo).

α Factor for reducing the tensile strength.

mi Dimensionless parameter of the intact rock.
mψini Initial value of mψ (i.e., the variable mψo).
σci Uniaxial compression strength.

γ Fluidity (inverse of viscosity).
k Parameter governing the shape of the yield surface in the deviatoric plane.

• Parameters for the SSM softening:
mbres Value of the residual quantity of mb (i.e., the variable mbo).

UDSM implementation in PLAXIS finite element code
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sres Value of the residual quantity of s (i.e., the variable sr).
mψres Value of the residual quantity of mψ (i.e., the variable mψr).

Bmb , Bs Parameters governing the softening process.

Bmψ Parameter governing the rate of dilation.

• Parameters for the GSM softening:
GSIres Value of the residual quantity of mb (i.e., the variable mbo).

BGSI Parameters governing the softening process.

Fψ Parameter governing the rate of dilation.

It is worth remarking that, as illustrated in Figure 3, the parameter k controls the shape of the deviatoric plane
and its range of admissible values varies between zero (circular shape) and minus one (shape of the yield
surface according to Jiang and Zhao, 2015 (on page 39)):

− 1 < k ≤ 0 Eq. [29]

If the user select a value of k which is out from this range of admissibility, k will be automatically set equal to
-0.9999.
In both approaches, the last parameter γ represents a fluidity (i.e., the inverse of a viscosity) and will be
employed to restore the mesh-objectivity of numerical solutions characterized by localized strains. In this
context the parameter γ is also used as flag to allow the user to switch between a pure inviscid/elasto-plastic
implementation and its rate-dependent counterpart. In other words, when γ≤0 the model is elasto-plastic, while
when γ>0 the constitutive equations are visco-plastic with γ defining the fluidity of the model (i.e., the inverse of
the viscosity), thus prescribing the rate-sensitivity of mechanical response:
• γ>0 Visco-plasticity (rate-dependent response).
• γ≤0 Elasto-plasticity (rate-independent response).
The introduction of visco-plasticity has not only the ability to simulate rate-dependent effect due to fast
dynamics process but has also an effect to regularize IBVPs during the development of strain localization. This
particular feature will be detailed in Modeling Strain Localization (on page 28) with particular emphasis on the
beneficial effect introduced by the temporal gradient within the visco-plastic theory proposed by the pioneering
contribution of Perzyna (1966) (on page 39).
The state variable of the model can be plotted through PLAXIS output by selecting Stresses > State parameters
> User > User-defined parameters . Four state-variables can be plotted:
• εp

eq (Eq.10)
• mb and s (Eq. 11 or Eq. 13)
• mψ (Eq. 21 or Eq. 23)
• The last state variable is not referred to any specific variable but it is just used internally to initialize the

problem at the beginning of the computation.

UDSM implementation in PLAXIS finite element code
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 4
Model Performance

Parametric studies
To investigate the performance of the proposed constitutive equations, sensitivity studies have been performed
through a set of drained triaxial tests performed at 5 MPa of confining pressure. The set of parameters calibrated
in Marinelli et al. (2019) (on page 39) to simulate the Rothbach sandstone has been selected as a reference
(see Table 1).
Table 1: Model parameters employed to calibrate Rothbach sandstone by using the SSM approach (Marinelli et al.
[2019])

E[MPa] ν[-] σci[MPa] mi[-] mΨo
[-] Bm[-] Bs [-] BΨ [-]

8500 0.17 38 10 8 0.017 0.017 0.0035

The results of the parametric studies are illustrated in Figure 10, Figure 11 and Figure 12 in which the numerical
analyses show the effect of the parameters governing the elastic domain and the softening process. Specifically,
in Figure 10 it is possible to observe the effect of the parameters mi and mψ0 on the material response by using
the SSM approach, which results in an expansion of the initial yield surface and an increase of the peak dilation,
respectively. For the sake of brevity, as the parameters mi and mψ0 are the same for both formulations, the
corresponding parametric analyses are not displayed for the GSM as the results are analogous (i.e., the same
mechanical interpretation holds).
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Figure 10: Parametric studies of mi and mψo for a TXD test at po=5MPa

On the contrary, the parameters governing the rate of softening and the rate of dilation are tested with both
approaches (i.e, Bs=Bm and Bψ for SSM, BGSI and Fψ for GSM). The results have been plotted in the parametric
studies of Figure 11 and Figure 12, respectively.
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Figure 11: Parametric studies for the parameters Bs=Bm and Bψ for the SSM for a TXD test at po=5MPa
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Figure 12: Parametric studies for the parameters BGSI and Fψ for the GSM for a TXD test at po=5MPa

Although in terms of softening, the GSM and SSM show a similar qualitative trend for both softening rules (i.e.,
varying Bs and BGSI the same effect is observed), the main difference can be recognized in the evolution of the
volumetric strain behaviour, which tends to reach a non-dilatant state more rapidly in the GSM approach due to
the effect of the exponential law. Contrary to Bs, the parameter Bψ has an important influence on the
development of volumetric strain which tends to approach a regime of zero dilation (i.e., lower values of εv) for
lower values of Bψ.
It is important to remark that the parameters governing the rate of softening and the rate of dilation, (i.e., Bm, Bs,
Bψ or BGSI and Fψ) should be evaluated through a calibration process which, at least in its former stage, can
estimate a first order of magnitude of these parameters. To simplify the calibration process, it is suggested to
consider Bm ≡ Bs, thus reducing the number of employed parameters within the SSM approach. Since the
parameters Bs and Bm (BGSI for the GSM approach) correspond to the specific value of εp

eq at which the hardening
variables are reduced by 50%, it is possible to further constrain the admissible values of this parameter between
the two limit mechanical response. This is computed by decreasing or increasing the parameter Bj (the subscript
j is used to indicate m/s or GSI for the SSM and GSM approaches, respectively).
Large values of Bj results to a quasi-perfectly plastic behaviour, while small values of Bj enable the material
response to approach a critical softening regime at the beginning of the plastic flow (Figure 13). Specific values
of Bj larger than 10% results to an important reduction of the degradation process, thus approaching a
mechanical response characterized by quasi-perfect plasticity. While this scenario does not imply any difficulties
during the numerical integration of the constitutive model, the value of Bj corresponding to a critical softening
behaviour prevents the definition of the plastic multiplier Λ̇, thus requiring more complex computational
strategies to integrate the constitutive equations for a given time step (Conti et al., 2013 (on page 38)).
To avoid such complexities, an expression to define a lower-bound of this parameter is proposed hereafter for
two different stress paths (i.e., triaxial and biaxial compression test). For this purpose, a parametric study has
been performed for different values of the material properties (i.e., σci, E and mi) to detect the specific value of Bj
(i.e., noted as Bj, crit) for which the occurrence of critical softening prevents the integration of the material
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response. These results have been reported in Figure 14 for both softening formulations, thus highlighting the
intrinsic dependency between Bj, crit and the material properties (i.e., E, σci and mi) during a biaxial test
performed without confining pressure.

o

Softening

A
Zoom at initial yielding

Critical 
softening

Quasi-perfect 
plasticity

A

Figure 13: Qualitative sketch of two different limit material response obtained by changing the parameter
governing the rate of softening from low to large values.
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Figure 14: Values of Bj,crit corresponding to critical softening behaviour at initial yielding of a drained biaxial test
for different values of the material properties.

To generalize the plots shown in Figure 14, the results have been interpolated with a linear regression whose
equation can be expressed as:

B j,crit → { B j,crit
s = C1

s ⋅ mi + C2
s ⋅ ( σci

E )
B j,crit

GSI = C1
GSI ⋅ mi + C2

GSI ⋅ ( σci
E ) Eq. [30]

where
Bj,crit = particular value of Bj corresponding to a critical softening response at

first yielding for a specific stress path (Figure 13).
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The coefficients C1
s and C2

s (or alternatively, C1
GSI and C2

GSI) computed for biaxial stress paths are reported in
Table 2 for both softening formulations where, to extend the applicability of Eq. 32 to other stress paths, the
same parametric study has been repeated also by solving triaxial compression tests (i.e., uniaxial compression,
UC). It is worth mentioning the fact that for UC, the coefficient C1 employed in both approaches can be
considered neglected with respect to the coefficient C2. The different order of magnitude of this coefficient is
explained by observing the original HB formulation and by considering that for uniaxial compression tests the
influence of the mechanical response on the variability of mb is deleted by the vanishing value of the confining
pressure (i.e., σ3= 0).

Table 2: Values for C1
s, C2

s, and C1
GSI and C2

GSI for the SSM and GSM, respectively. These coefficients are
obtained by performing drained triaxial (TXD) and biaxial (BXD) stress paths at zero confining pressure.

C1
s C2

s C1
GSI C2

GSI

BXD 0.163 0.564 1.309 3.059
TXD 0.005 0.600 0.0001 12.963

The performance of both softening formulations are plotted in Figure 15 in which a drained triaxial test
performed at 5 MPa of confining pressure has been computed for different initial values of the Geological
Strength Index. In these computations also the Young modulus has been considered as a function of the GSI
according to the formulation proposed by Hoek and Diederichs (2006) (on page 39) which is expressed as:

Erm = 100000( 1 - D / 2
1 + e (75+25D-GSIo)/11 )  Eq. [31]

Figure 15 highlights a potential mechanical response of the rock mass for which the initial material properties
prescribed by GSI0 have an influence not only on the stiffness and the peak strength but also on the rate of
softening employed to reach the residual strength of the material. This figure shows the ability of the model to
reproduce the post-peak behaviour of the rock mass through a continuous decay of the material properties along
the lines of the post-peak characterization proposed in Alejano et al. (2010) (on page 38).
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Figure 15: Performance of the proposed models under triaxial compression for different values of the GSIo: a)
Strength Softening Model (SSM), b) GSI Softening Model (GSM). In both cases a radial confining pressure equal to 5

MPa.

Model Performance
Parametric studies

PLAXIS 24 User Defined Soil Models - HBS: Hoek-Brown model
with softening



Model Calibration
To show the performance of the underlying model to simulate the intact rock behaviour under triaxial loading
paths (TXD), a first order calibrations for different types of rocks has been performed using the parameters
listed in Table 3.
Table 3: Parameters used in the calibrations for different types of rock (data after: (a)Bésuelle et al., 2003; (b)
Alejano et al., 2012; (c) Santarelli, 1987; (d) Papazoglou, 2018; (e) Wong, 1998)

Rock
po

[MPa]

E

[MPa]

ν

[-]

σci

[MPa]

mi

[Mpa]

mψ

[-]

BGSI

[-]

Fψ

[-]

Bs

[-]

Bψ

[-]

Sandstone(a) 5 8500 0.19 38 10 8 0.085 0.20 0.017 0.0035
Granite(b) 4 21000 0.19 76.59 40.96 25 0.058 0.45 0.011 0.006

Dolomite(c)
5 25000 0.2 66 11 10 0.05 0.35 0.005 0.0045

20 25000 0.2 66 11 9 0.16 0.35 0.012 0.0045

Taffeau(d)
0 300 0.2 2.2 9.7 9 0.16 0.35 0.03 0.005

0.5 300 0.2 2.2 9.7 6 0.16 0.35 0.015 0.01

Shale(e)
0.05 90 0.2 2 4 2.2 0.16 0.40 0.018 0.03
0.25 90 0.2 2 4 1 0.16 0.40 0.025 0.03

The resulting mechanical behaviour is plotted in Figure 16 and Figure 17 which show the ability of the HBS
model to reproduce the qualitative brittle behaviour of these rocks. It is important to remark that the proposed
set of parameters simulates the homogenous behaviour of the material computed at the material point level,
thus neglecting the strong non-homogeneous strain-field observed in the experiments (i.e., the strain
localization phenomena leading the material to failure). For this reason, although the underlying calibration
enables a first order estimation for the value of the model parameters, a rigorous calibration process in the
brittle regime should implement an inverse analysis method which compares full-field experimental data with
the numerical solution of the experimental test simulated as an IBVP (El Moustapha, 2014 (on page 39); 
Besuelle and Lanata, 2017 (on page 38)).
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Figure 16: First order calibration 1 for different materials: a) Rothbach Sandstone data after Marinelli et al. (2019);
b) Rio Amarelo Granite data after Alejano et al. (2012)
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Figure 17: First order calibration 2 for different materials: c) Gebdykes Dolomite data after Santarelli (1987); d)
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 5
Modeling Strain Localization

Failure mechanisms in geomaterials are often characterized by a rapid concentration of strain in narrow zones
which is a phenomenon commonly referred to in literature as strain localization. In the brittle/dilatant regime,
the development of localized shear bands strongly reduces the global resistance of the mechanical domain, thus
leading the engineering geo-structure to failure.
In the framework of numerical analyses, one of the classical problems for modelling the development of shear
bands, is the pathological mesh-dependence of the computed solution which implies failure without energy-
dissipation (Pijaudier-Cabot and Bazant, 2017 (on page 39)). To avoid this unphysical behaviour an internal
length has to be introduced to govern the evolution of the shear band thickness in the post-peak regime of the
material response.
In the implemented HBS, to restore the mesh-objectivity of the numerical solution a visco-plastic regularization
is considered based on the over-stress theory of Perzyna (1966) (on page 39), thus enabling the introduction
of an internal length through a temporal gradient (Sluys, 1944 (on page 39)). Although in this approach a rate-
effect is activated during the formation of the shear band, the advantage of this method relies on the
straightforward implementation of an implicit integration algorithm which guarantees a readily switch between
the elasto-plastic and the visco-plastic version of the same model (Marinelli and Buscanera, 2019 (on page
39)).

Viscous regularization technique
Hereafter, the over-stress approach proposed by Perzyna (1966) (on page 39) is considered to introduce a
rate-dependency within the elasto-plastic framework presented in previous sections. In this approach, the
increment of the visco-plastic strains is expressed through a viscous nucleus function Φ which represents a
measure of plastic violation (i.e., how much the stress state lays outside of the yield surface) and prescribes the
magnitude of the strain rate:

ε̇ij
vp = γ Φ( f ) ( ∂ g

∂σij ), Φ = f
σci

Eq. [32]

where
γ = Fluidity (i.e., the inverse of the viscosity).
<·> = McCauley brackets.

The purpose of the viscous regularization method is to set the value of the fluidity γ to approach an inviscid-like
behaviour at the material point and, at the same time, to introduce an internal length through a temporal
gradient. In other words, although in some engineering problems it is crucial to calibrate the value of the fluidity
to mimic the rate-effects resulting from the fast-dynamics features of the boundary conditions (see for instance 
Manouchehrian and Cai, [2017] (on page 39)), in our context the fluidity has the only goal of regularizing a
strain localization problem.
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An example of the aforementioned is illustrated on Figure 18 where a uni-axial compression test is performed
for different values of γ and for a given rate loading. In this figure, it is possible to observe how the rate-
dependent model approaches the elasto-plastic behaviour by increasing the value of the corresponding fluidity.
Once the fluidity has been constrained to reduce the rate-dependent effects at the material point level, this
parameter can be used to control the shear band thickness, thus providing a regularization effect in the
numerical problem. In the next section, the performance of the viscous regularization technique will be
inspected by solving plane strain compression tests, for which the mesh objectivity will be detailed by showing
the invariance of both the global strength and shear band thickness with the spatial discretization of the sample.
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Figure 18: Influence of the fluidity γ on the rate-dependent response of HBS model: Convergence of the visco-plastic

model to the elasto-plastic model for increasing values of the fluidity γ.

Strain localization analysis
To investigate the performance of the viscous regularization method, a set of plane strain compression tests
have been computed with PLAXIS 2D code. The details of this Initial Boundary Value Problems (IBVP) are
depicted in Figure 18, where the grey area represents a particular zone in which the material strength is reduced
with the purpose of triggering the formation of the shear band from the bottom-left corner of the sample.
The parameters used for these numerical analyses are the same reported in Table 1 for Rothbach sandstone with
the only exception of the uni-axial compression strength defined in the grey area which has been reduced to
37MPa.

Modeling Strain Localization
Strain localization analysis
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Figure 19: Initial and boundary conditions used to compute a drained compression test in plane strain compression
(i.e., a biaxial test (BXD)). The grey area represents a zone characterized by reduced properties (i.e., σci=37 MPa)

which have been selected to trigger the strain localization phenomenon, while the variable Ry stands for the global
reaction of the sample.

Before showing the beneficial effect of a rate-dependent formulation, it is worth illustrating an example of
numerical solutions obtained with the elasto-plastic version of this model thus emphasizing how the mesh
discretization can affect the numerical solution. For this purpose, the same IBVP (i.e., a compression test in plane
strain conditions) has been solved with a different number of elements and the results expressed in Figure 20
where the evolution of the total reaction Ry has been plotted as a function of the applied displacement. The mesh
sensitivity of the sample response is explained by observing the spatial distribution of the Gauss points in plastic
loading (i.e., the red points inside the elements of the sample) which results from a different number of elements
(NEL) employed in the FE computations.
As a matter of fact, the lack of an internal length in the elasto-plastic model unables to prescribe the shear-band
thickness which is intrinsically given in the numerical problem by the size of the element. As a consequence, due
to this inherent dependence between the element size and the band thickness, a refinement of the mesh involves
a more intense dissipation process, thus explaining the sharper decrease of resistance of the sample discretized
with a larger number of elements. It is important to remark that, when the element size is too small, the model is
not able to satisfy the global convergence due to the large values of the strain gradient computed inside the
shear band. This is illustrated by the green line of Figure 20 in which the computation stops before the 2% of
applied displacements.
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Figure 20: Vertical reaction of a drained biaxial test performed with a radial stress of σr=1, MPa and with a
different number of elements (NEL). The red squares inside the elements indicate Gauss points in plastic loading.

To show the regularization effect introduced by the rate dependent model, two drained biaxial tests have been
performed with two different values of fluidity. These computations have been performed by enforcing a rate of
displacement equal to 0.001mm/s and a radial stress of 5 MPa. The results are plotted in Figure 21 where the
same IBVP is repeated for different meshes thus showing the convergence of the solution with respect to the
mesh density (i.e., for an increasing number of elements, Ry tends to converge to the same curve).
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Figure 21: Evolution of the total vertical reaction for different meshes and two values of fluidity. Computations
performed by prescribing a radial confinement equal to 5 MPa and a rate of displacement of 0.001 mm/s.

Furthermore, to better identify the formation of the shear band during the time steps, the spatial distribution of
the Gauss points in a plastic state and the corresponding shear strain are plotted in Figure 22 for the two
different values of the fluidity which readily emphasize the different effect on the band thickness for the specific
value of γ.
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Figure 22: a) Plastic point and shear strain for four steps of the computation performed with γ=7.7E-5/s
corresponding to a band width of 4mm b) Plastic point and shear strain for four steps of the computation

performed with γ=1.6E-5/s-1 corresponding to a band width of 9mm.
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Lower values of fluidity correspond to thinner thickness values of the shear band (i.e., the thickness of the shear
band is proportional to the viscosity). The influence of the internal length enforced through the parameter γ is
also detailed in Figurer 23, in which the biaxial tests have been repeated from a fluidity value of γ=1.3E-5s-1 to
γ=2.3E-4s-1, thus showing the structural effect of the band thickness on the global rate of softening of the sample.
It is worth remarking that the computations presented in this sections have been calculated by selecting the
maximum number of iterations equal to 250.
As a matter of fact, at the beginning of the post-peak regime, when the material starts softening the Newton-
Raphson algorithm requires a higher iteration number to reach a converged solution. This particular behavior of
the convergence trend is further accentuated by the value of the tolerated error which has been selected equal to
0.001 to guarantee a satisfactory precision of the computations. All the numerical input employed in these
computations are listed here below:
• Tolerated error: 0.001
• Max load fraction per step: 0.02
• Over-relaxation factor: 1.2
• Max number of iterations: 250
• Desired min number of iterations: 6
• Desired max number of iterations: 25
• Arc-length control type: On
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Figure 23: Vertical reaction of a drained biaxial test performed with a radial stress of σr=5, MPa for different
fluidity values γ.
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 6
Simulation of Tunnel Excavation

To compare the solution of the implemented model with the analytical solution proposed by Carranza-Torres
(2004) (on page 38), perfect plastic conditions have been taken account. Specifically, the parameters reported
in Table 1 have been selected with the only difference that zero dilation angle is considered. The results are
shown in Figure 24 where the displacement at the top of the tunnel have been plotted against the deconfined
stress pi. In this figure, the development of shear bands around the tunnel at the end of the unloading phase is
also illustrated for different time steps. By observing this figure, it is worth noting that point 2 represents the
end of the axisymmetric solution and the beginning of the shear bands propagation.
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Figure 24: Ground Reaction Curve (GRC) under perfect plastic conditions modeled with the generalized HB criterion
closed form solution from Carranza-Torres (2004) (blue line) and the viscous-regularized solution (black line).

To emphasize the effect of strain softening, a comparison of the Ground Reaction Curve (GRC) for different initial
conditions of a limestone rock mass (data after Alejano et al., 2010 (on page 38)) is shown in Figure 25 where
the parameters reported in Table 4 have been taken into account. These computations have been performed
with three different set of parameters with the purpose of highlighting specific constitutive features of the
model: (i) model A (perfect plasticity), (ii) model B (HBS with constant dilation), (iii) model C (HBS with non-
linear dilation). It is worth remarking that in Figure 25 the non-smooth trend of the convergence-confinement
curve results from the development of localized strain around the tunnel whose formulation involves an
irregular profile of the deformation field.
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Table 4: Characterization of limestone rock masses (mi = 10, σci = 75MPa) for different rock qualities (from Alejano
et al., 2010) applied to the models: A-Perfect plastic, B-Strain softening with constant dilation and C-Strain
softening with variable dilation

Model Parameter GSI =75 GSI =60 GSI =50 GSI =40 GSI =25

A, B, C mbo 4.090 2.397 1.677 1.173 0.687
A, B, C so 0.062 0.0117 0.0039 0.0013 0.0002

B, C mbr 1.173 0.981 0.821 0.737 0.687
B, C sr 0.0013 0.0007 0.0004 0.0003 0.0002
B, C Bs,Bm 0.01 0.01 0.01 0.01 0.01
A, B mψcnst 0.718 0.312 0.166 0.060 0.000

C mψo 1.225 0.587 0.330 0.156 0.000
C mψr 0.000 0.000 0.000 0.000 0.000
C Bψ 0.001 0.001 0.001 0.001 0.001
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Figure 25: Ground reaction curves (GRC) for different values of GSI with different models: A- perfect plastic model
(black lines), B- strain softening model with constant dilation angle (blue lines) and C- strain softening model with

variable dilation model (red lines). For all computations γ = 15d-1.
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Furthermore, the presented formulation has been also compared with other approaches which introduce a
softening rule within a HB framework (i.e., Alejano et al., 2010 (on page 38) and Ranjbarnia et al., 2015 (on
page 39)). The results are plotted in Figure 26and show a similar trend of behavior in terms of GRC.
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Figure 26: Ground reaction curves (GRC) for different values of GSI comparing the HBS model to the models
proposed by Alejano et al. (2010) and Ranjbarnia et al. (2015).

In addition, the effect of rate dependence is evaluated by running tests varying the fluidity γ as shown in Figure
27. In this case, the parameter γ controls the structural effect on the response. In previous computations a
fluidity γ =15 d-1 has been used.
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Figure 27: Ground reaction curves (GRC) for different values fluidity (γ) showing the effect of rate dependence of the
model.
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Case study: Donking-Morien Tunnel
The access tunnel for the Donking-Morien coal mine in Cape Breton Island, Nova Scotia, Canada was driven to a
maximum depth of 200m below the seabed in a layered sedimentary rock dipping 10°. This tunnel has been
monitored with extensometer measurements in several sections and back analyses performed in Pelli et al.
(1991) (on page 39) and in Walton et al. (2014) (on page 40) specifically at chainage 2996 m due to the
quality of the data and lack of geological interfaces.
The field stress in the tunnel, estimated by Walton (2014) (on page 40), is σv = 5 MPa and σh = 10 MPa.
Laboratory tests have reported UCS ranging from 15 MPa to 63 MPa with a mean value of 36 MPa and a Young's
modulus between 4 GPa and 15 GPa, while extensometer measurements show a modulus of 5.6 GPa at chainage
2996. The plastic zone depth reported by Pelli et al. (1991) (on page 39) is 1,8 m in the crown. Corkum et al.
(2012) (on page 38) reports a GSI between 70 and 80 for the selected material.
This section of the tunnel was modeled with the HBS with the parameters set to the mean values reported by
laboratory experiments and in-situ measurements. The numerical analyses show the capabilities of the model to
provide reliable estimations for design purposes as shown in Figure 28. Specifically, Figure 28(a) shows a cross
section of the vertical displacements in the crown compared with extensometer measurements, as well as the
GRC (Figure 28(b)) and the spatial distribution of the plastic zone (Figure 28(c)). Although the model
underestimates the plastic zone depth, the observed displacements and the plastic modulus are consistent with
the measurements.
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Figure 28: Results of the computation for the Donking Morien tunnel. a) Cross section of vertical displacements at
the crown, b) GRC, c) the plastic zone evolution.
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 A
Appendix

Table 6: Range of values for σci classified according to the different type of rocks.

Rock Material Resistance classification
Range of Range of σci

[kN/m2]

Chert, diabase, fresh basalt, gneiss,
ranite, quartzite

Only chipping is possible with a
geological hammer 0 - 250.0E3

Amphibolite, basalt gabbro, gneiss,
granodiorite, limestone, marble,
rhyolite, sandstone, tuff

Fracturing requires many blows of
a geological hammer 100.0E3 - 250.0E3

Limestone, marble, phyllite,
sandstone, schist, shale

Fracturing requires more than one
blow of a geological hammer 50.0E3 - 100.0E3

Claystone, coal, concrete, schist,
shale, siltstone

Fracturing is possible with a single
blow from a geological hammer, but
cannot be scraped or peeled with a
pocket knife

25.0E3 - 50.0E3

Chalk, potash, rocksalt
Firm blow with the point of a
geological jammer leaves shallow
indentation; peeling with a pocket
knife is possible, but difficult

5000 - 25.0E3

Highly weathered or altered rock
Firm blow with the point of a
geological hammer leads to
crumbling; peeling with a pocket
knife is possible

1000 - 5000

Stiff fault gouge Thumbnail leaves indentation 250 - 1000
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Table 7: Values of the parameter mi for different type of rocks. The following nomenclature is used in the Table to
indicate the grain size characteristics of the rock: VC (very course), CO (course), ME (medium), FI (fine), VF (very
fine). The type of rock is indicated as: IG (igneous), EE (metamorphic), SE (sedimentary).

Rock mi±Δ mi Rock mi±Δ mi

Agglomerate (IG, CO) 19 ± 3 Amphibolite (EE, ME) 26 ± 6
Andesite (IG, ME) 25 ± 5 Anhydrite (SE, FI) 12 ± 2

Basalt (IG, FI) 25 ± 5 Breccia (IG) 19 ± 5
Breccia (SE) 19 ± 5 Chalk (SE, VF) 7 ± 2

Claystone (SE, VF) 4 ± 2 Conglomerates (SE, CO) 21 ± 3
Cristalline limestone (SE,

CO) 12 ± 3 Dacite (IG, FI) 25 ± 3

Diabase (IG, FI) 15 ± 5 Diorite (IG, FI) 25 ± 5
Dolerite (IG, ME) 16 ± 5 Dolomites (SE, VF) 9 ± 3
Gabbro (IG, CO) 27 ± 3 Gneiss (EE, FI) 28 ± 5
Granite (IG, CO) 32 ± 3 Granodiorite (IG, CO/ME) 29 ± 3

Graywackes (SE, FI) 18 ± 3 Gypsum (SE, ME) 8 ± 2
Hornfels (EE, ME) 19 ± 4 Marble (EE, CO) 9 ± 3

Marls (SE, VF) 7 ± 2 Metasandstone (EE, ME) 19 ± 3
Micritric limestones (SE,

FI) 9 ± 2 Migmatite (EE, CO) 29 ± 3

Norite (IG, CO/ME) 20 ± 5 Obsidian (IG, VF) 19 ± 3
Peridotite (IG, VF) 25 ± 5 Phyllite (EE, FI) 7 ± 3

Porphyries (IG, CO/ME) 20 ± 5 Quarzites (EE, FI) 20 ± 3
Rhyolite (IG, ME) 25 ± 5 Sandstone (SE, ME) 17 ± 4
Schists (EE, ME) 12 ± 3 Shales (SE, VF) 6 ± 2

Siltstones (SE, FI) 7 ± 2 Slates (EE, VF) 7 ± 4
Sparitic limestones (SE,

ME) 10 ± 2 Tuff (IG, FI) 13 ± 5
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Table 8: Qualitative indications to evaluate the damage factor of D

Disturbance factor D D

Tunnel excavation by TBM or blasting of excellent quality (see Figure 30 (a)) 0
Tunnel excavation by hand of using a mechanical process rather than blasting, in poor quality
rock. There are no squeezing problems leading to floor heave, or these are mitigated using a
temporary invert (see Figure 30 (b))

0

Tunnel excavation by hand of using a mechanical process rather than blasting, in poor quality
rock. There are unmitigated squeezing problems leading to floor heave (see Figure 30 (c)) 0.5

Tunnel excavation using blasting of very poor quality, leading to sere local damage (see
Figure 30 (d)) 0.8

Slope created using controlled, small scale blasting of good quality (see Figure 30 (e)) 0.7
Slope created using small scale blasting of poor quality (see (f)) 0.7
Slope in very large open pit mine, created using heavy production blasting (see Figure 30 (g)) 1
Slope in very large open pit mine, created using mechanical excavation in softer rocks (see
Figure 30 (h)) 1
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Figure 29: Representation of the GSI system according to Marinos et al. (2005)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 30: Different construction cases related to the values of the disturbance factor D (proposed) (pictures (a)-(g)

after I. Garcia Mendive and picture (h) after SRK consulting and Raimond Spekking, Via wekimedia Commons).
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