Table of Contents

Chapter 1: Settlement of a circular footing on sand ... 8
1.1 Geometry ... 8
1.2 Case A: Rigid footing ... 9
 1.2.1 Create a new project .. 9
 1.2.2 Define the soil stratigraphy ... 11
 1.2.3 Create and assign material data sets .. 12
 1.2.4 Define the footing .. 16
 1.2.5 Generate the mesh .. 17
 1.2.6 Define and perform the calculation ... 18
1.3 Case B: Flexible footing .. 25
 1.3.1 Modify the geometry ... 26
 1.3.2 Add material properties for the footing ... 27
 1.3.3 Generate the mesh .. 28
 1.3.4 Calculations ... 28
 1.3.5 View the calculation results ... 30
 1.3.6 Generate a load-displacement curve ... 30

Chapter 2: Submerged construction of an excavation .. 33
2.1 Create new project ... 34
2.2 Define the soil stratigraphy ... 34
2.3 Create and assign material data sets ... 35
2.4 Define the structural elements ... 37
 2.4.1 To define the diaphragm wall: ... 37
 2.4.2 To define the interfaces: ... 38
 2.4.3 To define the excavation levels: ... 39
 2.4.4 To define the strut: ... 39
 2.4.5 To define the distributed load: ... 41
2.5 Generate the mesh .. 41
2.6 Define and perform the calculation .. 42
 2.6.1 Initial phase ... 42
 2.6.2 Phase 1: External load .. 43
 2.6.3 Phase 2: First excavation stage ... 44
 2.6.4 Phase 3: Installation of a strut ... 45
 2.6.5 Phase 4: Second (submerged) excavation stage .. 45
 2.6.6 Phase 5: Third excavation stage .. 46
 2.6.7 Execute the calculation ... 47
2.7 View the calculation results ... 47
 2.7.1 Displacements and stresses ... 47
 2.7.2 Shear forces and bending moments ... 49

Chapter 3: Dry excavation using a tie back wall ... 51
3.1 Create new project ... 52
3.2 Define the soil stratigraphy ... 52
3.3 Create and assign material data sets ... 53
3.4 Define the structural elements ... 54
3.4.1 To define the diaphragm wall and interfaces: ... 54
3.4.2 To define the excavation levels: ... 55
3.4.3 Defining the ground anchor ... 56
3.4.4 To define the distributed load: .. 58
3.5 Generate the mesh .. 58
3.6 Define and perform the calculation .. 58
3.6.1 Initial phase .. 59
3.6.2 Phase 1: Activation of wall and load ... 59
3.6.3 Phase 2: First excavation ... 60
3.6.4 Phase 3: First anchor row ... 60
3.6.5 Phase 4: Second excavation .. 61
3.6.6 Phase 5: Second anchor row ... 61
3.6.7 Phase 6: Final excavation ... 62
3.6.8 Execute the calculation .. 64
3.7 Results .. 64

Chapter 4: Dry excavation using a tie back wall - ULS .. 67
4.1 Define the geometry ... 67
4.2 Define and perform the calculation .. 69
4.2.1 Changes to all phases ... 69
4.2.2 Execute the calculation ... 70
4.3 Results .. 70

Chapter 5: Construction of a road embankment ... 72
5.1 Create new project .. 73
5.2 Define the soil stratigraphy ... 73
5.3 Create and assign material data sets ... 74
5.4 Define the construction .. 76
5.4.1 To define the embankment: .. 76
5.4.2 To define the drains ... 76
5.5 Generate the mesh .. 77
5.6 Define and perform the calculation .. 78
5.6.1 Initial phase: Initial conditions .. 78
5.6.2 Consolidation analysis ... 79
5.6.3 Execute the calculation ... 81
5.7 Results .. 82
5.8 Safety analysis ... 84
5.8.1 Evaluation of results ... 86
5.9 Using drains ... 89
5.10 Updated mesh and updated water pressures analysis .. 90

Chapter 6: Settlements due to tunnel construction ... 92
6.1 Create new project .. 93
6.2 Define the soil stratigraphy ... 93
6.2.1 Create and assign material data sets ... 94
6.3 Define the structural elements .. 96
6.3.1 Define the tunnel ... 97
6.3.2 Define building .. 99
6.4 Generate the mesh ..100
6.5 Define and perform the calculation ...101
6.5.1 Initial phase ..101
9.6.2	Phase 1: Rapid drawdown	...	145
9.6.3	Phase 2: Slow drawdown	..	148
9.6.4	Phase 3: Low level	..	149
9.6.5	Phase 4 to 7	..	150
9.6.6	Execute the calculation	..	151
9.7	Results	..	151

Chapter 10: Flow through an embankment ... 154

10.1	Create new project	..	154
10.2	Define the soil stratigraphy	...	155
10.3	Create and assign material data set	..	155
10.4	Generate the mesh	..	156
10.5	Define and perform the calculation	..	157
10.5.1	Initial phase	..	157
10.5.2	Phase 1	..	158
10.5.3	Phase 2	..	159
10.5.4	Execute the calculation	..	160
10.6	Results	..	161

Chapter 11: Flow around a sheet pile wall ... 164

11.1	Create and assign material data set	...	164
11.2	Define the structural elements	..	165
11.3	Generate the mesh	..	165
11.4	Define and perform the calculation	...	166
11.4.1	Initial phase	..	166
11.4.2	Phase 1	..	166
11.4.3	Execute the calculation	..	167
11.5	Results	..	167

Chapter 12: Potato field moisture content ... 169

12.1	Create new project	..	169
12.2	Define the soil stratigraphy	..	170
12.3	Create and assign material data sets	..	171
12.4	Generate the mesh	..	172
12.5	Define and perform the calculation	...	173
12.5.1	Initial phase	..	173
12.5.2	Transient phase	..	174
12.5.3	Execute the calculation	..	176
12.6	Results	..	176

Chapter 13: Dynamic analysis of a generator on an elastic foundation 178

13.1	Create new project	..	179
13.2	Define the soil stratigraphy	...	179
13.3	Create and assign material data sets	..	179
13.4	Define the structural elements	..	180
13.5	Generate the mesh	..	181
13.6	Define and perform the calculation	...	182
13.6.1	Initial phase	..	182
13.6.2	Phase 1: Footing	..	182
13.6.3	Phase 2: Start generator	..	183
13.6.4	Phase 3: Stop generator	..	185
17.1 Create new project ... 231
17.2 Define the soil stratigraphy ... 231
17.3 Create and assign material data sets ...231
17.4 Define the structural elements ..234
17.5 Generate the mesh ...236
17.6 Define and perform the calculation .. 236
 17.6.1 Initial phase ..236
 17.6.2 Phase 1: Transient calculation ...237
 17.6.3 Execute the calculation .. 238
17.7 Results ... 238
1 Settlement of a circular footing on sand

In this chapter a first application is considered, namely the settlement of a circular foundation footing on sand. This is the first step in becoming familiar with the practical use of PLAXIS 2D. The general procedures for the creation of a geometry model, the generation of a finite element mesh, the execution of a finite element calculation and the evaluation of the output results are described here in detail. The information provided in this chapter will be utilised in the later tutorials. Therefore, it is important to complete this first tutorial before attempting any further tutorial examples.

Objectives:

• Starting a new project
• Creating an axisymmetric model
• Creating soil stratigraphy using the Borehole feature
• Creating and assigning of material data sets for soil (Mohr-Coulomb model)
• Defining prescribed displacements
• Creation of footing using the Plate feature
• Creating and assigning material data sets for plates
• Creating loads
• Generating the mesh
• Generating initial stresses using the K0 procedure
• Defining a Plastic calculation
• Activating and modifying the values of loads in calculation phases
• Viewing the calculation results
• Selecting points for curves
• Creating a 'Load - displacement' curve

1.1 Geometry

A circular footing with a radius of 1.0 m is placed on a sand layer of 4.0 m thickness as shown in Figure 1 (on page 9). Under the sand layer there is a stiff rock layer that extends to a large depth. The purpose of the exercise is to find the displacements and stresses in the soil caused by the load applied to the footing. Calculations are performed for both rigid and flexible footings. The geometry of the finite element model for these two situations is similar. The rock layer is not included in the model; instead, an appropriate boundary condition is applied at the bottom of the sand layer. To enable any possible mechanism in the sand and to avoid any influence of the outer boundary, the model is extended in horizontal direction to a total radius of 5.0 m.
1.2 Case A: Rigid footing

In the first calculation, the footing is considered to be very stiff and rough. In this calculation the settlement of the footing is simulated by means of a uniform indentation at the top of the sand layer instead of modelling the footing itself. This approach leads to a very simple model and is therefore used as a first exercise, but it also has some disadvantages. For example, it does not give any information about the structural forces in the footing. The second part of this tutorial deals with an external load on a flexible footing, which is a more advanced modelling approach.

1.2.1 Create a new project

1. Start PLAXIS 2D by double clicking the icon of the Input program.

The Quick start dialog box appears in which you can create a new project or select an existing one.
2. Click Start a new project.

The Project properties window appears with four tabsheets: Project, Model, Constants and Cloud services.

Note:

The first step in every analysis is to set the basic parameters of the finite element model. This is done in the Project properties window. These settings include the description of the problem, the type of model, the basic type of elements, the basic units and the size of the drawing area.

To enter the appropriate settings for the footing calculation follow the steps below.

3. In the Project tabsheet, enter Lesson 1 in the Title box and type Settlement of a circular footing in the Comments box.
4. Click the Next button at the bottom or click the Model tab. The Model properties are shown:

5. In the Type group the type of the model (Model) and the basic element type (Elements) are specified. Since this tutorial concerns a circular footing, select the Axisymmetry and the 15-Noded options from the Model and the Elements drop-down menus respectively.

6. In the Contour group set the model dimensions to $x_{\text{min}} = 0.0, x_{\text{max}} = 5.0, y_{\text{min}} = 0.0$ and $y_{\text{max}} = 4.0$.

7. Keep the default units in the Constants tab.

8. Click the OK button to confirm the settings.

The project is created with the given properties. The Project properties window closes and the Soil mode view will be shown, where the soil stratigraphy can be defined.

Note: The project properties can be changed later. You can access the Project properties window by selecting the corresponding option from the File menu.

1.2.2 Define the soil stratigraphy

In the Soil mode of PLAXIS 2D the soil stratigraphy can be defined.

Information on the soil layers is entered in boreholes. Boreholes are locations in the drawing area at which the information on the position of soil layers and the water table is given. If multiple boreholes are defined, PLAXIS 2D will automatically interpolate between the boreholes. The layer distribution beyond the boreholes is kept horizontal. In order to construct the soil stratigraphy follow these steps:
Settlement of a circular footing on sand
Case A: Rigid footing

Note: The modelling process is completed in five modes. More information on modes is available in the Input Program Structure Mode of the Reference Manual.

1. Click the Create borehole button in the side (vertical) toolbar to start defining the soil stratigraphy.
2. Click at x = 0 in the drawing area to locate the borehole.
 The Modify soil layers window will appear.
3. Add a soil layer by clicking the Add button in the Modify soil layers window.
4. Set the top boundary of the soil layer at y = 4 and keep the bottom boundary at y = 0 m.
5. Set the Head to 2.0 m.

 By default the Head value (groundwater head) in the borehole column is set to 0 m.

 ![Modify soil layers window](image)

 Figure 2: Modify soil layers window

Next the material data sets are defined and assigned to the soil layers, see Create and assign material data sets (on page 12).

1.2.3 Create and assign material data sets

In order to simulate the behaviour of the soil, a suitable soil model and appropriate material parameters must be assigned to the geometry. In PLAXIS 2D, soil properties are collected in material data sets and the various data sets are stored in a material database. From the database, a data set can be assigned to one or more soil layers. For structures (like walls, plates, anchors, geogrids, etc.) the system is similar, but different types of structures
have different parameters and therefore different types of material data sets. PLAXIS 2D distinguishes between material data sets for Soil and interfaces, Plates, Geogrids, Embedded beam rows and Anchors.

The sand layer that is used in this tutorial has the following properties:

Table 1: Material properties of the sand layer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>Model</td>
<td>Mohr-Coulomb</td>
<td>-</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>Type</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>γ_{unsat}</td>
<td>17.0</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>20.0</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young's modulus (constant)</td>
<td>E'</td>
<td>$1.3 \cdot 10^4$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν'</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion (constant)</td>
<td>c'_{ref}</td>
<td>1.0</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Friction angle</td>
<td>φ'</td>
<td>30.0</td>
<td>°</td>
</tr>
<tr>
<td>Dilatancy angle</td>
<td>ψ</td>
<td>0.0</td>
<td>°</td>
</tr>
</tbody>
</table>

To create a material set for the sand layer, follow these steps:

1. Open the **Material sets** window by clicking the **Materials** button in the **Modify soil layers** window or in the side toolbar.
 The **Material sets** window pops up.
2. Click the **New** button at the lower side of the **Material sets** window.
A new window will appear with these tabsheets: **General**, **Parameters**, **Groundwater**, **Thermal**, **Interfaces** and **Initial**.
3. In the **Material set** box of the **General** tabsheet, write **Sand** in the **Identification** box.
The default material model (Mohr-Coulomb) and drainage type (Drained) are valid for this example.
4. Enter the proper values in the **General properties** box (**Figure 3** (on page 14)) according to the material properties listed in **Table 1** (on page 13). Keep parameters that are not mentioned in the table at their default values.

![Figure 3: The General tabsheet of the Soil window](image)

5. Click the **Next** button or click the **Parameters** tab to proceed with the input of model parameters.
The parameters appearing on the Parameters tabsheet depend on the selected material model (in this case the Mohr-Coulomb model).

![Parameters tabsheet](image)

Figure 4: The Parameters tabsheet of the Soil window of the Soil and interfaces set type

6. Enter the model parameters of Table 1 (on page 13) in the corresponding edit boxes of the Parameters tabsheet (Figure 4 (on page 15)). A detailed description of different soil models and their corresponding parameters can be found in the Material Models Manual.

Note: To understand why a particular soil model has been chosen, see Appendix B of the Material Models Manual.

7. The soil material is drained, the geometry model does not include interfaces and the default thermal and initial conditions are valid for this case, therefore the remaining tabsheets can be skipped. Click **OK** to confirm the input of the current material data set.

Now the created data set will appear in the tree view of the Material sets window.

8. Drag the set Sand from the Material sets window (select it and hold down the left mouse button while moving) to the graph of the soil column on the left hand side of the Modify soil layers window and drop it there (release the left mouse button).

9. Click **OK** in the Material sets window to close the database.

10. Click **OK** to close the Modify soil layers window.

Note:
- Existing data sets may be changed by opening the Material sets window, selecting the data set to be changed from the tree view and clicking the **Edit** button. As an alternative, the Material sets window can be opened by clicking the corresponding button in the side toolbar.
- PLAXIS 2D distinguishes between a project database and a global database of material sets. Data sets may be exchanged from one project to another using the global database. The global database can be shown in the Material sets window by clicking the **Show global** button. The data sets of all tutorials in the Tutorial Manual are stored in the global database during the installation of the program.
• The material assigned to a selected entity in the model can be changed in the Material drop-down menu in the Selection explorer. Note that all the material datasets assignable to the entity are listed in the drop-down menu. However, only the materials listed under Project materials are listed, and not the ones listed under Global materials.
• The program performs a consistency check on the material parameters and will give a warning message in the case of a detected inconsistency in the data.

1.2.4 Define the footing

Structural elements and loads are created in the Structures mode of the program. In this exercise a uniform indentation will be created to model a very stiff and rough footing.

Note:
Visibility of a grid in the drawing area can simplify the definition of geometry. The grid provides a matrix on the screen that can be used as reference. It may also be used for snapping to regular points during the creation of the geometry. The grid can be activated by clicking the corresponding button under the drawing area. To define the size of the grid cell and the snapping options:

Click the Snapping options button in the bottom toolbar. The Snapping window pops up where the size of the grid cells and the snapping interval can be specified. The spacing of snapping points can be further divided into smaller intervals by the Number of snap intervals value. Use the default values in this tutorial.

1. Click the Structures tab to proceed with the input of structural elements in the Structures mode.
2. Click the Create prescribed displacement button in the side toolbar.
3. Select the Create line displacement option in the expanded menu.
4. In the drawing area move the cursor to point (0 4) and click the left mouse button.
5. Move along the upper boundary of the soil to point (1 4) and click the left mouse button again.
6. Click the right mouse button to stop drawing.
7. In the Selection explorer set the x-component of the prescribed displacement (Displacement x) to Fixed.
8. Specify a uniform prescribed displacement in the vertical direction by assigning a value of -0.05 to u y,start,ref, signifying a downward displacement of 0.05 m.

Figure 5: Prescribed displacement in the Selection explorer
The geometry of the model is complete.
When the geometry model is complete, the finite element mesh can be generated. Proceed at Generate the mesh (on page 17)

1.2.5 Generate the mesh

PLAXIS 2D allows for a fully automatic mesh generation procedure, in which the geometry is divided into elements of the basic element type and compatible structural elements, if applicable.

The mesh generation takes full account of the position of points and lines in the model, so that the exact position of layers, loads and structures is accounted for in the finite element mesh. The generation process is based on a robust triangulation principle that searches for optimised triangles. In addition to the mesh generation itself, a transformation of input data (properties, boundary conditions, material sets, etc.) from the geometry model (points, lines and clusters) to the finite element mesh (elements, nodes and stress points) is made.

In order to generate the mesh, follow these steps:

1. Proceed to the Mesh mode by clicking the corresponding tab.
2. Click the Generate mesh button in the side toolbar.
 - The Mesh options window pops up. The Medium option is by default selected as element distribution.

 ![Figure 6: The Mesh options window](image)

3. Click OK to start the mesh generation.
4. As the mesh is generated, click the View mesh button.
 - A new window is opened displaying the generated mesh. Note that the mesh is automatically refined under the footing.
5. Click on the **Close** tab to close the Output program and go back to the **Mesh** mode of the **Input** program.

Note:

- By default, the **Element distribution** is set to **Medium**. The **Element distribution** setting can be changed in the **Mesh options** window. In addition, options are available to refine the mesh globally or locally (for more information see the Reference Manual).
- The finite element mesh has to be regenerated if the geometry is modified.
- The automatically generated mesh may not be perfectly suitable for the intended calculation. Therefore it is recommended that the user inspects the mesh and makes refinements if necessary.

Once the mesh has been generated, the finite element model is complete.

After the mesh was generated, the calculation phases are defined and the calculation is done, see **Initial phase** (on page 18) for instructions.

1.2.6 Define and perform the calculation

The calculation has to be defined in phases before the actual calculation can be performed. This example needs two phases: the initial phase and one to simulate the settlement of the footing.

Initial phase
The 'Initial phase' always involves the generation of initial conditions. In general, the initial conditions comprise the initial geometry configuration and the initial stress state, i.e. effective stresses, pore pressures and state parameters, if applicable.

1. Click the **Staged construction** tab to proceed with the definition of calculation phases. The **Flow conditions** mode may be skipped.

When a new project has been defined, a first calculation phase named 'Initial phase', is automatically created and selected in the **Phases explorer**:

![Phases explorer](image)

All structural elements and loads that are present in the geometry are initially automatically switched off; only the soil volumes are initially active.

2. Click the **Edit phase** button or double click the phase in the **Phases explorer**.

In this tutorial lesson the properties of the Initial phase will be described. Below an overview is given of the options to be defined even though the default values of the parameters are used.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By default the K₀ procedure is selected as Calculation type in the General subtree of the Phases window. This option will be used in this project to generate the initial stresses.</td>
</tr>
<tr>
<td></td>
<td>The Staged construction option is available as Loading type.</td>
</tr>
<tr>
<td></td>
<td>The Phreatic option is selected by default as the Pore pressure calculation type.</td>
</tr>
<tr>
<td></td>
<td>The Ignore temperature option is selected by default as the Thermal calculation type.</td>
</tr>
</tbody>
</table>

Note: The **K₀ procedure** should be primarily used for horizontally layered geometries with a horizontal ground surface and, if applicable, a horizontal phreatic level. See the Reference Manual for more information on the **K₀ procedure**.

The other default options in the **Phases** window will be used as well in this tutorial.

The **Phases** window is displayed.
3. Click OK to close the Phases window.
4. In the Model explorer expand the Model conditions subtree.

 For deformation problems two types of boundary conditions exist: Prescribed displacement and prescribed forces (loads). In principle, all boundaries must have one boundary condition in each direction. That is to say, when no explicit boundary condition is given to a certain boundary (a free boundary), the natural condition applies, which is a prescribed force equal to zero and a free displacement.

 To avoid the situation where the displacements of the geometry are undetermined, some points of the geometry must have prescribed displacements. The simplest form of a prescribed displacement is a fixity (zero displacement), but non-zero prescribed displacements may also be given.

5. Expand the Deformations subtree.

 Note that the box is checked by default. By default, a full fixity is generated at the base of the geometry, whereas roller supports are assigned to the vertical boundaries (BoundaryXMin and BoundaryXMax are normally fixed, BoundaryYMin is fully fixed and BoundaryYMax is free).

6. Expand the Water subtree.

 The initial water level has been entered already in the Modify soil layers window. The water level generated according to the Head value assigned to boreholes in the Modify soil layers window (BoreholeWaterLevel_1) is automatically assigned to GlobalWaterLevel.
The water level defined according to the Head specified for boreholes is displayed. Note that only the global water level is displayed in both Phase definition modes. All the water levels are displayed in the model only in the Flow conditions mode.

Next, the calculation phase for the footing settlement is defined.

Phase 1: Footing

In order to simulate the settlement of the footing in this analysis, a plastic calculation is required. PLAXIS 2D has a convenient procedure for automatic load stepping, which is called 'Load advancement'. This procedure can be used for most practical applications. Within the plastic calculation, the prescribed displacements are activated to simulate the indentation of the footing. In order to define the calculation phase follow these steps:
Settlement of a circular footing on sand
Case A: Rigid footing

1. Click the Add phase button in the Phases explorer. A new phase, named Phase_1 will be added in the Phases explorer.
2. Double click Phase_1 to open the Phases window. In the ID box of the General section, write (optionally) an appropriate name for the new phase (for example Indentation).
 The current phase starts from the Initial phase, which contains the initial stress state. The default options and values assigned are valid for this phase.

![Figure 9: The Phases window for the Indentation phase](image)

3. Click OK to close the Phases window.
4. Click the Staged construction tab to enter the corresponding mode.
5. Right-click the prescribed displacement in the drawing area and select the Activate option in the appearing menu.

![Figure 10: Activation of the prescribed displacement in the Staged construction mode](image)

Note: Calculation phases may be added, inserted or deleted using the Add, Insert and Delete buttons in the Phases explorer or in the Phases window.
Execute the calculation

Both calculation phases are marked for calculation, as indicated by the blue arrows. The execution order is controlled by the Start from phase parameter.

1. Click the Calculate button to start the calculation process. Ignore the warning that no nodes and stress points have been selected for curves.

 During the execution of a calculation, a window appears which gives information about the progress of the actual calculation phase.

 ![Calculation progress window](image_url)

 The information, which is continuously updated, shows the calculation progress, the current step number, the global error in the current iteration and the number of plastic points in the current calculation step. It will take a few seconds to perform the calculation. When a calculation ends, the window is closed and focus is returned to the main window.

 The phase list in the Phases explorer is updated. A successfully calculated phase is indicated by a check mark inside a green circle.

2. Save the project by clicking the Save button before viewing results.

 Once the calculation has been completed, the results can be displayed in the Output program.
View the calculation results

In the Output program, the displacement and stresses in the full two-dimensional model as well as in cross sections or structural elements can be viewed. The computational results are also available in tabular form. To check the applied load that results from the prescribed displacement of 0.05 m:

1. Open the Phases window.
2. For the current application the value of Force-Y in the Reached values subtree is important. This value represents the total reaction force corresponding to the applied prescribed vertical displacement, which corresponds to the total force under 1.0 radian of the footing (note that the analysis is axisymmetric). In order to obtain the total footing force, the value of Force-Y should be multiplied by 2π (this gives a value of about 588 kN).

The results can be evaluated in the Output program. In the Output window you can view the displacements and stresses in the full geometry as well as in cross sections and in structural elements, if applicable.

The computational results are also available in tabulated form. To view the results of the footing analysis, follow these steps:

3. Select the last calculation phase in the Phases explorer.
4. Click the View calculation results button in the side toolbar.

As a result, the Output program is started, showing the deformed mesh at the end of the selected calculation phase:

![Figure 11: Deformed mesh](image)

The deformed mesh is scaled to ensure that the deformations are visible.

5. Select the menu Deformations > Total displacements > |u|.

The plot shows colour shadings of the total displacements. The colour distribution is displayed in the legend at the right hand side of the plot.

Note: The legend can be toggled on and off by clicking the corresponding option in the View menu.
6. The total displacement distribution can be displayed in contours by clicking the corresponding button \(\text{] \text{] } \) in the toolbar. The plot shows contour lines of the total displacements, which are labelled. An index is presented with the displacement values corresponding to the labels.

7. Click the Arrows button \(\rightarrow \). The plot shows the total displacements of all nodes as arrows, with an indication of their relative magnitude.

8. Click the menu Stresses > Principal effective stresses > Effective principal stresses.

The plot shows the effective principal stresses at the stress points of each soil element with an indication of their direction and their relative magnitude (see Figure 12 on page 25):

9. Click the Table button \(\text{ | } \) on the toolbar. A new window is opened in which a table is presented, showing the values of the principal stresses and other stress measures in each stress point of all elements.

Note:

- In addition to the total displacements, the Deformations menu allows for the presentation of Incremental displacements. The incremental displacements are the displacements that occurred within one calculation step (in this case the final step). Incremental displacements may be helpful in visualising an eventual failure mechanism.
- The plots of stresses and displacements may be combined with geometrical features, as available in the Geometry menu.

1.3 Case B: Flexible footing

The project is now modified so that the footing is modelled as a flexible plate. This enables the calculation of structural forces in the footing. The geometry used in this exercise is the same as the previous one, except that
additional elements are used to model the footing. The calculation itself is based on the application of load rather than prescribed displacement. It is not necessary to create a new model; you can start from the previous model, modify it and store it under a different name. To perform this, follow these steps:

1.3.1 Modify the geometry

1. In the Input program select the File > Save project as menu. Enter a non-existing name for the current project file and click the Save button.

2. Go back to the Structures mode. Make sure you are in Select mode by clicking the Select button.

3. Right-click the prescribed displacement and select Line displacement > Delete.

4. In the model right-click the line at the location of the footing. Select Create > Plate.

A plate is created, which simulates the flexible footing.
5. In the model right-click again the line at the location of the footing and select Create > Line load.

![Image of line load creation](image)

6. In the Selection explorer the default input value of the distributed load is -1.0 kN/m² in the y-direction. The input value will later be changed to the real value when the load is activated.

1.3.2 Add material properties for the footing

The material properties for the flexible footing are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>-</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Isotropic</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Axial stiffness</td>
<td>EA_1</td>
<td>5×10^6</td>
<td>kN/m</td>
</tr>
<tr>
<td>Bending stiffness</td>
<td>EI</td>
<td>8.5×10^3</td>
<td>kNm²/m</td>
</tr>
<tr>
<td>Weight</td>
<td>w</td>
<td>0.0</td>
<td>kN/m/m</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>Prevent punching</td>
<td>-</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Click the Materials button in the side toolbar.
2. In the Material sets window, from the Set type drop-down menu, select Plates.
3. Click the New button.
 A new window appears where the properties of the footing can be entered.
4. Type **Footing** in the **Identification** box. The **Elastic** option is selected by default for the material type. Keep this option for this example.

5. Enter the properties as listed in **Table 2** (on page 27). Keep parameters that are not mentioned in the table at their default values.

6. **Note:** The equivalent thickness is automatically calculated by PLAXIS 2D from the values of \(EA \) and \(EI \). It cannot be defined manually.

 - Click **OK**.
 - The new data set now appears in the tree view of the **Material sets** window.

7. Drag the set called **Footing** to the drawing area and drop it on the footing. Note that the shape of the cursor changes to indicate that it is valid to drop the material set.

 - **Note:** If the **Material sets** window is displayed over the footing and hides it, click on its header and drag it to another position.

8. Click **OK** to close the materials database.

1.3.3 Generate the mesh

In order to generate the mesh, follow these steps:

1. Proceed to the **Mesh** mode.
2. Click the **Generate mesh** button in the side toolbar. For the **Element distribution** parameter, use the option **Medium** (default).
3. Click the **View mesh** button to view the mesh.
4. Click the **Close** tab to close the Output program.

 - **Note:** Regeneration of the mesh results in a redistribution of nodes and stress points.

1.3.4 Calculations

1. Proceed to the **Staged construction** mode.
2. Leave the initial phase as is. The initial phase is the same as in the previous case.
3. Double-click the following phase (Phase_1) and enter an appropriate name for the phase ID. Keep the **Calculation type** as **Plastic** and keep the **Loading type** as **Staged construction**.
4. Close the **Phases** window.
5. In the **Staged construction** mode activate the load and plate.

 - The model is shown **Figure 13** (on page 29):
6. In the **Selection explorer** assign -188 kN/m² to the vertical component of the line load. Note that, this gives a total load that is approximately equal to the footing force that was obtained from the first part of this tutorial.

\[(188 \text{ kN/m}^2 \cdot \pi \cdot (1.0 \text{ m})^2 \approx 590 \text{ kN}).\]

7. No changes are required in the **Flow conditions** tabsheet.

The calculation definition is now complete. Before starting the calculation it is advisable to select nodes or stress points for a later generation of load-displacement curves or stress and strain diagrams. To do this, follow these steps:

8. Click the **Select points for curves** button in the side toolbar.

As a result, all the nodes and stress points are displayed in the model in the Output program. The points can be selected either by directly clicking on them or by using the options available in the **Select points** window.

9. In the **Select points** window enter (0.0 4.0) for the coordinates of the point of interest and click **Search closest**.

The nodes and stress points located near that specific location are listed.

10. Select the node at exactly (0.0 4.0) by checking the box in front of it. The selected node is indicated by **Node 4** in the model when the **Selection labels** option is selected in the **Mesh** menu.

Note: Instead of selecting nodes or stress points for curves before starting the calculation, points can also be selected after the calculation when viewing the output results. However, the curves will be less accurate since
only the results of the saved calculation steps will be considered. To select the desired nodes by clicking on them, it may be convenient to use the Zoom in option on the toolbar to zoom into the area of interest.

11. Click the Update button on the top left to return to the Input program.
12. Check if both calculation phases are marked for calculation by a blue arrow. If this is not the case click the symbol of the calculation phase or right-click and select Mark for calculation from the pop-up menu.
13. Click the Calculate button to start the calculation.
14. Click the Save button to save the project after the calculation has finished.

1.3.5 View the calculation results

1. After the calculation the results of the final calculation step can be viewed by clicking the View calculation results button. Select the plots that are of interest. The displacements and stresses should be similar to those obtained from the first part of the exercise.
2. Click the Select structures button in the side toolbar and double click the footing. A new window opens in which either the displacements or the bending moments of the footing may be plotted (depending on the type of plot in the first window).
3. Note that the menu has changed. Select the various options from the Forces menu to view the forces in the footing.

Note: Multiple (sub-)windows may be opened at the same time in the Output program. All windows appear in the list of the Window menu. PLAXIS 2D follows the Windows standard for the presentation of sub-windows (Cascade, Tile, Minimize, Maximize, etc).

1.3.6 Generate a load-displacement curve

In addition to the results of the final calculation step it is often useful to view a load-displacement curve. In order to generate the load-displacement curve, follow these steps:

1. Click the Curves manager button in the toolbar. The Curves manager window pops up.
2. In the Charts tabsheet, click New. The Curve generation window pops up.
3. For the x-axis, select **Node 4* (0.00 / 4.00)** from the drop-down menu. Select the **Deformations > Total displacements > |u|**.

4. For the y-axis, select the **Project** option from the drop-down menu. Select the **Multipliers > Σ Mstage** option. Σ Mstage is the proportion of the specified changes that has been applied. Hence the value will range from 0 to 1, which means that 100% of the prescribed load has been applied and the prescribed ultimate state has been fully reached.

5. Click **OK** to accept the input and generate the load-displacement curve. As a result the curve of is plotted:
Note:

You can re-enter the **Settings** window (in the case of a mistake, a desired regeneration or modification) by:

- Double click the curve in the legend of the chart OR
- Select the menu **Format > Settings**.

The properties of the chart can be modified in the **Chart** tab sheet whereas the properties curve can be modified in the corresponding tab sheet.
This tutorial illustrates the use of PLAXIS 2D for the analysis of submerged construction of an excavation. Most of the program features that were used in Tutorial 1 will be utilised here again. In addition, some new features will be used, such as the use of interfaces and anchor elements, the generation of water pressures and the use of multiple calculation phases. The new features will be described in full detail, whereas the features that were treated in Tutorial 1 will be described in less detail. Therefore it is suggested that Tutorial 1 should be completed before attempting this exercise.

Objectives

- Modelling soil-structure interaction using the Interface feature.
- Advanced soil models (Soft Soil model and Hardening Soil model).
- **Undrained (A)** drainage type.
- Defining **Fixed-end-anchor**.
- Creating and assigning material data sets for anchors.
- Simulation of excavation (cluster de-activation).

Geometry

This tutorial concerns the construction of an excavation close to a river. The submerged excavation is carried out in order to construct a tunnel by the installation of prefabricated tunnel segments which are ‘floated’ into the excavation and ‘sunk’ onto the excavation bottom. The excavation is 30 m wide and the final depth is 20 m. It extends in longitudinal direction for a large distance, so that a plane strain model is applicable. The sides of the excavation are supported by 30 m long diaphragm walls, which are braced by horizontal struts at an interval of 5 m. Along the excavation a surface load is taken into account. The load is applied from 2 m from the diaphragm wall up to 7 m from the wall and has a magnitude of 5 kN/m²/m.

The upper 20 m of the subsoil consists of soft soil layers, which are modelled as a single homogeneous clay layer. Underneath this clay layer there is a stiffer sand layer, which extends to a large depth. 30 m of the sand layer are considered in the model.
Submerged construction of an excavation

Create new project

Since the geometry is symmetric, only one half (the left side) is considered in the analysis. The excavation process is simulated in three separate excavation stages. The diaphragm wall is modelled by means of a plate, such as used for the footing in the previous tutorial. The interaction between the wall and the soil is modelled at both sides by means of interfaces. The interfaces allow for the specification of a reduced wall friction compared to the friction in the soil. The strut is modelled as a spring element for which the normal stiffness is a required input parameter.

2.1 Create new project

1. Start PLAXIS 2D by double clicking the icon of the Input program.
2. Click Start a new project.
3. In the Project tabsheet of the Project properties window, enter an appropriate title.
4. In the Model tabsheet keep the default options for Model (Plane strain), and Elements (15-Node).
5. Set the model Contour to \(x_{\text{min}} = 0.0 \, \text{m}, x_{\text{max}} = 65.0 \, \text{m}, y_{\text{min}} = -30.0 \, \text{m} \) and \(y_{\text{max}} = 20.0 \).
6. Keep the default values for units and constants and click OK.

The project is created with the given properties. The Project properties window closes and the Soil mode view will be shown, where the soil stratigraphy can be defined.
2.2 Define the soil stratigraphy

To define the soil stratigraphy:

1. Click the Create borehole button and create a borehole at x = 0. The Modify soil layers window pops up.
2. Add the top soil layer and specify its height by setting the top level to 20 m and the bottom level to 0 m.
3. Add the bottom soil layer and specify its height by keeping the top level at 0 m and by setting the bottom level to -30 m.
4. Set the Head in the borehole to 18.0 m.

Next the material data sets are defined and assigned to the soil layers, see Create and assign material data sets (on page 12).

2.3 Create and assign material data sets

Two data sets need to be created; one for the clay layer and one for the sand layer. The layers have the following properties:

Table 3: Material properties of the sand and clay layer and the interfaces

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Clay</th>
<th>Sand</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>Model</td>
<td>Soft soil</td>
<td>Hardening soil</td>
<td>-</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>Type</td>
<td>Undrained (A)</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>γ_{unsat}</td>
<td>16.0</td>
<td>17</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>18</td>
<td>20</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Initial void ratio</td>
<td>e_{init}</td>
<td>1.0</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified compression index</td>
<td>λ^*</td>
<td>$3.0 \cdot 10^{-2}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Modified swelling index</td>
<td>κ^*</td>
<td>$8.5 \cdot 10^{-3}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Secant stiffness in standard drained triaxial test</td>
<td>E_{50}^{ref}</td>
<td>-</td>
<td>$4.0 \cdot 10^4$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Tangent stiffness for primary oedometer loading</td>
<td>E_{oed}^{ref}</td>
<td>-</td>
<td>$4.0 \cdot 10^4$</td>
<td>kN/m2</td>
</tr>
</tbody>
</table>
Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Clay</th>
<th>Sand</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unloading / reloading stiffness</td>
<td>E_{ur}^{ref}</td>
<td>-</td>
<td>$1.2 \cdot 10^5$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Power for stress-level dependency of stiffness</td>
<td>m</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion (constant)</td>
<td>c_{ref}'</td>
<td>1.0</td>
<td>0.0</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Friction angle</td>
<td>φ'</td>
<td>25</td>
<td>32</td>
<td>°</td>
</tr>
<tr>
<td>Dilatancy angle</td>
<td>ψ</td>
<td>0.0</td>
<td>2.0</td>
<td>°</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>v_{ur}'</td>
<td>0.15</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>K$_0$-value for normal consolidation</td>
<td>K_0^{oc}</td>
<td>0.5774</td>
<td>0.4701</td>
<td>-</td>
</tr>
<tr>
<td>Groundwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeability in horizontal direction</td>
<td>k_x</td>
<td>0.001</td>
<td>1.0</td>
<td>m/day</td>
</tr>
<tr>
<td>Permeability in vertical direction</td>
<td>k_y</td>
<td>0.001</td>
<td>1.0</td>
<td>m/day</td>
</tr>
<tr>
<td>Interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface strength</td>
<td>-</td>
<td>Manual</td>
<td>Manual</td>
<td>-</td>
</tr>
<tr>
<td>Strength reduction factor</td>
<td>R_{inter}</td>
<td>0.5</td>
<td>0.67</td>
<td>-</td>
</tr>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K$_0$ determination</td>
<td>-</td>
<td>Automatic</td>
<td>Automatic</td>
<td>-</td>
</tr>
<tr>
<td>Over-consolidation ratio</td>
<td>OCR</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>Pre-overburden pressure</td>
<td>POP</td>
<td>5.0</td>
<td>0.0</td>
<td>kN/m2</td>
</tr>
</tbody>
</table>

To create the material sets, follow these steps:

1. Click the **Materials** button in the **Modify soil layers** window. The **Material sets** window pops up, where the **Soil and interfaces** option is selected by default as the **Set type**.
2. Click the **New** button in the **Material sets** window to create a new data set.
3. For the clay layer, enter **Clay** for the **Identification** and select **Soft soil** as the **Material model**. Set the **Drainage type** to **Undrained (A)**.
4. Enter the properties of the clay layer, as listed in **Table 3** (on page 35), in the **General, Parameters** and **Flow parameters** tabsheets.
5. Click the **Interfaces** tab. Select the **Manual** option in the **Strength** drop-down menu. Enter a value of 0.5 for the parameter R_{inter}.

Submerged construction of an excavation

Create and assign material data sets
This parameter relates the strength of the soil to the strength in the interfaces, according to the equations:
\[\tan(\phi_{\text{interface}}) = R_{\text{inter}} \tan(\phi_{\text{soil}}) \] and \[c_{\text{inter}} = R_{\text{inter}} c_{\text{soil}} \]
where: \(c_{\text{soil}} = c_{\text{ref}} \), see Table 3 (on page 35).

Hence, using the entered \(R_{\text{inter}} \)-value gives a reduced interface friction (wall frictions) and interface cohesion (adhesion) compared to the friction angle and the cohesion in the adjacent soil.

6. In the Initial tabsheet keep the default option for the \(K_0 \) determination and the default value for the overconsolidation ratio (OCR). Set the pre-overburden pressure (POP) value to 5.0.

7. For the sand layer, enter Sand for the Identification and select Hardening soil as the Material model. The material type should be set to Drained.

8. Enter the properties of the sand layer, as listed in Table 3 (on page 35), in the corresponding edit boxes of the General and Parameters tabsheet.

9. Click the Interfaces tab. In the Strength box, select the Manual option. Enter a value of 0.67 for the parameter \(R_{\text{inter}} \). Close the data set.

10. Assign the material datasets to the corresponding soil layers.

- When the Rigid option is selected in the Strength drop-down, the interface has the same strength properties as the soil (\(R_{\text{inter}} = 1.0 \)).
- Note that a value of \(R_{\text{inter}} < 1.0 \) reduces the strength as well as the stiffness of the interface (for more info see the corresponding section in the Reference Manual).
- Instead of accepting the default data sets of interfaces, data sets can directly be assigned to interfaces by selecting the proper data set in the Material mode drop-down menu in the Object explorers.

2.4 Define the structural elements

The creation of diaphragm walls, strut, surface load and excavation levels is described below.

1. Click the Structures tab to proceed with the input of structural elements in the Structures mode.

2.4.1 To define the diaphragm wall:

A diaphragm wall with the following material properties has to be defined:

| Table 4: Material properties of the diaphragm wall (plate) |
|---------------------------------|---------------|------------|----------|
| Parameter | Name | Value | Unit |
| Material type | - | Elastic | - |
| Isotropic | - | Yes | - |
| Axial stiffness | \(EA \) | 7.5 \(\times \) 10^6 | kN/m |
| Bending stiffness | \(EI \) | 1.0 \(\times \) 10^6 | kNm\(^2\)/m |
Submerged construction of an excavation

Define the structural elements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>(w)</td>
<td>10.0</td>
<td>kN/m/m</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>(\nu)</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>Prevent punching</td>
<td>-</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Click the **Create structure** button in the side toolbar.
2. In the expanded menu select the **Create plate**.

![Create structure button](image)

3. In the drawing area move the cursor to position (50.0 20.0) at the upper horizontal line and click. Move 30 m down (50.0 -10.0) and click. Click the right mouse button to finish the drawing.
4. Click the **Show materials** button in the side toolbar. Set the **Set type** parameter in the **Material sets** window to **Plates** and click the **New** button. Enter **Diaphragm wall** as an **Identification** of the data set and enter the properties as given in **Table 4** (on page 37).
5. Click **OK** to close the data set.
6. Drag the **Diaphragm wall** data set to the wall in the geometry and drop it as soon as the cursor indicates that dropping is possible.
7. Click **OK** to close the **Material sets** window.

Note: In general, only one point can exist at a certain coordinate and only one line can exist between two points. Coinciding points or lines will automatically be reduced to single points or lines. More information is available in the Reference Manual 2.4.2

To define the interfaces:

1. Right-click the plate representing the diaphragm wall.
2. Select Create > Positive interface.
3. In the same way assign a negative interface as well.

Note:
- In order to identify interfaces at either side of a geometry line, a positive sign (⊕) or negative sign (⊖) is added. This sign has no physical relevance or influence on the results.
- A Virtual thickness factor can be defined for interfaces. This is a purely numerical value, which can be used to optimise the numerical performance of the interface. To define it, select the interface in the drawing area and specify the value to the Virtual thickness factor parameter in the Selection explorer. Non-experienced users are advised not to change the default value. For more information about interface properties see the Reference Manual - Chapter 5 - Advanced Geometric Modelling options.

2.4.3 To define the excavation levels:

1. Click the Create line button in the side toolbar.
2. To define the first excavation stage move the cursor to position (50.0 18.0) at the wall and click. Move the cursor 15 m to the right (65.0 18.0) and click again. Click the right mouse button to finish drawing the first excavation stage.
3. To define the second excavation stage move the cursor to position (50.0 10.0) and click. Move to (65.0 10.0) and click again. Click the right mouse button to finish drawing the second excavation stage.
4. The third excavation stage is automatically defined as it corresponds to the boundary between the soil layers (y = 0.0).
2.4.4 To define the strut:

You will define a strut with the following material properties:

Table 5: Material properties of the strut (anchor)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Strut</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>-</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Axial stiffness</td>
<td>(EA)</td>
<td>(2 \cdot 10^6)</td>
<td>kN</td>
</tr>
<tr>
<td>Out-of-plane spacing</td>
<td>(L_{\text{spacing}})</td>
<td>5.0</td>
<td>m</td>
</tr>
</tbody>
</table>

1. Click the `Create structure` button in the side toolbar and select the `Create fixed-end anchor` in the expanded menu.
2. Move the cursor to (50.0 19.0) and click the left mouse button. A fixed-end anchor is added, being represented by a rotated T with a fixed size.
3. Click the `Show materials` button in the side toolbar. Set the `Set type` parameter in the `Material sets` window to `Anchor` and click the `New` button. Enter `Strut` as an Identification of the data set and enter the properties as given in Table 5 (on page 40). Click `OK` to close the data set.
4. Click `OK` to close the `Material sets`.
5. Make sure that the fixed-end anchor is selected in the drawing area.
6. In the `Selection explorer` assign the material data set to the strut by selecting the corresponding option in the `Material` drop-down menu. The anchor is oriented in the model according to the Direction \(x \) and Direction \(y \) parameters in the `Selection explorer`. The default orientation is valid in this tutorial.

![Figure 19: Parameters for fixed-end anchors in the Selection explorer](image)

7. Enter an Equivalent length of 15 m corresponding to half the width of the excavation.

Note: The Equivalent length is the real distance between the connection point and the fixed end point.
2.4.5 To define the distributed load:

1. Click the **Create load** button 🔄 in the side toolbar.
2. Select the **Create line load** option 🔄 in the expanded menu to define a distributed load.
3. Move the cursor to (43.0 20.0) and click move the cursor 5m to the right to (48.0 20.0) and click again. Right-click to finish the drawing.
4. In the **Selection explorer** assign a value of -5 kN/m/m to the y-component of the load \(q_{y\text{start,ref}} \).

![Figure 20: Components of the distributed load in the Selection explorer](image)

2.5 Generate the mesh

In order to generate the mesh, follow these steps:

1. Proceed to the **Mesh** mode.
2. Click the **Generate mesh** button 🔄 in the side toolbar. For the **Element distribution** parameter, use the option **Medium** (default).
3. Click the **View mesh** button 🔄 to view the mesh.
Submerged construction of an excavation
Define and perform the calculation

4. Click the Close tab to close the Output program.

2.6 Define and perform the calculation

In practice, the construction of an excavation is a process that can consist of several phases. First, the wall is installed to the desired depth. Then some excavation is carried out to create space to install an anchor or a strut. Then the soil is gradually removed to the final depth of the excavation. Special measures are usually taken to keep the water out of the excavation. Props may also be provided to support the retaining wall.

In PLAXIS 2D, these processes can be simulated with the Staged construction loading type available in the General subtree of the Phases window. It enables the activation or deactivation of weight, stiffness and strength of selected components of the finite element model. Note that modifications in the Staged construction mode of the program are possible only for this type of loading. The current tutorial explains the use of this powerful calculation option for the simulation of excavations.

2.6.1 Initial phase

1. Click the Staged construction tab to proceed with the definition of calculation phases. The initial phase has already been created.

2. Keep its calculation type as K0 procedure. Make sure all the soil volumes are active and all the structural elements and load are inactive.
2.6.2 Phase 1: External load

1. In the **Phases explorer** click the **Add phase** button to create a new phase. The default settings are valid for this phase. In the model the full geometry is active except for the wall, interfaces, strut and load.

2. Click the **Select multiple objects** button in the side toolbar. In the appearing menu select **Select line > Select plates**.
3. In the drawing area define a rectangle that includes all the plate elements.

4. Right-click the wall in the drawing area and select the **Activate option** from the context menu. The wall is now visible in the color that is specified in the material dataset.

5. Right-click the distributed load to activate it and select the **Activate option** from the appearing menu. The load has been defined in the **Structures** mode as -5 kN/m/m. The value can be checked in the **Selection explorer**.

6. Make sure all the interfaces in the model are active.

Note: The selection of an interface is done by right-clicking the corresponding geometry line and subsequently selecting the corresponding interface (positive or negative) from the context menu.

2.6.3 Phase 2: First excavation stage

1. Click the **Add phase** button in the **Phases explorer**. A new calculation phase appears in the **Phases explorer**. Note that the program automatically presumes that the current phase should start from the previous one and that the same objects are active.

 Note: To copy the settings of the parent phase, select the phase in the **Phases** explorer and then click the **Add phase** button. Note that the settings of the parent phase are not copied when it is specified by selecting it in the **Start from phase** drop-down menu in the **Phases** window.

2. The default settings are valid for this phase. In the **Staged construction** mode all the structure elements except the fixed-end anchor are active.

3. In the drawing area right-click the top right cluster and select the **Deactivate** option in the appearing menu.

The model for the first excavation phase looks like this:
Submerged construction of an excavation
Define and perform the calculation

Figure 22: Model view for the first excavation phase

2.6.4 Phase 3: Installation of a strut

1. Click the Add phase button in the Phases explorer.
2. Activate the strut.
 The strut turns black to indicate it is active.

2.6.5 Phase 4: Second (submerged) excavation stage

1. Click the Add phase button to add a new phase.
2. Deactivate the second cluster from the top on the right side of the mesh. It should be the topmost active cluster.

 Note: Note that in PLAXIS 2D the pore pressures are not automatically deactivated when deactivating a soil cluster. Hence, in this case, the water remains in the excavated area and a submerged excavation is simulated.

The result is this model:
2.6.6 Phase 5: Third excavation stage

In the final calculation stage the excavation of the last clay layer inside the pit is simulated.

1. Click the Add phase button to add a new phase.
2. Deactivate the third cluster from the top on the right hand side of the mesh.

The model for the phase looks like this:

The calculation definition is now complete.
2.6.7 Execute the calculation

Before starting the calculation it is suggested that you select nodes or stress points for a later generation of load-displacement curves or stress and strain diagrams. To do this, follow the steps given below.

1. Click the **Select points for curves** button in the side toolbar. The connectivity plot is displayed in the Output program and the **Select points** window is activated.
2. Select some nodes on the wall at points where large deflections can be expected (e.g. 50.0 10.0). The nodes located near that specific location are listed. Select the convenient one by checking the box in front of it in the list.
3. Close the **Select points** window.
4. Click on the **Update** tab to close the Output program and go back to the **Input** program.
5. Click the **Calculate** button to calculate the project.

During a **Staged construction** calculation phase, a multiplier called Σ_{Mstage} is increased from 0.0 to 1.0. This parameter is displayed in the calculation info window. As soon as Σ_{Mstage} has reached the value 1.0, the construction stage is completed and the calculation phase is finished. If a **Staged construction** calculation finishes while Σ_{Mstage} is smaller than 1.0, the program will give a warning message. The most likely reason for not finishing a construction stage is that a failure mechanism has occurred, but there can be other causes as well. See the for more information about **Staged construction**.

2.7 View the calculation results

In addition to the displacements and the stresses in the soil, the Output program can be used to view the forces in structural objects. To examine the results of this project, follow these steps:

2.7.1 Displacements and stresses

To view displacements and stresses, follow these steps:

1. Click the final calculation phase in the **Calculations** window.
2. Click the **View calculation results** button on the toolbar. As a result, the Output program is started, showing the deformed mesh (scaled up) at the end of the selected calculation phase, with an indication of the maximum displacement:
Submerged construction of an excavation

View the calculation results

Figure 25: Deformed mesh after the third excavation stage

Note:

In the Output program, the display of the loads, fixities and prescribed displacements applied in the model can be toggled on/off by clicking the corresponding options in the Geometry menu.

3. Select the menu Deformations > Incremental displacements > |Δu|.
 The plot shows colour shadings of the displacement increments, which indicates the forming of a mechanism of soil movement behind the wall.

4. Click the Arrows button in the toolbar.
 The plot shows the displacement increments of all nodes as arrows. The length of the arrows indicates the relative magnitude.

5. Select the menu Stresses > Principal effective stresses > Effective principal stresses.
 The plot shows the effective principal stresses at the three middle stress points of each soil element with an indication of their direction and their relative magnitude. Note that the Center principal stresses button is selected in the toolbar. The orientation of the principal stresses indicates a large passive zone under the bottom of the excavation and a small passive zone behind the strut.
2.7.2 Shear forces and bending moments

To plot the shear forces and bending moments in the wall follow the steps given below.

1. Double-click the wall.
 A new window is opened showing the axial force.
2. Select the menu Forces > bending moment M.
 The bending moment in the wall is displayed with an indication of the maximum moment:

3. Select Shear forces Q from the Forces menu.
 The plot now shows the shear forces in the wall.
Note: The Window menu may be used to switch between the window with the forces in the wall and the stresses in the full geometry. This menu may also be used to Tile or Cascade the two windows, which is a common option in a Windows environment.

4. Select the first window (showing the effective stresses in the full geometry) from the Window menu. Double-click the strut. The strut force (in kN) is shown in the displayed table.
5. Click the Curves manager button on the toolbar. As a result, the Curves manager window pops up.
6. Click New to create a new chart. The Curve generation window pops up.
7. For the x-axis select the point A from the drop-down menu. In the tree select Deformations - Total displacements - |u|.
8. For the y-axis keep the Project option in the drop-down menu. In the tree select Multiplier - ΣMstage.
9. Click OK to accept the input and generate the load-displacement curve. As a result the curve is plotted:

![Figure 28: Load-displacement curve of deflection of wall](image)

The curve shows the construction stages. For each stage, the parameter ΣMstage changes from 0.0 to 1.0. The decreasing slope of the curve in the last stage indicates that the amount of plastic deformation is increasing. The results of the calculation indicate, however, that the excavation remains stable at the end of construction.
This example involves the dry construction of an excavation. The excavation is supported by concrete diaphragm walls. The walls are tied back by prestressed ground anchors.

PLAXIS 2D allows for detailed modelling of this type of problem. It is demonstrated in this example how ground anchors are modelled and how prestressing is applied to the anchors. Moreover, the dry excavation involves a groundwater flow calculation to generate the new water pressure distribution. This aspect of the analysis is explained in detail.

Objectives

- Modelling ground anchors.
- Generating pore pressures with a groundwater flow calculation.
- Displaying the contact stresses and resulting forces in the model.
- Scaling the displayed results.

Geometry

The excavation is 20 m wide and 10 m deep. 16 m long concrete diaphragm walls of 0.35 m thickness are used to retain the surrounding soil. Two rows of ground anchors are used at each wall to support the walls. The anchors have a total length of 14.5 m and an inclination of 33.7°(2:3). On the left side of the excavation a surface load of 10 kN/m2 is taken into account.

The relevant part of the soil consists of three distinct layers. From the ground surface to a depth of 23 m there is a fill of relatively loose fine sandy soil. Underneath the fill, down to a minimum depth of 15 m, there is a more or less homogeneous layer consisting of dense well-graded sand. This layer is particular suitable for the installation of the ground anchors. The underlying layer consists of loam and lies to a large depth. 15 m of this layer is considered in the model.

![Figure 29: Excavation supported by tie back walls](image-url)
Dry excavation using a tie back wall

Create new project

3.1 Create new project

1. Start the Input program and select **Start a new project** from the **Quick start** dialog box.
2. In the **Project** tabsheet of the **Project properties** window, enter an appropriate title.
3. In the **Model** tabsheet keep the default options for **Model** *(Plane strain)*, and **Elements** *(15-Node)*.
4. Set the model **Contour** to \(x_{\text{min}} = 0.0 \text{ m} \), \(x_{\text{max}} = 100.0 \text{ m} \), \(y_{\text{min}} = 0.0 \text{ m} \), \(y_{\text{max}} = 30.0 \text{ m} \).
5. Keep the default values for units and the constants and press **OK** to close the **Project properties** window.

3.2 Define the soil stratigraphy

To define the soil stratigraphy:

1. Click the **Create borehole** button and create a borehole at \(x = 0 \). The **Modify soil layers** window pops up.
2. Add three soil layers to the borehole. Locate the ground level at \(y = 30 \text{ m} \) by assigning 30 to the **Top** level of the uppermost layer. The bottom levels of the layers are located at 27, 15 and 0 m, respectively.
3. Set the **Head** to 23 m.

The layer stratigraphy looks like this:

![Figure 30: The Modify soil layers window](image)

Figure 30: The Modify soil layers window
3.3 Create and assign material data sets

Three data sets need to be created. The materials have the following properties:

Table 6: Soil and interface properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Silt</th>
<th>Sand</th>
<th>Loam</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>Type</td>
<td>Drained</td>
<td>Drained</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>γ_{unsat}</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>kN/m³</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>kN/m³</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secant stiffness in standard drained triaxial test</td>
<td>E_{50}^{ref}</td>
<td>$2.0 \cdot 10^4$</td>
<td>$3.0 \cdot 10^4$</td>
<td>$1.2 \cdot 10^4$</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Tangent stiffness for primary oedometer loading</td>
<td>E_{oed}^{ref}</td>
<td>$2.0 \cdot 10^4$</td>
<td>$3.0 \cdot 10^4$</td>
<td>$8.0 \cdot 10^3$</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Unloading / reloading stiffness</td>
<td>E_{ur}^{ref}</td>
<td>$6.0 \cdot 10^4$</td>
<td>$9.0 \cdot 10^4$</td>
<td>$3.6 \cdot 10^4$</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Power for stress-level dependency of stiffness</td>
<td>m</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion (constant)</td>
<td>c_{ref}'</td>
<td>1.0</td>
<td>0.0</td>
<td>5.0</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Friction angle</td>
<td>φ'</td>
<td>30</td>
<td>34</td>
<td>29</td>
<td>°</td>
</tr>
<tr>
<td>Dilatancy angle</td>
<td>ψ</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>°</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν_{ur}'</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>K_0-value for normal consolidation</td>
<td>K_0^{nc}</td>
<td>0.5</td>
<td>0.4408</td>
<td>0.5152</td>
<td>-</td>
</tr>
<tr>
<td>Groundwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data set</td>
<td>-</td>
<td>USDA</td>
<td>USDA</td>
<td>USDA</td>
<td>-</td>
</tr>
<tr>
<td>Model</td>
<td>-</td>
<td>Van Genuchten</td>
<td>Van Genuchten</td>
<td>Van Genuchten</td>
<td>-</td>
</tr>
</tbody>
</table>

Dry excavation using a tie back wall
Create and assign material data sets
Dry excavation using a tie back wall

Define the structural elements

The creation of diaphragm walls, excavation levels, ground anchor and surface load is described below.

1. Click the **Structures** tab to proceed with the input of structural elements in the **Structures** mode.

3.4 Define the structural elements

A diaphragm wall with the following material properties has to be defined:

Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Silt</th>
<th>Sand</th>
<th>Loam</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil type</td>
<td>Silt</td>
<td>Sand</td>
<td>Loam</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>< 2μm</td>
<td>6.0</td>
<td>4.0</td>
<td>20.0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>2μm - 50μm</td>
<td>87.0</td>
<td>4.0</td>
<td>40.0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>50μm - 2mm</td>
<td>7.0</td>
<td>92.0</td>
<td>40.0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Flow parameters - Use defaults</td>
<td>From data set</td>
<td>From data set</td>
<td>From data set</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Permeability in horizontal direction</td>
<td>k_x</td>
<td>0.5996</td>
<td>7.128</td>
<td>0.2497</td>
<td>m/day</td>
</tr>
<tr>
<td>Permeability in vertical direction</td>
<td>k_y</td>
<td>0.5996</td>
<td>7.128</td>
<td>0.2497</td>
<td>m/day</td>
</tr>
</tbody>
</table>

Interfaces

<table>
<thead>
<tr>
<th>Interface strength</th>
<th>Manual</th>
<th>Manual</th>
<th>Rigid</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength reduction factor</td>
<td>R_{inter}</td>
<td>0.65</td>
<td>0.70</td>
<td>1.0</td>
</tr>
<tr>
<td>Consider gap closure</td>
<td>Yes</td>
<td>yes</td>
<td>yes</td>
<td>-</td>
</tr>
</tbody>
</table>

Initial

<table>
<thead>
<tr>
<th>K_0 determination</th>
<th>Automatic</th>
<th>Automatic</th>
<th>Automatic</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over-consolidation ratio</td>
<td>OCR</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Pre-overburden pressure</td>
<td>POP</td>
<td>0.0</td>
<td>0.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>

1. Define three data sets for soil and interfaces with the parameters given in **Table 6** (on page 53).
2. Assign the material data sets to the corresponding soil layers (**Figure 30**) (on page 52)).
Table 7: Material properties of the diaphragm wall (plate)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>-</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Isotropic</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Axial stiffness</td>
<td>EA_I</td>
<td>$1.2 \cdot 10^7$</td>
<td>kN/m</td>
</tr>
<tr>
<td>Bending stiffness</td>
<td>EI</td>
<td>$1.2 \cdot 10^5$</td>
<td>kNm²/m</td>
</tr>
<tr>
<td>Weight</td>
<td>w</td>
<td>8.3</td>
<td>kN/m/m</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>Prevent punching</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
</tbody>
</table>

1. In the Structures mode, model the diaphragm walls as plates passing through (40.0 30.0) - (40.0 14.0) and (60.0 30.0) - (60.0 14.0).
2. Multi-select the plates in the model.
3. In the Selection explorer click on Material.
 The view will change displaying a drop-down menu and a plus button next to it:

 ![Material assignment in the Selection explorer](image)

4. Click the Add button +.
 A new empty material set is created for plates.
5. Define the material data set for the diaphragm walls according to the properties are listed in Table 7 (on page 55). The concrete has a Young's modulus of 35 GN/m² and the wall is 0.35 m thick.
6. Assign positive and negative interfaces to the geometry lines created to represent the diaphragm walls.

3.4.2 To define the excavation levels:

The soil is excavated in three stages. The first excavation layer corresponds to the bottom of the silt layer and it is automatically created. To define the remaining excavation stages:

1. Define the second excavation phase by drawing a line through (40.0 23.0) and (60.0 23.0).
2. Define the third excavation phase by drawing a line through (40.0 20.0) and (60.0 20.0).
3.4.3 Defining the ground anchor

A ground anchor can be modelled by a combination of a node-to-node anchor and an embedded beam. The embedded pile simulates the grouted part of the anchor whereas the node-to-node anchor simulates the free length. In reality there is a complex three-dimensional state of stress around the grout body which cannot be simulated in a 2D model.

The coordinates and material properties of the anchor and grout body are listed in the tables below.

Table 8: Node to node anchor coordinates

<table>
<thead>
<tr>
<th>Anchor location</th>
<th>Name</th>
<th>First point</th>
<th>Second point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>Left</td>
<td>(40.0 27.0)</td>
<td>(31.0 21.0)</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>(60.0 27.0)</td>
<td>(69.0 21.0)</td>
</tr>
<tr>
<td>Bottom</td>
<td>Left</td>
<td>(40.0 23.0)</td>
<td>(31.0 17.0)</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>(60.0 23.0)</td>
<td>(69.0 17.0)</td>
</tr>
</tbody>
</table>

Table 9: Properties of the anchor rod (node-to-node anchor)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>-</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Axial stiffness</td>
<td>EA</td>
<td>$5 \cdot 10^5$</td>
<td>kN</td>
</tr>
<tr>
<td>Out-of-plane spacing</td>
<td>L_s</td>
<td>2.5</td>
<td>m</td>
</tr>
</tbody>
</table>

Table 10: Grout coordinates

<table>
<thead>
<tr>
<th>Anchor location</th>
<th>Name</th>
<th>First point</th>
<th>Second point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>Left</td>
<td>(31.0 21.0)</td>
<td>(28.0 19.0)</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>(69.0 21.0)</td>
<td>(72.0 19.0)</td>
</tr>
<tr>
<td>Bottom</td>
<td>Left</td>
<td>(31.0 17.0)</td>
<td>(28.0 15.0)</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>(69.0 17.0)</td>
<td>(72.0 15.0)</td>
</tr>
</tbody>
</table>
Dry excavation using a tie back wall

Table 11: Properties of the grout body (embedded beam rows)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td></td>
<td>Elastic</td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td>E</td>
<td>7.07×10^6</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Unit weight</td>
<td>γ</td>
<td>0</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Beam type</td>
<td></td>
<td>Predefined</td>
<td></td>
</tr>
<tr>
<td>Predefined beam type</td>
<td></td>
<td>Massive circular beam</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>D</td>
<td>0.3</td>
<td>m</td>
</tr>
<tr>
<td>Pile spacing</td>
<td>L_{spacing}</td>
<td>2.5</td>
<td>m</td>
</tr>
<tr>
<td>Skin resistance</td>
<td>$T_{\text{skin, start, max}}$</td>
<td>400</td>
<td>kN/m</td>
</tr>
<tr>
<td></td>
<td>$T_{\text{skin, end, max}}$</td>
<td>400</td>
<td>kN/m</td>
</tr>
<tr>
<td>Base resistance</td>
<td>F_{max}</td>
<td>0</td>
<td>kN</td>
</tr>
<tr>
<td>Interface stiffness factor</td>
<td>Default values</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

1. Define the node-to-node anchors according to Table 8 (on page 56).
2. Create an Anchor material data set according to the parameters specified in Table 9 (on page 56).
3. Multi-select the anchors in the drawing area. Assign the material data set by selecting the corresponding option in the Material drop-down menu in the Selection explorer.
4. Define the grout body using the Embedded beam row button according to Table 10 (on page 56).
5. Create the Grout material data set according to the parameters specified in Table 11 (on page 57) and assign it to the grout body.
6. Set the Behaviour of the embedded beam rows to Grout body.

![Figure 32: Embedded beam rows in the Selection explorer](image)

The connection with the anchor will be automatically established.
7. Multi-select (keep <Ctrl> pressed while selecting) the top node-to-node anchors and embedded beams. Right-click and select the Group option in the context menu.
8. In the Model explorer expand the Groups subtree.
 Note that a group is created composed of the elements of the top ground anchors.
9. Click on **Group_1** in the **Model explorer** and type a new name (e.g GroundAnchor_Top).

10. Follow the same steps to create a group and to rename the bottom ground anchors.

Although the precise stress state and interaction with the soil cannot be modelled with this 2D model, it is possible in this way to estimate the stress distribution, the deformations and the stability of the structure on a global level, assuming that the grout body does not slip relative to the soil. With this model it is certainly not possible to evaluate the pullout force of the ground anchor.

3.4.4 To define the distributed load:

1. Create a line load between (28.0 30.0) and (38.0 30.0).

3.5 Generate the mesh

In order to generate the mesh, follow these steps:

1. Proceed to the **Mesh** mode.
2. Click the **Generate mesh** button in the side toolbar. Use the default option for the **Element distribution** parameter (**Medium**).
3. Click the **View mesh** button to view the mesh.

![Figure 33: The generated mesh](image)

3.6 Define and perform the calculation

The calculation of this project consists of six phases. In the initial phase (Phase 0), the initial stresses are generated. In Phase 1, the walls are constructed and the surface loads are activated. In Phase 2, the first 3 m of the pit is excavated without connection of anchors to the wall. At this depth the excavation remains dry. In Phase 3, the first anchor is installed and pre-stressed. Phase 4 involves further excavation to a depth of 7 m. At this depth the excavation still remains dry. In Phase 5, the second anchor is installed and pre-stressed. Phase 6 is a further excavation to the final depth of 10 m including the dewatering of the excavation.
Dry excavation using a tie back wall
Define and perform the calculation

Before defining the calculation phases, the water levels to be considered in the calculation can be defined in the Flow conditions mode. The water level is lowered in the final excavation phase. At the side boundaries, the groundwater head remains at a level of 23.0 m. The bottom boundary of the problem should be closed. The flow of groundwater is triggered by the fact that the pit is pumped dry. At the bottom of the excavation the water pressure is zero, which means that the groundwater head is equal to the vertical level (head = 20.0 m). This condition can be met by drawing a new general phreatic level and performing a groundwater flow calculation. Activating the interfaces during the groundwater flow calculation prevents flow through the wall.

3.6.1 Initial phase

The initial stress field is generated by means of the K0 procedure using the default K0-values in all clusters defined automatically by the program.

1. Proceed to the Staged construction mode.
2. Initially, all structural components and loads are inactive. Hence, make sure that the plates, the node-to-node anchors, the embedded beam rows and the surface loads are deactivated.
3. In the Phases explorer double-click the initial phase. The default parameters for the initial phase will be used. The Phreatic option is selected as Pore pressure calculation type. Note that when the pore pressures are generated by phreatic level, the full geometry of the defined phreatic level is used to generate the pore pressures.
4. Click OK to close the Phases window.
5. In the Model explorer expand the Model conditions subtree.
6. Expand the Water subtree.
 The water level created according to the head value specified in the borehole, (BoreholeWaterLevel_1), is automatically assigned to GlobalWaterLevel.

![Figure 34: Configuration of the initial phase](image)

3.6.2 Phase 1: Activation of wall and load

1. Click the Add phase button to create a new phase.
2. In the Staged constructions mode activate all walls and interfaces by clicking on the checkbox in front of them in the Model explorer.
 The active elements in the project are indicated by a green check mark.
3. Activate the distributed load.
4. After selecting the line load assign a value of -10 to \(q_{y,\text{start},\text{ref}} \) in the Selection explorer:

![Selection explorer](image)

Figure 35: Line load in the Selection explorer

The model for the phase 1 in the Staged construction mode is displayed as:

![Configuration of Phase 1 in the Staged construction mode](image)

Figure 36: Configuration of Phase 1 in the Staged construction mode

3.6.3 Phase 2: First excavation

1. Click the Add phase button in the Phases explorer to add a new phase.
2. In the Staged construction mode de-activate the upper cluster of the excavation

The model for the first excavation phase looks like this:

![Configuration of Phase 2 in the Staged construction mode](image)

Figure 37: Configuration of Phase 2 in the Staged construction mode

3.6.4 Phase 3: First anchor row

1. Click the Add phase button in the Phases explorer.
2. Activate the upper ground anchors by clicking on the checkbox in front of Ground Anchors Top under the Groups subtree in the Model explorer.
3. Multi-select the top node-to-node anchors.
4. In the Selection explorer set the Adjust prestress parameter to True and assign a pre-stress force of 500 kN.

Note: A pre-stress force is exactly matched at the end of a finished staged construction calculation and turned into an anchor force. In successive calculation phases the force is considered to be just an anchor force and can therefore further increase or decrease, depending on the development of the surrounding stresses and forces.

The model for the phase 3 in the Staged construction mode looks like this:

![Figure 38: Configuration of Phase 3 in the Staged construction mode](image)

3.6.5 Phase 4: Second excavation

1. Click the Add phase button to add a new phase.
2. Deactivate the second cluster of the excavation.

The model for the phase 4 in the **Staged construction** mode is displayed:

![Figure 39: Configuration of Phase 4 in the Staged construction mode](image)

Note that the anchors are not pre-stressed anymore.

3.6.6 Phase 5: Second anchor row

1. Click the Add phase button to add a new phase.
2. Activate the lower ground anchors.
3. Select the bottom node-to-node anchors.
4. In the Selection explorer set the Adjust prestress parameter to True and assign a pre-stress force of 1000 kN.

The model for the phase 5 in the Staged construction mode is displayed:

![Figure 40: Configuration of Phase 5 in the Staged construction mode](image)

3.6.7 Phase 6: Final excavation

1. Click the Add phase button to add a new phase.
2. In the Phases window, within General > Pore pressure calculation type select the Steady state groundwater flow option. The default values of the remaining parameters are valid.
3. Deactivate the third cluster of the excavation.
4. Click the Flow conditions tab to display the corresponding mode.
5. In the Model explorer expand the Attributes library.
6. Expand the Water levels subtree.
7. Click the Create water level button in the side toolbar and draw a new phreatic level. Start at (0.0 23.0) and draw the phreatic level through (40.0 20.0), (60.0 20.0) and end in (100.0 23.0).
8. In the Model explorer expand the User water levels subtree. Click on UserWaterLevel_1 and type LoweredWaterLevel to rename the water level created in the Flow conditions mode.
Dry excavation using a tie back wall
Define and perform the calculation

9. In the Model explorer expand Model conditions > GroundwaterFlow. The default boundary conditions are valid.

10. In the Water subtree assign the LoweredWaterLevel to GlobalWaterLevel.

The model and the defined water levels are displayed:
Dry excavation using a tie back wall

Results

Figure 43: Configuration of Phase 6 in the Flow conditions mode

Note: Note that for Groundwater flow (steady or transient) the intersection points of the water level with the active model boundaries are important. The program calculates flow boundary conditions in terms of a groundwater head corresponding to the water level. The 'internal' part of the water level is not used and will be replaced by the phreatic level resulting from the groundwater flow calculation. Hence, the water level tool is just a convenient tool to create boundary conditions for a flow calculation.

3.6.8 Execute the calculation

1. Click the Select points for curves button in the side toolbar.
2. Select some characteristic points for curves (for example the connection points of the ground anchors on the diaphragm wall, such as (40.0 27.0) and (40.0 23.0)).
3. Click the Calculate button to calculate the project.
4. After the calculation has finished, save the project by clicking the Save button.

3.7 Results

The figures below show the deformed meshes at the end of calculation phases 2 to 6.

Figure 44: Deformed mesh (scaled up 50.0 times) - Phase 2
The figure below shows the effective principal stresses in the final situation. The passive stress state beneath the bottom of the excavation is clearly visible. It can also be seen that there are stress concentrations around the grout anchors.
Dry excavation using a tie back wall

Results

Figure 49: Principal effective stresses (final stage)

The figure below shows the bending moments in the diaphragm walls in the final state. The two dips in the line of moments are caused by the anchor forces.

Figure 50: Bending moments in the diaphragm walls in the final stage

The anchor force can be viewed by double clicking the anchor. When doing this for the results of the third and the fifth calculation phase, it can be checked that the anchor force is indeed equal to the specified pre-stress force in the calculation phase they are activated. In the following phases this value might change due to the changes in the model.
In this tutorial an Ultimate Limit State (ULS) calculation will be defined and performed for the dry excavation using a tie back wall (Dry excavation using a tie back wall (on page 51)). The same geometry model will be used. The Design approaches feature is introduced in this example. This feature allows for the use of partial factors for loads and model parameters after a serviceability calculation has already been performed.

Objective

- Using Design approaches

4.1 Define the geometry

In order to define a design approach:

1. Open the project created in Dry excavation using a tie back wall (on page 51) and save it under a different name.
2. Select the menu Soil > Design approaches or Structures > Design approaches. The corresponding window is displayed.
3. Click the Add button. A new design approach is added in the list.
4. In this example the design approach 3 of the Eurocode 7 will be used. This design approach involves partial factors for loads and partial factors for materials (strength). Click the design approach in the list and specify a representative name (ex: 'Eurocode 7 - DA 3').
5. In the lower part of the window the partial factors can be defined for loads and materials. Set the partial factor for Variable unfavourable to 1.3.

6. Click the Materials tab.

7. Assign a value of 1.25 to Effective friction angle and Effective cohesion.

8. Click the Materials... button. The Material sets window pops up.

9. Open the Loam material data set. Note that the view has changed. In the current view it is possible to assign factors to different soil parameters, as well as to see the effect of these factors on the soil parameters.

10. Click the Parameters tab. In the Parameters tabsheet select the corresponding labels for c'_{ref} and ϕ'.
11. Do the same for the remaining soil data sets.

Note:
Note that a partial factor for ϕ and ψ applies to the tangent of ϕ and ψ respectively.

4.2 Define and perform the calculation

There are two main schemes to perform design calculations in relation to serviceability calculations (see Design approaches in the Reference Manual). The first approach is used in this tutorial.

4.2.1 Changes to all phases

1. Proceed to the Staged construction mode.
2. In the Phases explorer click the phase Phase_1.
3. Add a new phase.
4. Double-click the newly added phase to open the Phases window.
5. In the General subtree of the Phases window select the defined design approach in the corresponding drop-down menu.
6. In the Model explorer expand the Line loads and all the subtrees under it.
7. Select the Variable unfavourable option in the LoadFactorLabel drop-down menu of the static component of the load.
8. Follow the same steps to define ULS phases for all the remaining SLS phases. Make sure that the Phase 7 starts from Phase 1, Phase 8 from Phase 2, Phase 9 from Phase 3 and so on.

4.2.2 Execute the calculation

1. Click the Select points for curves button in the side toolbar.
2. Select some characteristic points for curves (for example the connection points of the ground anchors on the diaphragm wall, such as (40.0 27.0) and (40.0 23.0)).
3. Click the Calculate button to calculate the project.
4. After the calculation has finished, save the project by clicking the Save button.

4.3 Results

The results obtained for the design approach phases can be evaluated in Output. The figure below displays the $\Sigma M_{\text{stage}} - |u|$ plot for the node located at (40.0 27.0).
If the ULS calculations have successfully finished, the model complies with the corresponding design approach. If there are doubts about this due to excessive deformations, an additional Safety calculation may be considered using the same design approach, which should then result in a stable ΣM_{sf} value larger than 1.0. Note that if partial factors have been used it is not necessary that ΣM_{sf} also includes a safety margin. Hence, in this case ΣM_{sf} just larger that 1.0 is enough.

The figure below displays the ΣM_{sf} - $|u|$ plot for the Safety calculations of the Phase 6 and the corresponding ULS phase (Phase 12). It can be concluded that the situation complies with the design requirements.

Figure 55: ΣM_{sf} - $|u|$ plot for the last calculation phase and the corresponding ULS phase
Construction of a road embankment

The construction of an embankment on soft soil with a high groundwater level leads to an increase in pore pressure. As a result of this undrained behaviour, the effective stress remains low and intermediate consolidation periods have to be adopted in order to construct the embankment safely. During consolidation the excess pore pressures dissipate so that the soil can obtain the necessary shear strength to continue the construction process.

This tutorial concerns the construction of a road embankment in which the mechanism described above is analysed in detail. In the analysis three new calculation options are introduced, namely a consolidation analysis, an updated mesh analysis and the calculation of a safety factor by means of a safety analysis (phi/c-reduction).

Objectives

- Consolidation analysis
- Modelling drains
- Change of permeability during consolidation
- Safety analysis (phi-c reduction)
- Updated mesh analysis (large deformations)

Geometry

The embankment is 16.0 m wide and 4.0 m high. The slopes have an inclination of 1:3. The problem is symmetric, so only one half is modelled (in this case the right half is chosen). The embankment itself is composed of loose sandy soil. The subsoil consists of 6.0 m of soft soil. The upper 3.0 m is peat and the lower 3.0 m is clay. The phreatic level is located 1 m below the original ground surface. Under the soft soil layers there is a dense sand layer of which 4.0 m are considered in the model.

![Figure 56: Situation of a road embankment on soft soil](image-url)
5.1 Create new project

1. Start PLAXIS 2D by double clicking the icon of the Input program.
2. Click **Start a new project**.
3. In the **Project** tabsheet of the **Project properties** window, enter an appropriate title.
4. In the **Model** tabsheet make sure that **Model** is set to **Plane strain** and that **Elements** is set to **15-Noded**.
5. Set the model **Contour** to $x_{\text{min}} = 0.0 \text{ m}$, $x_{\text{max}} = 60.0 \text{ m}$, $y_{\text{min}} = -10.0 \text{ m}$ and $y_{\text{max}} = 4.0$.

5.2 Define the soil stratigraphy

The sub-soil layers are defined using a borehole. The embankment layers are defined in the **Structures** mode.

To define the soil stratigraphy:

1. Click the **Create borehole** button and create a borehole at $x = 0$. The **Modify soil layers** window pops up.

 ![Figure 57: Soil layer distribution](image)

2. Define three soil layers as shown in the following figure:
3. The water level is located at $y = -1 \text{ m}$. In the borehole column specify a value of -1 to **Head**.
5.3 Create and assign material data sets

A number of material set are needed for this tutorial. The properties of the materials are as follows:

Table 12: Material properties of the sand and clay layer and the interfaces

<table>
<thead>
<tr>
<th>Parameter</th>
<th>None</th>
<th>Embankment</th>
<th>Sand</th>
<th>Peat</th>
<th>Clay</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>-</td>
<td>Hardening</td>
<td>Hardening</td>
<td>Soft soil</td>
<td>Soft soil</td>
<td>-</td>
</tr>
<tr>
<td>Drainage type</td>
<td>-</td>
<td>Drained</td>
<td>Drained</td>
<td>Undrained</td>
<td>Undrained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>γ_{unsat}</td>
<td>16</td>
<td>17</td>
<td>8</td>
<td>15</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>19</td>
<td>20</td>
<td>12</td>
<td>18</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Initial void ratio</td>
<td>e_{init}</td>
<td>0.5</td>
<td>0.5</td>
<td>2.0</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified compression index</td>
<td>λ^*</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>Modified swelling index</td>
<td>κ^*</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>Secant stiffness in standard drained triaxial test</td>
<td>$E_{50\text{ref}}$</td>
<td>$2.5 \cdot 10^4$</td>
<td>$3.5 \cdot 10^4$</td>
<td>-</td>
<td>-</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Tangent stiffness for primary oedometer loading</td>
<td>$E_{\text{oed\text{ref}}}$</td>
<td>$2.5 \cdot 10^4$</td>
<td>$3.5 \cdot 10^4$</td>
<td>-</td>
<td>-</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Unloading / reloading stiffness</td>
<td>$E_{ur\text{ref}}$</td>
<td>$7.5 \cdot 10^4$</td>
<td>$1.05 \cdot 10^5$</td>
<td>-</td>
<td>-</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Power for stress-level dependency of stiffness</td>
<td>m</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion (constant)</td>
<td>c_{ref}</td>
<td>1.0</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Friction angle</td>
<td>ϕ'</td>
<td>30</td>
<td>33</td>
<td>23</td>
<td>25</td>
<td>°</td>
</tr>
<tr>
<td>Dilatancy angle</td>
<td>ψ</td>
<td>0.0</td>
<td>3.0</td>
<td>0</td>
<td>0</td>
<td>°</td>
</tr>
</tbody>
</table>
Construction of a road embankment

Create and assign material data sets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>None</th>
<th>Embankment</th>
<th>Sand</th>
<th>Peat</th>
<th>Clay</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced: Set to default</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
</tbody>
</table>

Groundwater

<table>
<thead>
<tr>
<th>Data set</th>
<th>USDA</th>
<th>USDA</th>
<th>USDA</th>
<th>USDA</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Van Genuchten</td>
<td>Van Genuchten</td>
<td>Van Genuchten</td>
<td>Van Genuchten</td>
<td>-</td>
</tr>
<tr>
<td>Soil type</td>
<td>Loamy sand</td>
<td>Sand</td>
<td>Clay</td>
<td>Clay</td>
<td>-</td>
</tr>
<tr>
<td>> 2μm</td>
<td>6.0</td>
<td>4.0</td>
<td>70.0</td>
<td>70.0</td>
<td>%</td>
</tr>
<tr>
<td>2μm - 50μm</td>
<td>11.0</td>
<td>4.0</td>
<td>13.0</td>
<td>13.0</td>
<td>%</td>
</tr>
<tr>
<td>50μm - 2mm</td>
<td>83.0</td>
<td>92.0</td>
<td>17.0</td>
<td>17.0</td>
<td>%</td>
</tr>
<tr>
<td>Use defaults</td>
<td>From data set</td>
<td>From data set</td>
<td>None</td>
<td>From data set</td>
<td>-</td>
</tr>
<tr>
<td>Horizontal permeability</td>
<td>k_x</td>
<td>3.499</td>
<td>7.128</td>
<td>0.1</td>
<td>0.04752</td>
</tr>
<tr>
<td>Vertical permeability</td>
<td>k_y</td>
<td>3.499</td>
<td>7.128</td>
<td>0.05</td>
<td>0.04752</td>
</tr>
<tr>
<td>Change in permeability</td>
<td>c_k</td>
<td>$1 \cdot 10^{15}$</td>
<td>$1 \cdot 10^{15}$</td>
<td>1.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Interfaces

<table>
<thead>
<tr>
<th>Interface strength</th>
<th>Rigid</th>
<th>Rigid</th>
<th>Rigid</th>
<th>Rigid</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength reduction factor</td>
<td>R_{inter}</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Initial

<table>
<thead>
<tr>
<th>K_0 determination</th>
<th>Automatic</th>
<th>Automatic</th>
<th>Automatic</th>
<th>Automatic</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overconsolidation ratio</td>
<td>OCR</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>Pre-overburden pressure</td>
<td>POP</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

To create the material sets, follow these steps:

1. Click the **Materials** button to open the **Material sets** window.
2. Create soil material data sets according to Table 12 (on page 74) and assign them to the corresponding layers in the borehole (see Figure 57 (on page 73)).
3. Close the **Modify soil layers** window and proceed to the **Structures** mode to define the embankment and drains.
Construction of a road embankment

Define the construction

Note: The initial void ratio (e_{init}) and the change in permeability (c_k) should be defined to enable the modelling of a change in the permeability in a consolidation analysis due to compression of the soil. This option is recommended when using advanced models.

5.4 Define the construction

The embankment and the drains are defined in the Structures mode.

1. Click the Structures tab to proceed with the input of structural elements in the Structures mode.

5.4.1 To define the embankment:

1. Click the Create soil polygon button in the side toolbar and select the Create soil polygon option.
2. Define the embankment in the drawing area by clicking on (0.0 0.0), (0.0 4.0), (8.0 4.0) and (20.0 0.0).
3. Right-click the created polygon and assign the Embankment data set to the soil polygon.

4. To define the embankment construction level click the Cut polygon button in the side toolbar and define a cutting line by clicking on (0.0 2.0) and (14.0 2.0).
 The embankment cluster is split into two sub-clusters.

5.4.2 To define the drains

In this project the effect of the drains on the consolidation time will be investigated by comparing the results with a case without drains. Drains will only be active for the calculation phases in the case with drains.

1. Click the Create hydraulic conditions button in the side toolbar and select the Create drain option in the appearing menu.
2. Drains are defined in the soft layers (clay and peat; $y = 0.0$ to $y = -6.0$). The distance between two consecutive drains is 2 m. Considering the symmetry, the first drain is located at 1 m distance from the model boundary. 10 drains will be created in total. The head is defined at 0.0 m.

![Final geometry of the model](image)

Note:
The modelling of drains in a plane strain model actually involves the use of an equivalent (lateral) permeability in the surrounding soil based on the drain pattern. The latter has been omitted in this simplified example. More information can be found in literature\(^1\).

5.5 Generate the mesh

In order to generate the mesh, follow these steps:

1. Proceed to **Mesh** mode.
2. Click the **Generate mesh** button in the side toolbar. For the **Element distribution** parameter, use the option **Medium** (default).
3. Click the **View mesh** button to view the mesh.

![The generated mesh](image)

4. Click the **Close** tab to close the Output program.

5.6 Define and perform the calculation

The embankment construction is divided into two phases. After the first construction phase a consolidation period of 30 days is introduced to allow the excess pore pressures to dissipate. After the second construction phase another consolidation period is introduced from which the final settlements may be determined. Hence, a total of four calculation phases have to be defined besides the initial phase.

5.6.1 Initial phase: Initial conditions

In the initial situation the embankment is not present.

The remaining active geometry is horizontal with horizontal layers, so the **K0 procedure** can be used to calculate the initial stresses.

![Figure 61: Configuration of the initial phase](image)

The initial water pressures are fully hydrostatic and based on a general phreatic level located at \(y = -1 \). Note that a phreatic level is automatically created at \(y = -1 \), according to the value specified for **Head** in the borehole. In addition to the phreatic level, attention must be paid to the boundary conditions for the consolidation analysis that will be performed during the calculation process. Without giving any additional input, all boundaries except for the bottom boundary are draining so that water can freely flow out of these boundaries and excess pore pressures can dissipate. In the current situation, however, the left vertical boundary must be closed because this is a line of symmetry, so horizontal flow should not occur. The remaining boundaries are open because the excess pore pressures can be dissipated through these boundaries. In order to define the appropriate consolidation boundary conditions, follow these steps:

1. In the **Model explorer** expand the **Model conditions** subtree.
2. Expand the **GroundwaterFlow** subtree and set **BoundaryXMin** to **Closed** and **BoundaryYMin** to **Open**.
5.6.2 Consolidation analysis

A consolidation analysis introduces the dimension of time in the calculations. In order to correctly perform a consolidation analysis a proper time step must be selected. The use of time steps that are smaller than a critical minimum value can result in stress oscillations.

The consolidation option in PLAXIS 2D allows for a fully automatic time stepping procedure that takes this critical time step into account. Within this procedure there are three main possibilities:

<table>
<thead>
<tr>
<th>![Icon]</th>
<th>Consolidate for a predefined period, including the effects of changes to the active geometry (Staged construction).</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Icon]</td>
<td>Consolidate until all excess pore pressures in the geometry have reduced to a predefined minimum value (Minimum excess pore pressure).</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Consolidate until a specified degree of saturation is reached (Degree of consolidation).</td>
</tr>
</tbody>
</table>

The first two possibilities will be used in this exercise. To define the calculation phases, follow these steps:

Phase 1:

(the way calculation phases are presented here is different than in other chapters) The first calculation stage is a Consolidation analysis, Staged construction.

1. Click the Add phase button to create a new phase.
Construction of a road embankment
Define and perform the calculation

2. In the Phases window select the Consolidation option from the Calculation type drop-down menu in the General subtree.

3. Make sure that the Staged construction option is selected for the Loading type.

4. Enter a Time interval of 2 days. The default values of the remaining parameters will be used.

5. In the Staged construction mode activate the first part of the embankment.

 Figure 63: Configuration of the phase 1

Phase 2:
The second phase is also a Consolidation analysis, Staged construction. In this phase no changes to the geometry are made as only a consolidation analysis to ultimate time is required.

1. Click the Add phase button to create a new phase.

2. In the Phases window select the Consolidation option from the Calculation type drop-down menu in the General subtree.

3. Make sure that the Staged construction option is selected for the Loading type.

4. Enter a Time interval of 30 days. The default values of the remaining parameters will be used.

Phase 3:

1. Click the Add phase button to create a new phase.

2. In the Phases window select the Consolidation option from the Calculation type drop-down menu in the General subtree.

3. Make sure that the Staged construction option is selected for the Loading type.

4. Enter a Time interval of 1 day. The default values of the remaining parameters will be used.

5. In the Staged construction mode activate the second part of the embankment.

 Figure 64: Configuration of the phase 3

PLAXIS 2D - Tutorial Manual
Phase 4:

The fourth phase is a **Consolidation** analysis to a minimum excess pore pressure.

1. Click the **Add phase** button to create a new phase.
2. In the **General** subtree select the **Consolidation** option as calculation type.
3. Select the **Minimum excess pore pressure** option in the **Loading type** drop-down menu and accept the default value of 1 kN/m² for the minimum pressure. The default values of the remaining parameters will be used.

5.6.3 **Execute the calculation**

Before starting the calculation it is suggested that you select nodes or stress points for a later generation of load-displacement curves or stress and strain diagrams. To do this, follow the steps given below.

1. Click the **Select points for curves** button in the side toolbar.
2. As the first point, select the toe of the embankment (point at (20.00, 0.00)).
3. The second point will be used to plot the development (and decay) of excess pore pressures. To this end, a point somewhere in the middle of the soft soil layers is needed, close to (but not actually on) the left boundary (point at (0.25, -3.00)).
4. Click the **Calculate** button to calculate the project.

During a consolidation analysis the development of time can be viewed in the upper part of the calculation info window.

*Figure 65: Calculation progress displayed in the **Active tasks** window*
In addition to the multipliers, a parameter $P_{\text{excess,max}}$ occurs, which indicates the current maximum excess pore pressure. This parameter is of interest in the case of a Minimum excess pore pressure consolidation analysis, where all pore pressures are specified to reduce below a predefined value.

5.7 Results

After the calculation has finished, select the third phase and click the View calculation results button. The Output window now shows the deformed mesh after the undrained construction of the final part of the embankment. Considering the results of the third phase, the deformed mesh shows the uplift of the embankment toe and hinterland due to the undrained behaviour.

![Deformed mesh after undrained construction of embankment (Phase 3)](image1)

Figure 66: Deformed mesh after undrained construction of embankment (Phase 3)

1. Select the menu Deformations > Incremental displacements > $|\Delta u|$.
2. Select the menu View > Arrows option in the menu or click the corresponding button in the toolbar to display the results arrows.

On evaluating the total displacement increments, it can be seen that a failure mechanism is developing:

![Displacement increments after undrained construction of embankment](image2)

Figure 67: Displacement increments after undrained construction of embankment

1. Press <Ctrl + 7> to display the developed excess pore pressures (see Appendix C of the Reference Manual for more shortcuts). They can also be displayed by selecting the menu Stresses > Pore pressures > P_{excess}.
2. Click the Center principal directions button. The principal directions of excess pressures are displayed at the center of each soil element. The results are displayed in the following figure.
It is clear that the highest excess pore pressure occurs under the embankment centre.

1. Select Phase 4 in the drop down menu.
2. Click the Contour lines button in the toolbar to display the results as contours.
3. Use the Draw scanline button or the corresponding option in the View menu to define the position of the contour line labels.

It can be seen that the settlement of the original soil surface and the embankment increases considerably during the fourth phase. This is due to the dissipation of the excess pore pressures (= consolidation), which causes further settlement of the soil. The figure below shows the remaining excess pore pressure distribution after consolidation. Check that the maximum value is below 1.0 kN/m².

The Curves manager can be used to view the development, with time, of the excess pore pressure under the embankment. In order to create such a curve, follow these steps:

1. Create a new curve by clicking the Curves manager button.
2. For the x-axis, select the Project option from the drop-down menu and select Time in the tree.
3. For the y-axis select the point in the middle of the soft soil layers (Point B) from the drop-down menu. In the tree select Stresses > Pore pressure > p excess.
4. Select the Invert sign option for the y-axis.
5. Click OK.

A curve similar to the following one should appear:
The figure above clearly shows the four calculation phases. During the construction phases the excess pore pressure increases with a small increase in time while during the consolidation periods the excess pore pressure decreases with time. In fact, consolidation already occurs during construction of the embankment, as this involves a small time interval. From the curve it can be seen that more than 50 days are needed to reach full consolidation.

Save the chart before closing the Output program.

5.8 Safety analysis

In the design of an embankment it is important to consider not only the final stability, but also the stability during the construction. It is clear from the output results that a failure mechanism starts to develop after the second construction phase.

It is interesting to evaluate a global safety factor at this stage of the problem, and also for other stages of construction.

In structural engineering, the safety factor is usually defined as the ratio of the collapse load to the working load. For soil structures, however, this definition is not always useful. For embankments, for example, most of the loading is caused by soil weight and an increase in soil weight would not necessarily lead to collapse. Indeed, a slope of purely frictional soil will not fail in a test in which the self weight of the soil is increased (like in a centrifuge test). A more appropriate definition of the factor of safety is therefore:

\[
Safety\ factor = \frac{S_{\text{maximum available}}}{S_{\text{needed for equilibrium}}}
\]
Where S represents the shear strength. The ratio of the true strength to the computed minimum strength required for equilibrium is the safety factor that is conventionally used in soil mechanics. By introducing the standard Coulomb condition, the safety factor is obtained:

\[
\text{Safety factor} = \frac{c - \sigma_n \tan(\varphi)}{c_r - \sigma_n \tan(\varphi_r)}
\]

Where \(c \) and \(\varphi \) are the input strength parameters and \(\sigma_n \) is the actual normal stress component.

The parameters \(c_r \) and \(\varphi_r \) are reduced strength parameters that are just large enough to maintain equilibrium. The principle described above is the basis of the method of Safety that can be used in PLAXIS 2D to calculate a global safety factor. In this approach the cohesion and the tangent of the friction angle are reduced in the same proportion:

\[
\frac{c}{c_r} = \frac{\tan(\varphi)}{\tan(\varphi_r)} = \Sigma Msf
\]

The reduction of strength parameters is controlled by the total multiplier \(\Sigma Msf \). This parameter is increased in a step-by-step procedure until failure occurs. The safety factor is then defined as the value of \(\Sigma Msf \) at failure, provided that at failure a more or less constant value is obtained for a number of successive load steps.

The Safety calculation option is available in the Calculation type drop-down menu in the General tabsheet. If the Safety option is selected the Loading input on the Parameters tabsheet is automatically set to Incremental multipliers.

To calculate the global safety factor for the road embankment at different stages of construction, follow these steps:

1. Select Phase 1 in the Phases explorer.
2. Add a new calculation phase.
3. Double-click on the new phase to open the Phases window.
4. In the Phases window the selected phase is automatically selected in the Start from phase drop-down menu.
5. In the General subtree, select Safety as calculation type.
6. The Incremental multipliers option is already selected in the Loading input box. The first increment of the multiplier that controls the strength reduction process, \(Msf \), is set to 0.1.
7. Note that the Use pressures from the previous phase option in the Pore pressure calculation type drop-down menu is automatically selected and grayed out indicating that this option cannot be changed.
8. In order to exclude existing deformations from the resulting failure mechanism, select the Reset displacements to zero option in the Deformation control parameters subtree.
9. In the Numerical control parameters subtree deselect Use default iter parameters and set the number of Max steps to 50.

The first safety calculation has now been defined.

10. Follow the same steps to create new calculation phases that analyse the stability at the end of each consolidation phase.
Note:
The default value of Max steps in a Safety calculation is 100. In contrast to a Staged construction calculation, the specified number of steps is always fully executed. In most Safety calculations, 100 steps are sufficient to arrive at a state of failure. If not, the number of steps can be increased to a maximum of 1000.

For most Safety analyses Msf = 0.1 is an adequate first step to start up the process. During the calculation process, the development of the total multiplier for the strength reduction, ΣMsf, is automatically controlled by the load advancement procedure.

5.8.1 Evaluation of results

Additional displacements are generated during a Safety calculation. The total displacements do not have a physical meaning, but the incremental displacements in the final step (at failure) give an indication of the likely failure mechanism.

In order to view the mechanisms in the three different stages of the embankment construction:

1. Select one of these phases and click the View calculation results button.
2. Select the menu Incremental displacements > Deformations > |Δu|.
3. Change the presentation from Arrows to Shadings. The resulting plots give a good impression of the failure mechanisms. The magnitude of the displacement increments is not relevant.
The safety factor can be obtained from the Calculation info option of the Project menu. The Multipliers tabsheet of the Calculation information window represents the actual values of the load multipliers. The value of ΣMsf represents the safety factor, provided that this value is indeed more or less constant during the previous few steps.

The best way to evaluate the safety factor, however, is to plot a curve in which the parameter ΣMsf is plotted against the displacements of a certain node. Although the displacements are not relevant, they indicate whether or not a failure mechanism has developed.

In order to evaluate the safety factors for the three situations in this way, follow these steps:

1. Click the Curves manager button in the toolbar.
2. Click New in the Charts tabsheet.
3. In the Curve generation window, select the embankment toe (Point A) for the x-axis. Select Deformations > Total displacements > |u|.
4. For the y-axis, select Project > Multipliers > ΣMsf. The Safety phases are considered in the chart.
5. Right-click on the chart and select the Settings option in the appearing menu. The Settings window pops up.
6. In the tabsheet corresponding to the curve click the Phases button.
7. In the Select phases window select Phase 5:

```
Figure 73: The Select phases window
```

8. Click OK to close the Select phases window.
9. In the Settings window change the titles of the curve in the corresponding tabsheet.
10. Click the Add curve button and select the From current project... option in the appearing menu. Define curves for phases 6, 7 and 8 by following the described steps.
11. In the Settings window click the Chart tab to open the corresponding tabsheet.
12. In the Chart tabsheet specify the chart name.
13. Set the scaling of the x-axis to Manual and set the value of Maximum to 1:
14. Click **Apply** to update the chart according to the changes made and click **OK** to close the **Settings** window.
15. To modify the location of the legend right-click on the legend.
16. In the context menu select **View > Legend in chart**.
17. The legend can be relocated in the chart by dragging it. The plot is shown as:

![Figure 75: Evaluation of safety factor](image)
The maximum displacements plotted are not relevant. It can be seen that for all curves a more or less constant value of Σ Msf is obtained. Hovering the mouse cursor over a point on the curves, a box showing the exact value of ΣMsf can be obtained.

5.9 Using drains

In this section the effect of the drains in the project will be investigated. Four new phases will be introduced having the same properties as the first four consolidation phases. The first of these new phases should start from the initial phase. The differences in the new phases are:

- The drains should be active in all the new phases. Activate them in the Staged construction mode.
- The Time interval in the first three of the consolidation phases (9 to 11) is 1 day. The last phase is set to Minimum excess pore pressure and a value of 1.0 kN/m² is assigned to the minimum pressure (|P-stop|).

Follow these steps:

1. After the calculation is finished, save the project, then select the last phase and click the View calculation results button. The Output window now shows the deformed mesh after the drained construction of the final part of the embankment. In order to compare the effect of the drains, the excess pore pressure dissipation in the second point can be used.
2. Click the Curves manager button to open the Curves manager.
3. In the Chart tabsheet double-click Chart 1 (Pexcess of the second point (at (0.25,-3.00)) versus time). The chart is displayed. Close the Curves manager.
4. Double-click the curve in the legend at the right of the chart. The Settings window pops up.
5. Click the Add curve button and select the From current project ... option in the appearing menu. The Curve generation window pops up.
6. Select the Invert sign option for y-axis and click OK to accept the selected options.
7. In the chart a new curve is added and a new tabsheet corresponding to it is opened in the Settings window. Click the Phases button. From the displayed window select the Initial phase and the last four phases (drains) and click OK.
8. In the Settings window change the titles of the curves in the corresponding tabsheets.
9. In the Chart tabsheet specify the chart name.
10. Click Apply to preview the generated curve and click OK to close the Settings window. The chart gives a clear view of the effect of drains in the time required for the excess pore pressures to dissipate:
Figure 76: Effect of drains

Note:
Instead of adding a new curve, the existing curve can be regenerated using the corresponding button in the Curves settings window.

5.10 Updated mesh and updated water pressures analysis

As can be seen from the output of the Deformed mesh at the end of consolidation (stage 4), the embankment settles about one meter since the start of construction. Part of the sand fill that was originally above the phreatic level will settle below the phreatic level.

As a result of buoyancy forces the effective weight of the soil that settles below the water level will change, which leads to a reduction of the effective overburden in time. This effect can be simulated in PLAXIS 2D using the Updated mesh and Updated water pressures options. For the road embankment the effect of using these options will be investigated.

1. Select the initial phase in the Phases explorer.
2. Add a new calculation phase.
3. Define the new phase in the same way as Phase 1. In the Deformation control parameters subtree check the Updated mesh and Updated water pressures options.
4. Define the other 3 phases in the same way.

When the calculation has finished, compare the settlements for the two different calculation methods.

1. In the Curve generation window select time for the x-axis and select the vertical displacement (u_y) of the point in the middle of the soft soil layers (point at (0.25,-3.00)) for the y-axis.
2. In this curve the results for Initial phase and phases from 1 to 4 will be considered.
3. Add a new curve to the chart.
4. In this curve the results for Initial phase and phases from 13 to 16 will be considered. The resulting chart is shown below.

![Figure 77: Effect of updated mesh and water pressures analysis on resulting settlements](image)

It can be seen that the settlements are less when the **Updated mesh** and **Updated water pressures** options are used (red curve). This is partly because the **Updated mesh** procedure includes second order deformation effects by which changes of the geometry are taken into account, and partly because the **Updated water pressures** procedure results in smaller effective weights of the embankment. This last effect is caused by the buoyancy of the soil settling below the (constant) phreatic level. The use of these procedures allows for a realistic analysis of settlements, taking into account the positive effects of large deformations.
In this tutorial the construction of a shield tunnel in medium soft soil and the influence on a pile foundation is considered. A shield tunnel is constructed by excavating soil at the front of a tunnel boring machine (TBM) and installing a tunnel lining behind it. In this procedure the soil is generally over-excavated, which means that the cross sectional area occupied by the final tunnel lining is always less than the excavated soil area. Although measures are taken to fill up this gap, one cannot avoid stress re-distributions and deformations in the soil as a result of the tunnel construction process. To avoid damage to existing buildings or foundations on the soil above, it is necessary to predict these effects and to take proper measures. Such an analysis can be performed by means of the finite element method. This tutorial shows an example of such an analysis.

Objectives

- Modelling of the tunnel boring process
- Modelling undrained behaviour using the Undrained (B) option

Geometry

The tunnel considered in this tutorial has a diameter of 5.0 m and is located at an average depth of 20 m.

![Figure 78: Geometry of the tunnel project with an indication of the soil layers](image-url)
6.1 Create new project

To create the new project, follow these steps:

1. Start the Input program and select Start a new project from the Quick start dialog box.
2. In the Project tabsheet of the Project properties window, enter an appropriate title.
3. In the Model tabsheet keep the default options for Model (Plane strain), and Elements (15-Noded).
4. Set the model Contour to $x_{\text{min}} = 0.0 \text{ m}$, $x_{\text{max}} = 35.0 \text{ m}$, $y_{\text{min}} = -30.0 \text{ m}$ and $y_{\text{max}} = 3.0 \text{ m}$.
5. Keep the default values for units and constants and press OK to close the Project properties window.

6.2 Define the soil stratigraphy

The soil profile indicates four distinct layers: The upper 13 m consists of soft clay type soil with stiffness that increases approximately linearly with depth. Under the clay layer there is a 2.0 m thick fine sand layer. This layer is used as a foundation layer for old wooden piles on which traditional brickwork houses were built. The pile foundation of such a building is modelled next to the tunnel. Displacements of these piles may cause damage to the building, which is highly undesirable. Below the sand layer there is a 5.0 m thick deep loamy clay layer.

To define the soil stratigraphy:

1. Click the Create borehole button and create a borehole at $x = 0$. The Modify soil layers window pops up.
Settlements due to tunnel construction
Define the soil stratigraphy

2. Create the soil stratigraphy as shown in the following figure:
3. Keep the Head in the borehole to 0.0 m.

6.2.1 Create and assign material data sets

Four data sets need to be created for the clay and sand layers.

For the upper clay layer the stiffness and shear strength increase with depth. Therefore values for E'_{inc} and $s_{u,\text{inc}}$ are entered in the Advanced subtree. The values of E'_{ref} and $s_{u,\text{ref}}$ become the reference values at the reference level y_{ref}. Below y_{ref} the actual values of E' and s_u increase with depth according to:

$$E'(y) = E'_{\text{ref}} + E'_{\text{inc}}(y_{\text{ref}} - y)$$
$$s_u(y) = s_{u,\text{ref}} + s_{u,\text{inc}}(y_{\text{ref}} - y)$$

The data sets of the two lower soil layers include appropriate parameters for the tunnel interfaces. In the other data sets the interface properties just remain at their default values. Enter four data sets with the properties as listed in Table 13 (on page 95) and assign them to the corresponding clusters in the geometry model.

The layers have the following properties:
Table 13: Material properties of soil in the tunnel project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Clay</th>
<th>Sand</th>
<th>Deep clay</th>
<th>Deep sand</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td></td>
<td>-</td>
<td>Mohr-Coulomb</td>
<td>Hardening soil</td>
<td>Mohr-Coulomb</td>
<td>HS small</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td></td>
<td>-</td>
<td>Undrained (B)</td>
<td>Drained</td>
<td>Undrained (B)</td>
<td>Drained</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>γ_{unsat}</td>
<td>15</td>
<td>16.5</td>
<td>16</td>
<td>17</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>18</td>
<td>20</td>
<td>18.5</td>
<td>21</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young's modulus at reference level</td>
<td>E'</td>
<td>$3.4 \cdot 10^3$</td>
<td>-</td>
<td>$9.0 \cdot 10^3$</td>
<td>-</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Secant stiffness in standard drained triaxial test</td>
<td>E_{50}^{ref}</td>
<td>-</td>
<td>$2.5 \cdot 10^4$</td>
<td>-</td>
<td>$4.2 \cdot 10^4$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Tangent stiffness for primary oedometer loading</td>
<td>E_{oed}^{ref}</td>
<td>-</td>
<td>$2.5 \cdot 10^4$</td>
<td>-</td>
<td>$4.2 \cdot 10^4$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Unloading / reloading stiffness</td>
<td>E_{ur}^{ref}</td>
<td>-</td>
<td>$7.5 \cdot 10^4$</td>
<td>-</td>
<td>$1.26 \cdot 10^5$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Power for stress-level dependency of stiffness</td>
<td>m</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion (constant)</td>
<td>c_{ref}'</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Undrained shear strength at reference level</td>
<td>$s_{u,ref}$</td>
<td>5</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Friction angle</td>
<td>ϕ'</td>
<td>-</td>
<td>31</td>
<td>-</td>
<td>35</td>
<td>°</td>
</tr>
<tr>
<td>Dilatancy angle</td>
<td>ψ</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>5</td>
<td>°</td>
</tr>
<tr>
<td>Shear strain at which $G_s = 0.722 G_0$</td>
<td>$\gamma_{0.7}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$1.3 \cdot 10^{-4}$</td>
<td>-</td>
</tr>
<tr>
<td>Shear modulus at very small strains</td>
<td>G_0^{ref}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$1.1 \cdot 10^5$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν_{ur}'</td>
<td>0.33</td>
<td>0.3</td>
<td>0.33</td>
<td>0.3</td>
<td>-</td>
</tr>
</tbody>
</table>
Settlements due to tunnel construction

Define the structural elements

To create the material sets, follow these steps:

1. Click the **Materials** button in the **Modify soil layers** window.
2. Create data sets under the **Soil and interfaces** set type according to the information given in Table 13 (on page 95).

Table 13

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Clay</th>
<th>Sand</th>
<th>Deep clay</th>
<th>Deep sand</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's modulus inc.</td>
<td>(E_{\text{inc}})</td>
<td>400</td>
<td>-</td>
<td>600</td>
<td>-</td>
<td>kN/m(^3)</td>
</tr>
<tr>
<td>Reference level</td>
<td>(y_{\text{ref}})</td>
<td>3.0</td>
<td>-</td>
<td>-12</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td>Undrained shear strength inc.</td>
<td>(s_{u,\text{inc}})</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>kN/m(^2)</td>
</tr>
<tr>
<td>Reference level</td>
<td>(y_{\text{ref}})</td>
<td>3.0</td>
<td>-</td>
<td>-12</td>
<td>-</td>
<td>m</td>
</tr>
</tbody>
</table>

Groundwater

<table>
<thead>
<tr>
<th>Permeability in horizontal direction</th>
<th>(k_x)</th>
<th>(1 \cdot 10^{-4})</th>
<th>1.0</th>
<th>(1 \cdot 10^{-2})</th>
<th>0.5</th>
<th>m/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability in vertical direction</td>
<td>(k_y)</td>
<td>(1 \cdot 10^{-4})</td>
<td>1.0</td>
<td>(1 \cdot 10^{-2})</td>
<td>0.5</td>
<td>m/day</td>
</tr>
</tbody>
</table>

Interfaces

<table>
<thead>
<tr>
<th>Interface strength</th>
<th>Rigid</th>
<th>Rigid</th>
<th>Manual</th>
<th>Manual</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength reduction factor</td>
<td>(R_{\text{inter}})</td>
<td>1.0</td>
<td>1.0</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Initial

<table>
<thead>
<tr>
<th>(K_0) determination</th>
<th>Manual</th>
<th>Automatic</th>
<th>Manual</th>
<th>Automatic</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral earth pressure coefficient</td>
<td>(K_{0,x})</td>
<td>0.60</td>
<td>0.485</td>
<td>0.60</td>
<td>0.4264</td>
</tr>
<tr>
<td>Over-consolidation ratio</td>
<td>(OCR)</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Pre-overburden pressure</td>
<td>(POP)</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
<td>0.0</td>
</tr>
</tbody>
</table>

To create the material sets, follow these steps:

1. Click the **Materials** button in the **Modify soil layers** window.
2. Create data sets under the **Soil and interfaces** set type according to the information given in Table 13 (on page 95).

6.3 Define the structural elements

The tunnel and the building are defined as structural elements.
6.3.1 Define the tunnel

The tunnel considered here is the right half of a circular tunnel. After generating the basic geometry, follow these steps to design the circular tunnel:

1. In the Structures mode click the Create tunnel button in the side toolbar and click at (0.0 -17.0) in the drawing area. The Tunnel designer window pops up displaying the General tabsheet of the Cross section mode.
2. Select the Circular option in the Shape type drop-down menu.
3. Select the Define right half option in the Whole or half tunnel drop-down menu.
4. In the Offset to begin point group set Axis 2 to -2.5. No change is required for the orientation axes.
5. Click the Segments tab to proceed to the corresponding tabsheet. A segment is automatically created. A new box is shown under the segment list where the properties of the segment can be defined.
6. In the Segment box set Radius to 2.5 m. The generated segment is shown:

![Tunnel designer window](image)

Figure 80: The geometry of the tunnel segment

Note: In the tunnel as considered here the segments do not have a specific meaning as the tunnel lining is homogeneous and the tunnel will be constructed at once. In general, the meaning of segments becomes significant when:

- It is desired to excavate or construct the tunnel (lining) in different stages.
- Different tunnel segments have different lining properties.
Settlements due to tunnel construction
Define the structural elements

- One would consider hinge connections in the lining (hinges can be added after the design of the tunnel in the general drawing area).
- The tunnel shape is composed of arcs with different radii (for example NATM tunnels).

7. Click the Properties tab to proceed to the corresponding tabsheet.
8. Right-click the segment in the display area and select the menu Create > Create plate option in the appearing menu.
9. In Tunnel Designer go to the Material property in the Selection explorer and click the plus button to create a new material dataset. Specify the material parameters for lining according to the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Lining</th>
<th>Building</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material behaviour</td>
<td>-</td>
<td>Elastic</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Isotropic</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Axial stiffness</td>
<td>EA</td>
<td>$1.4 \cdot 10^7$</td>
<td>$1 \cdot 10^{10}$</td>
<td>kN/m</td>
</tr>
<tr>
<td>Bending stiffness</td>
<td>EI</td>
<td>$1.43 \cdot 10^5$</td>
<td>$1 \cdot 10^{10}$</td>
<td>kNm²/m</td>
</tr>
<tr>
<td>Weight</td>
<td>w</td>
<td>8.4</td>
<td>25</td>
<td>kN/m/m</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν</td>
<td>0.15</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>Prevent punching</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: A tunnel lining consists of curved plates (shells). The lining properties can be specified in the material database for plates. Similarly, a tunnel interface is nothing more than a curved interface.

10. Right-click the segment in the display area and select the Create negative interface option in the appearing menu.
11. Right-click the segment in the display area and select the Create line contraction option in the appearing menu. In the polycurve box specify a value of 0.5% for C_{ref}. The tunnel model is shown in the following figure.
Settlements due to tunnel construction

Define the structural elements

![Image](image_url)

Figure 81: Tunnel model in the Properties mode

Note:

- A C_{ref} value of 0.5% corresponds to a volume loss of 0.5% of the tunnel volume. The actual strain that is applied to the line is half the applied contraction. Hence, the resulting liner contraction is 0.25%.
- The entered value of contraction is not always fully applied, depending on the stiffness of the surrounding clusters and objects.

12. Click on **Generate** to include the defined tunnel in the model.
13. Close the **Tunnel designer** window.

6.3.2 Define building

The building itself will be represented by a stiff plate founded on piles.

1. From the side bar, select **Create line** > **Create plate** and draw a plate from (5.0 3.0) to (15.0 3.0), representing the building.
2. Create a material set for the building according to Table 15 (on page 100) and assign it to the plate.
3. From the side bar, select **Create line** > **Create embedded beam row** and draw two piles (embedded beam rows) from (5.0 3.0) to (5.0 -11.0) and from (15.0 3.0) to (15.0 -11.0).
4. Create a material set for the foundation piles according to the table below and assign it to the foundation piles.
Table 15: Material properties of piles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Foundation piles</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>-</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Stiffness</td>
<td>E</td>
<td>$1.0 \cdot 10^7$</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Unit weight</td>
<td>γ</td>
<td>24.0</td>
<td>kN/m³</td>
</tr>
<tr>
<td>Beam type</td>
<td>-</td>
<td>Predefined</td>
<td>-</td>
</tr>
<tr>
<td>Predefined beam type</td>
<td>-</td>
<td>Massive circular beam</td>
<td>-</td>
</tr>
<tr>
<td>Diameter</td>
<td>-</td>
<td>0.25</td>
<td>m</td>
</tr>
<tr>
<td>Pile spacing</td>
<td>L_{spacing}</td>
<td>3.0</td>
<td>m</td>
</tr>
<tr>
<td>Axial skin resistance</td>
<td>-</td>
<td>Linear</td>
<td>-</td>
</tr>
<tr>
<td>Skin resistance at top</td>
<td>$T_{\text{skin, start, max}}$</td>
<td>1.0</td>
<td>kN/m</td>
</tr>
<tr>
<td>Skin resistance at bottom</td>
<td>$T_{\text{skin, end, max}}$</td>
<td>100.0</td>
<td>kN/m</td>
</tr>
<tr>
<td>Lateral resistance</td>
<td>-</td>
<td>Unlimited</td>
<td>-</td>
</tr>
<tr>
<td>Base resistance</td>
<td>F_{max}</td>
<td>100.0</td>
<td>kN</td>
</tr>
<tr>
<td>Interface stiffness factors</td>
<td>Default values</td>
<td>Yes</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: In the **Standard fixities** option, a plate that extends to a geometry boundary that is fixed in at least one direction obtains fixed rotations, whereas a plate that extends to a free boundary obtains a free rotation.

6.4 Generate the mesh

The default global coarseness parameter (**Medium**) can be accepted in this case. Note that the structural elements (plate and embedded beams) are internally automatically refined by a factor of 0.25.

1. Proceed to the **Mesh** mode.
2. Click the **Generate mesh** button on the side toolbar. For the **Element distribution** parameter, use the option **Medium** (default).
3. Click the **View mesh** button to view the mesh.
Settlements due to tunnel construction
Define and perform the calculation

4. Click the Close tab to close the Output program.

6.5 Define and perform the calculation

To simulate the construction of the tunnel it is clear that a staged construction calculation is needed.

6.5.1 Initial phase

1. Proceed to the Staged construction mode to proceed with the definition of the calculation phases.
2. The initial phase has already been introduced. Keep its calculation type as K0 procedure. The water pressures can be generated on the basis of a general phreatic level at a level of \(y = 0.0 \) m as already defined in the borehole. Make sure that the building, foundation piles and tunnel lining are deactivated.

6.5.2 Phase 1: Building

The first calculation phase is used to activate the building.
Settlements due to tunnel construction
Define and perform the calculation

1. Click the Add phase button to create a new phase.
2. In the Phases window rename the phase as Building.
3. In the Deformation control parameters subtree select the Ignore undr. behaviour (A,B) option. The default values of the remaining parameters are valid for this phase.
4. In the drawing area activate the plate and the foundation piles.

6.5.3 Phase 2: Tunnel

1. Click the Add phase button to create a new phase.
2. In the Phases window select the Reset displacements to zero option in the Deformation control parameters subtree.
3. In Staged construction multi-select the clusters inside the tunnel. In the Selection explorer deactivate the two soil clusters and set the Water conditions to Dry.
4. Activate the tunnel lining and the negative interfaces. Note that contraction is not active in this phase.

6.5.4 Phase 3: Contraction

1. Click the Add phase button to create a new phase.
2. Multi-select the plates. In the Selection explorer activate the contraction.

Note:
- For a more realistic model, different properties should be defined for the lining in this phase and in the final one.
- The contraction of the tunnel lining by itself does not introduce forces in the tunnel lining. Eventual changes in lining forces as a result of the contraction procedure are due to stress redistributions in the surrounding soil or to changing external forces.

6.5.5 Phase 4: Grouting

At the tail of the tunnel boring machine (TBM), grout is injected to fill up the gap between the TBM and the final tunnel lining. The grouting process is simulated by applying a pressure on the surrounding soil.

1. Click the Add phase button to create a new phase.
2. In the Staged construction mode deactivate the tunnel lining (plates, negative interfaces and contraction).
3. Multi-select the clusters inside the tunnel. In the Selection explorer activate WaterConditions.
4. Select the User-defined option in the Condition drop-down menu and set \(p_{\text{ref}} \) to -230 kN/m\(^2\). The pressure distribution in the tunnel is constant.
6.5.6 Phase 5: Final lining

1. Click the Add phase button to create a new phase.
2. In the Staged construction set the clusters inside the tunnel to Dry.
3. Activate the tunnel lining (plates) and the negative interfaces in the tunnel.

6.5.7 Execute the calculation

1. Click the Select points for curves button in the side toolbar.
2. Select some characteristic points for load-displacement curves (for example the corner point at the ground surface above the tunnel and the corner points of the building).
3. Click the Calculate button to calculate the project.
4. After the calculation has finished, save the project by clicking the Save button.

6.6 Results

After the calculation, select the last calculation phase and click the View calculation results button. The Output program is started, showing the deformed meshes at the end of the calculation phases:
As a result of the second calculation phase (removing soil and water out of the tunnel) there is some settlement of the soil surface and the tunnel lining shows some deformation. In this phase the axial force in the lining is the maximum axial force that will be reached. The lining forces can be viewed by double clicking the lining and selecting force related options from the **Force** menu. The plots of the axial forces and bending moment are scaled by factors of 5×10^{-3} and 0.2 respectively.

Figure 83: Deformed mesh after construction of the tunnel (Phase 5; scaled up 20.0 times)
Settlements due to tunnel construction

Results

Figure 84: Axial forces and Bending moments in the lining after the second phase

The plot of effective stresses, shows that arching occurs around the tunnel. This arching reduces the stresses acting on the tunnel lining. As a result, the axial force in the final phase is lower than that after the second calculation phase.

Figure 85: Effective principal stresses after the construction of the tunnel

To display the tilt of the structure:
1. Click the **Distance measurement** button in the side toolbar.
2. Click the node located at the left corner of the structure (5.0 3.0).
3. Click the node located at the right corner of the structure (15.0 3.0).

The **Distance measurement information** window is displayed where the resulting tilt of the structure is given:

![Distance measurement information window](image)

Figure 86: Distance measurement information window
Excavation of an NATM tunnel

This tutorial illustrates the use of PLAXIS 2D for the analysis of the construction of a NATM tunnel. The NATM is a technique in which ground exposed by excavation is stabilised with shotcrete to form a temporary lining.

Objectives

- Modelling the construction of an NATM tunnel using the **Deconfinement** method.
- Using **Gravity loading** to generate initial stresses.

Geometry

The geometry of the tunnel project looks like this:

<table>
<thead>
<tr>
<th>Top layer</th>
<th>Clay - Siltstone</th>
<th>Clay - Limestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-50)</td>
<td>0</td>
<td>(-50)</td>
</tr>
<tr>
<td>(-22)</td>
<td>24</td>
<td>(-14)</td>
</tr>
<tr>
<td>(-7)</td>
<td>35</td>
<td>28</td>
</tr>
</tbody>
</table>

7 m 50 m 5 m 6 m 13 m 11 m

Figure 87: Geometry of the project

7.1 Create a new project

To create a new project, follow these steps:

1. Start the Input program and select **Start a new project** from the **Quick start** dialog box.
2. In the **Project** tabsheet of the **Project properties** window, enter an appropriate title.
3. In the **Model** tabsheet make sure that **Model** is set to **Plane strain** and that **Elements** is set to **15-Noded**.
4. Define the limits for the soil contour as $x_{\text{min}} = -50.0$ m, $x_{\text{max}} = 50.0$ m, $y_{\text{min}} = 0.0$ m and $y_{\text{max}} = 35.0$ m.

7.2 Define the soil stratigraphy

The basic stratigraphy will be created using the **Borehole** feature. In the model 11 m of the Clay-limestone layer is considered. The bottom of this layer is considered as reference in y direction ($y_{\text{min}} = 0$).

To define the soil stratigraphy:

1. Click the **Create borehole** button and create the first borehole at $x = -22.0$.
2. In the **Modify soil layers** window create three soil layers.
 a. The layer number 1 has a depth equal to zero in Borehole_1. Assign 24.00 to **Top** and **Bottom**.
Excavation of an NATM tunnel
Create and assign material data sets

b. The layer number 2 lies from Top = 24.00 to Bottom = 11.00.
c. The layer number 3 lies from Top = 11.00 to Bottom = 0.00.

3. Click the Boreholes button at the bottom of the Modify soil layers window.
4. In the appearing menu select the Add option.
The Add borehole window pops up.
5. Specify the location of the second borehole (x = -14.0).
6. Note that the soil layers are available for Borehole_2.
 a. The layer number 1 has a depth equal to zero in Borehole_2. However as the depth of layer 2 is higher,
 assign 30.00 to Top and Bottom of the layer 1.
 b. The layer number 2 lies from Top = 30.00 to Bottom = 11.00.
 c. The layer number 3 lies from Top = 11.00 to Bottom = 0.00.
7. Create a new borehole (Borehole_3) at x = -7.0.
8. In Borehole_3:
 a. The layer number 1 has a non-zero thickness and lies from Top = 35.00 to Bottom = 30.00.
 b. The layer number 2 lies from Top = 30.00 to Bottom = 11.00.
 c. The layer number 3 lies from Top = 11.00 to Bottom = 0.00.
9. In all the boreholes the water level is located at y = 0 m.
10. Specify the soil layer distribution as shown in Figure 88 (on page 108).

![Figure 88: Soil layer distribution](image)

7.3 Create and assign material data sets

Three material sets need to be created for the soil layers.

Note that the layering of the model left from the first borehole is based on Borehole_1 and the layering right
from the last borehole is based on Borehole_3. Hence, no borehole is needed at x = -50 m or x = 50 m.
The layers have the following properties:

Table 16: Material properties of the soil layers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Top layer</th>
<th>Clay-siltstone</th>
<th>Clay-limestone</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>-</td>
<td>Hardening soil</td>
<td>Hoek-Brown</td>
<td>Hoek-Brown</td>
<td>-</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>-</td>
<td>Drained</td>
<td>Drained</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>γ_{unsat}</td>
<td>20</td>
<td>25</td>
<td>24</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>22</td>
<td>25</td>
<td>24</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Initial void ratio</td>
<td>e_{init}</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secant stiffness in standard drained triaxial test</td>
<td>E_{50}^{ref}</td>
<td>4.0·104</td>
<td>-</td>
<td>-</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Tangent stiffness for primary oedometer loading</td>
<td>E_{oed}^{ref}</td>
<td>4.0·104</td>
<td>-</td>
<td>-</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Unloading / reloading stiffness</td>
<td>E_{ur}^{ref}</td>
<td>1.2·105</td>
<td>-</td>
<td>-</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Power for stress-level dependency of stiffness</td>
<td>m</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Young's modulus</td>
<td>E_{rm}'</td>
<td>-</td>
<td>1.0·106</td>
<td>2.5·106</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν_{ur}'</td>
<td>0.2</td>
<td>0.25</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>Uniaxial compressive strength</td>
<td>σ_{ci}</td>
<td>-</td>
<td>2.5·104</td>
<td>5.0·104</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Material constant for the intact rock</td>
<td>m_i</td>
<td>-</td>
<td>4.0</td>
<td>10.0</td>
<td>-</td>
</tr>
<tr>
<td>Geological Strength Index</td>
<td>GSI</td>
<td>-</td>
<td>40.0</td>
<td>55.0</td>
<td>-</td>
</tr>
<tr>
<td>Disturbance factor</td>
<td>D</td>
<td>-</td>
<td>0.2</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion</td>
<td>c_{ref}'</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Friction angle</td>
<td>φ'</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>$^\circ$</td>
</tr>
<tr>
<td>Dilatancy parameter</td>
<td>ψ_{max}</td>
<td>-</td>
<td>30.0</td>
<td>35.0</td>
<td>$^\circ$</td>
</tr>
<tr>
<td>Dilatancy parameter</td>
<td>σ_{ψ}</td>
<td>-</td>
<td>400</td>
<td>1000</td>
<td>kN/m2</td>
</tr>
</tbody>
</table>
Excavation of an NATM tunnel

Define the tunnel

1. In the **Structures** mode click the **Create tunnel** button in the side toolbar and click on (0.0 16.0) in the drawing area to specify the location of the tunnel. The **Tunnel designer** window pops up.

2. The default shape option (Free) will be used. The default values of the rest of the parameters defining the location of the tunnel in the model are valid as well.

3. Click on the **Segments** tab.

4. Click the **Add section** button in the side toolbar. In the segment info box
 a. Set the **Segment type** to Arc.
 b. Set Radius to 10.4 m
 c. Set the **Segment angle** to 22°.

5. The default values of the remaining parameters are valid.

6. Click the **Add section** button to add a new arc segment.
 a. Set Radius to 2.4 m.
 b. Set the **Segment angle** to 47°.
 c. The default values of the remaining parameters are valid.

7. Click the **Add section** button to add a new arc segment.
 a. Set Radius to 5.8 m.
 b. Set the **Segment angle** to 50°.
 c. The default values of the remaining parameters are valid.

8. Click the **Extend to symmetry axis** option to complete the right half of the tunnel. A new arc segment is automatically added closing the half of the tunnel.

9. Click the **Symmetric close** button to complete the tunnel. Four new arc segment are automatically added closing the tunnel.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Top layer</th>
<th>Clay-siltstone</th>
<th>Clay-limestone</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface strength</td>
<td></td>
<td>Rigid</td>
<td>Manual</td>
<td>Rigid</td>
<td>-</td>
</tr>
<tr>
<td>Strength reduction factor</td>
<td>(R_{\text{inter}})</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Create soil material data sets according to **Table 16** (on page 109) and assign them to the corresponding layers (**Figure 88** (on page 108)).

2. Close the **Modify soil layers** window and proceed to the **Structures** mode to define the structural elements.
10. Click on the **Subsections** tab.
11. Click the **Add** button to add a new subsection. This subsection will be used to separate the top heading (upper excavation cluster) from the invert (lower excavation cluster).
 a. Set **Offset 2** to 3 m.
 b. Select the **Arc** option from the **Segment type** drop-down menu.
 c. Set **Radius** to 11 m.
 d. **Segment angle** to 360°.
12. Click the **Select multiple objects** button and select all the geometric entities in the slice.
13. Click the **Intersect** button.
14. Delete the part of the subsection outside of the slice by selecting it in the display area and clicking the **Delete** button in the side toolbar.

![Figure 89: Segments in the tunnel cross section](image)

15. Proceed to the **Properties** mode.
16. Multi-select the polylines in the display area and select the **Create plate** option in the appearing menu.
17. Press `<Ctrl + M>` to open the **Material sets** window. Create a new material dataset for the created plates according to Table 17 (on page 111).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Lining</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>-</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Isotropic</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Axial stiffness</td>
<td>EA_1</td>
<td>6.0×10^6</td>
<td>kN/m</td>
</tr>
<tr>
<td>Parameter</td>
<td>Name</td>
<td>Lining</td>
<td>Unit</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Bending stiffness</td>
<td>EI</td>
<td>2.0·10⁴</td>
<td>kNm²/m</td>
</tr>
<tr>
<td>Weight</td>
<td>w</td>
<td>5.0</td>
<td>kN/m/m</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>v</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>Prevent punching</td>
<td>-</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

18. Multi-select the created plates and in the **Selection explorer**, assign the material **Lining** to the selected plates.

19. Assign negative interfaces to the lines defining the shape of the tunnel (not the excavation levels). The final tunnel view in the **Tunnel designer** window is given in this figure:

![Final tunnel view](image)

Figure 90: Final tunnel

20. Click on **Generate** to update the tunnel in the model and click **Close**.

7.5 Generate the mesh

The default global coarseness parameter (**Medium**) can be accepted in this case.

1. Proceed to the **Mesh** mode.
2. Click the **Generate mesh** button in the side toolbar. For the **Element distribution** parameter, use the option **Medium** (default).
3. Click the **View mesh** button to view the mesh.
Excavation of an NATM tunnel

Define and perform the calculation

4. Click the Close tab to close the Output program.

7.6 Define and perform the calculation

To simulate the construction of the tunnel a staged construction calculation is needed in which the tunnel lining is activated and the soil clusters inside the tunnel are deactivated. The calculation phases are Plastic analyses, Staged construction. The three-dimensional arching effect is emulated by using the so-called β-method. The idea is that the initial stresses \(p_k \) acting around the location where the tunnel is to be constructed are divided into a part \((1-\beta)\ p_k\) that is applied to the unsupported tunnel and a part Deconfinement method that is applied to the supported tunnel.

To apply this method in PLAXIS 2D, one can use the Deconfinement option, which is available for each deactivated soil cluster in the model explorer. Deconfinement is defined as the aforementioned factor \((1-\beta)\). For example, if 60% of the initial stresses in a de-activated soil cluster should disappear in the current calculation phase (so the remaining 40% is to be considered later), it means that the Deconfinement \((1-\beta)\) parameter of that inactive cluster should be set to 0.6. The value of Deconfinement can be increased in subsequent calculation phases until it reaches 1.0.

To define the calculation process follow these steps:

7.6.1 Initial phase

1. Click on the Staged construction tab to proceed with the definition of the calculation phases.
2. The initial phase has already been introduced. Note that the soil layers are not horizontal. It is not recommended in this case to use the K0 procedure to generate the initial effective stresses. Instead Gravity loading will be used. This option is available in the General subtree of the Phases window.
3. Water will not be considered in this example. The general phreatic level should remain at the model base.
4. Make sure that the tunnel is inactive.
7.6.2 Phase 1: First tunnel excavation (deconfinement)

1. Click the **Add phase** button to create a new phase.
2. In the **Staged construction** mode deactivate the upper cluster in the tunnel. Do NOT activate the tunnel lining.
3. While the de-activated cluster is still selected, in the **Selection explorer** set **Deconfinement**($1 - \beta$) to 60 %.

The model for Phase 1 is displayed in the figure below.

![Figure 92: Configuration of Phase 1](image)

7.6.3 Phase 2: First (temporary) lining

1. Click the **Add phase** button to create a new phase.
2. In the **Staged construction** mode, activate the lining and interfaces of the part of the tunnel excavated in the previous phase.
3. Select the de-activated cluster. In the **Selection explorer** set **Deconfinement** to 100 %.

![Figure 93: Configuration of Phase 2](image)

7.6.4 Phase 3: Second tunnel excavation (deconfinement)

1. Click the **Add phase** button to create a new phase.
2. In the **Staged construction** mode deactivate the lower cluster (invert) and the temporary lining in the middle of the tunnel.

3. While the lower de-activated cluster is still selected, set in the **Selection explorer Deconfinement** to 60%.

![Figure 94: Configuration of Phase 3](image)

7.6.5 Phase 4: Second (final) lining

1. Click the **Add phase** button to create a new phase.

2. Activate the remaining lining and interfaces.
 - All the plates and interfaces around the full tunnel are active.

3. Select the lower de-activated cluster. In the **Selection explorer** set **Deconfinement** to 100%.

![Figure 95: Configuration of Phase 4](image)

7.6.6 Execute the calculation

1. Click the **Select points for curves** button in the side toolbar.

2. Select a node at the slope crest point and the tunnel crest. These points might be of interest to evaluate the deformation during the construction phases.

3. Click the **Calculate** button to calculate the project.

4. After the calculation has finished, save the project by clicking the Save button.
7.7 Results

After the calculation, select the last calculation phase and click the View calculation results button. The Output program is started, showing the deformed mesh at the end of the calculation phases:

![Deformed mesh at the end of the final calculation phase](image)

Figure 96: The deformed mesh at the end of the final calculation phase

To display the bending moments resulting in the tunnel:

1. To select the lining of all the tunnel sections, click the corresponding button in the side toolbar and drag the mouse to define a rectangle where all the tunnel sections are included. Select the Plate option in the appearing window:

![Select structures window](image)

and click View.

Note that the tunnel lining is displayed in the Structures view.

2. From the Forces menu select the Bending moment M option. The result, scaled by a factor of 0.5 is displayed in the figure below.
Excavation of an NATM tunnel

Results

Figure 97: Resulting bending moments in the NATM tunnel
This tutorial illustrates how to calculate the vertical bearing capacity and vertical stiffness of a circular stiff underwater footing (e.g. one of the footings of a jacket structure) exposed to cyclic loading during a storm. The storm is idealised by a distribution of load parcels with different magnitude. The cyclic accumulation tool is used to obtain soil parameters for the UDCAM-S model. The example considers a circular concrete footing with a radius of 11 m, placed on an over-consolidated clay layer.

The procedure for establishing non-linear stress-strain relationships and calculating load-displacement curves of a foundation under a cyclic vertical load component is presented. The analysis of the circular footing is performed with a 2D axisymmetric model. The soil profile consists of clay with an overconsolidation ratio, OCR, of 4, submerged unit weight of 10 kN/m3 and an earth pressure coefficient, K_0, of 1. The (static) undrained shear strength from anisotropically consolidated triaxial compression tests has a constant value with a depth of $s_u = 130$ kPa. The maximum shear modulus, G_{max}, of the clay is 67275 kPa. The cyclic behaviour of the soil is based on contour diagrams for Drammen clay (Andersen, Kleven & Heien, 1988) assuming that the behaviour is representative of the actual clay.

8.1 Objectives

- Obtain the UDCAM-S model input parameters by running the cyclic accumulation procedure, determining the stress-strain curves and optimising the material model parameters.
- Calculate the total cyclic vertical bearing capacity.
- Calculate the vertical stiffness accounting for cyclic loading for both the total and the cyclic component.

8.2 Geometry

The soil properties and footing geometry are shown in the figure below.

8.3 Create new project

To create a new project, follow these steps:

1. Start the Input program and select **Start a new project** from the **Quick select** dialog box.
2. In the **Project** tabsheet of the **Project properties** window, enter an appropriate title.
3. In the **Model** tabsheet make sure that
 a. **Model** is set to **Axisymmetry** and that
 b. **Elements** is set to **15-Noded**.
4. Define the limits for the model contour as
 a. \(x_{\text{min}} = 0.0 \text{ m}, x_{\text{max}} = 40.0 \text{ m} \)
 b. \(y_{\text{min}} = -30.0 \text{ m} \) and \(y_{\text{max}} = 0.0 \text{ m} \)

8.4 Define the soil stratigraphy

The sub-soil layers are defined using a borehole.

To define the soil stratigraphy:

1. Click the **Create borehole** button and create a borehole at \(x = 0 \). The **Modify soil layers** window pops up.
2. Create a single soil layer with top level at 0.0 m and bottom level at -30.0m.
3. For simplicity, water is not taken into account in this example. The groundwater table is therefore set below the bottom of the model, and the soil weight is based on the effective (underwater) weight.
4. In the borehole column specify a value of -50.00 for **Head**.
8.5 Create and assign material data sets

Three material data sets need to be created; two for the clay layer (Clay - total load and Clay - cyclic load) and one for the concrete foundation.

Open the **Material sets** window.

8.5.1 Material: Clay - total load

The model parameters for this material will be determined by the cyclic accumulation and optimisation tool. The other properties are as shown in the following table:

Table 18: Material properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Clay - total load</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>-</td>
<td>Clay - total load</td>
<td>-</td>
</tr>
<tr>
<td>Material model</td>
<td>-</td>
<td>UDCAM-S model</td>
<td>-</td>
</tr>
</tbody>
</table>
To create the material set, follow these steps:

1. Create a new soil material data set: Choose **Soil and interfaces** as the **Set type** and click the **New** button.
2. On the **General** tab enter the values according to [Table 18](#) (on page 120).
3. Proceed to the **Parameters** tab.

Instead of entering the model parameters in this tab sheet, we will run the cyclic accumulation and optimisation tool. This procedure consists of three steps.

Click the **Cyclic accumulation and optimisation tool** button on the **Parameters** tab:

![Figure 100: Cyclic accumulation and optimisation tool](image)

A new window opens:
Cyclic vertical capacity and stiffness of circular underwater footing
Create and assign material data sets

The three steps of the cyclic accumulation and optimisation procedure are represented by the three tab sheets (Cyclic accumulation, Stress-strain curves and Parameter optimisation) in the window.

Cyclic accumulation

The purpose of this step is to determine the equivalent number of undrained cycles of the peak load, \(N_{eq} \), for a given soil contour diagram and load distribution.

The following storm composition data will be used:

Table 19: Composition of cyclic vertical load for a 6-hour design storm

<table>
<thead>
<tr>
<th>#</th>
<th>Load ratio</th>
<th>N cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
<td>2371</td>
</tr>
<tr>
<td>2</td>
<td>0.11</td>
<td>2877</td>
</tr>
<tr>
<td>3</td>
<td>0.26</td>
<td>1079</td>
</tr>
<tr>
<td>4</td>
<td>0.40</td>
<td>163</td>
</tr>
<tr>
<td>5</td>
<td>0.51</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>0.62</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>0.75</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0.89</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Select an appropriate contour diagram from **Select contour diagram data** in the **Cyclic accumulation** tab. In this case, select **Drammen clay, OCR = 4**.
2. The load ratios and number of cycles from the storm composition can be entered in the empty table. The storm composition is given in Table 19 (on page 122) (Jostad, Torgersrud, Engin & Hofstede, 2015) as the cyclic vertical load normalized with respect to the maximum cyclic vertical load (Load ratio) and the number of cycles (N cycles). It is here assumed that the cyclic shear stress history in the soil is proportional to the maximum cyclic vertical load of the footing. The table should be entered such that the smallest load ratio is at the top and the highest load ratio is at the bottom.

Note: The design storm is a load history that is transformed into parcels of constant cyclic load. Each parcel corresponds to a number of cycles at a constant amplitude determined from the time record of the load component. See Reference Manual, Cyclic accumulation and optimisation tool, for more information.

When you've entered the load parcels in the table, the **Load ratio vs N cycles** graph will show a graphic representation of the data. For the data given here and the logarithmic scale turned on, it will look like the graph below.

![Load ratio vs N cycles graph (logarithmic scale)](image)

Figure 102: Load ratio vs N cycles graph (logarithmic scale)

3. **Click Calculate** to calculate the equivalent number of cycles N_{eq}

The selected contour diagram is plotted together with the shear stress history for a scaling factor where the soil fails (here defined at 15% shear strain) at the last cycle (Figure 103 (on page 124)) and the loci of end-points of the stress history for different scaling factors. The calculated equivalent number of cycles corresponds to the value on the x-axis at the last point of the locus of end-points and is equal to 6.001.

Stress-strain curves

The purpose of this tab is to obtain non-linear stress-strain curves for a given (calculated) N_{eq} and given cyclic over average shear stress ratio (here taken equal to the ratio between cyclic and average vertical load during the storm).

1. Go to the **Stress-strain curves** tab.
2. For the N_{eq} determination, keep the default option **From cyclic accumulation**. The calculated equivalent number of cycles is adopted from the previous tab.
3. Keep the **Soil behaviour** as **Anisotropic**, and the **Scaling factor, DSS** and **Scaling factor, TX** as 1.

Note:
- Cyclic strength can be scaled based on available soil specific cyclic strength.
- If the plasticity index and/or water content of the soil is different from Drammen clay, the cyclic strength can be scaled by applying a scaling factor different from 1 (see Andersen, 2015 for details).

4. Set the cyclic to average shear stress ratio for DSS, triaxial compression and triaxial extension, describing the inclination of the stress path, to appropriate values. In this example, the following input values are selected to obtain strain compatibility at failure, i.e. the same cyclic and average shear strain for the different stress paths at failure.
 - a. cyclic to average ratio for DSS $(\Delta \tau_{cyc}/\Delta \tau)_{DSS} = 1.1$,
 - b. triaxial compression $(\Delta \tau_{cyc}/\Delta \tau)_{TXC} = 1.3$ and
 - c. extension $(\Delta \tau_{cyc}/\Delta \tau)_{TXE} = -6.3$

5. Select the load type of interest, **Total load case** is selected for this first material. DSS and triaxial contour diagrams are plotted together with stress paths described by the cyclic to average ratios (Figure 104 (on page 125)). Notice that the shear stresses are normalised with respect to the static undrained shear strength in compression. The extracted stress-strain curves are plotted below the contour diagrams.

6. Click **Calculate** to produce the corresponding normalised stress-strain curves below the contour diagrams. See Figure 104 (on page 125) for the outcome.

![Stress-strain curves for total load](image_url)

Figure 104: Stress-strain curves for total load

Parameter optimisation

The purpose of the optimisation is to obtain a set of parameters for the UDCAM-S model.

The parameter ranges and the results you will see after the optimisation are shown in the following table:

Table 20: Parameter ranges and results after optimization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Min value</th>
<th>Max value</th>
<th>Optimised value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of the initial shear modulus to the degraded shear strength at failure in triaxial compression</td>
<td>G_{max}/τ^C</td>
<td>400.0</td>
<td>480.0</td>
<td>420.4</td>
<td>-</td>
</tr>
<tr>
<td>Shear strain at failure in triaxial compression</td>
<td>γ_f^C</td>
<td>6.0</td>
<td>8.0</td>
<td>6.431</td>
<td>%</td>
</tr>
</tbody>
</table>
Cyclic vertical capacity and stiffness of circular underwater footing

Create and assign material data sets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Min value</th>
<th>Max value</th>
<th>Optimised value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear strain at failure in triaxial extension</td>
<td>γ_f^E</td>
<td>5.0</td>
<td>8.0</td>
<td>7.873</td>
<td>%</td>
</tr>
<tr>
<td>Shear strain at failure in direct simple shear</td>
<td>γ_f^{DSS}</td>
<td>8.0</td>
<td>12.0</td>
<td>11.97</td>
<td>%</td>
</tr>
<tr>
<td>Ratio of the cyclic compression shear strength over the undrained static compression shear strength</td>
<td>τ^C / S_u^C</td>
<td>1.14</td>
<td>1.16</td>
<td>1.152</td>
<td>-</td>
</tr>
<tr>
<td>Ratio of the cyclic DSS shear strength over the undrained static compression shear strength</td>
<td>τ^{DSS} / S_u^C</td>
<td>0.89</td>
<td>0.91</td>
<td>0.9051</td>
<td>-</td>
</tr>
<tr>
<td>Ratio of the cyclic extension shear strength over the undrained static compression shear strength</td>
<td>τ^E / S_u^C</td>
<td>0.62</td>
<td>0.64</td>
<td>0.6208</td>
<td>-</td>
</tr>
<tr>
<td>Reference degraded shear strength at failure in the triaxial compression test</td>
<td>τ^C_{ref}</td>
<td>-</td>
<td>-</td>
<td>149.7</td>
<td>-</td>
</tr>
<tr>
<td>Reference depth</td>
<td>y_{ref}</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>m</td>
</tr>
<tr>
<td>Increase of degraded shear strength at failure in the triaxial compression test with depth</td>
<td>τ^C_{inc}</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>kN/m²/m</td>
</tr>
<tr>
<td>Ratio of the degraded shear strength at failure in the triaxial extension test to the degraded shear strength in the triaxial compression test</td>
<td>τ^E / τ^C</td>
<td>-</td>
<td>-</td>
<td>0.5389</td>
<td>-</td>
</tr>
<tr>
<td>Initial mobilisation of the shear strength with respect to the degraded TXC shear strength</td>
<td>τ^0 / τ^C</td>
<td>-</td>
<td>-</td>
<td>2.332E-3</td>
<td>-</td>
</tr>
<tr>
<td>Ratio of the degraded shear strength at failure in the direct simple shear test to the degraded shear strength in the triaxial compression test</td>
<td>τ^{DSS} / τ^C</td>
<td>-</td>
<td>-</td>
<td>0.7858</td>
<td>-</td>
</tr>
</tbody>
</table>

Use the following steps to calculate the optimised values.

1. Click the **Parameter optimisation** tab.
2. Enter the parameters of the clay in the **Static properties**. Set $s_u^C_{ref}$ to 130.0 and K_0 determination to **Manual** and set K_0 to 1.0.
3. Propose minimum and maximum values for the parameters listed in **Table 20** (on page 125).
Note:

In the optimisation, set minimum and maximum values of C/S_u^C, τ_{DSS}/S_u^C, and τ^{E}/S_u^C close to the results from the strain interpolation if one wants to keep these values.

Calculate G_{max}/τ^C by dividing G_{max} from soil properties with results for $(\tau^C/S_u^C) \cdot S_u^C$.

Set the minimum and maximum values close to this value.

4. Click **Calculate** to obtain optimised parameters (Figure 105 (on page 127) and column Optimised value of Table 20 (on page 125)).

After a few seconds, the optimal values are shown in the corresponding column in the Parameter ranges table. Based on these values, the optimised parameters are calculated and listed in the right-hand table.

![Figure 105: Optimised parameters for total load](image)

The resulting stress-strain curves from test simulations with the UDCAM-S model using the optimised parameters are shown together with the target points from the contour diagrams.

5. When the calculation has finished, save the application state of the Cyclic accumulation and optimisation tool. The saved data will be used when creating another material. To save the application state, press the **Save** button at the top of the window. Save the state under the file name `optimised_total.json`.

6. Copy the optimised material parameters: Press the **Copy parameters** button and go back to the Soil-UDCAM-S window describing the material.

7. Click the **Paste material** button.

The values in the **Parameters** tab are replaced with the new values.
8. Go to the Initial tab and set K_0 to 1 by setting K_0 determination to Manual, check $K_{0,x} = K_{0,z}$ (default) and set $K_{0,x}$ to 1.

9. Click OK to close the created material.

10. Assign the Clay - total load material set to the soil layer in the borehole.

8.5.2 Material: Clay - cyclic load

Create a material for the second clay. Some information from the Clay - total load material will be reused. The optimisation of the parameters has to be recalculated though, based on other conditions.

The parameter ranges and the results you will see after the optimisation are shown in the following table:
Table 21: Parameter ranges and results after optimisation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Min value</th>
<th>Max value</th>
<th>Optimised value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of the initial shear modulus to the degraded shear strength at failure in triaxial compression</td>
<td>G_{max} / τ^C</td>
<td>700.0</td>
<td>800.0</td>
<td>703.2</td>
<td>-</td>
</tr>
<tr>
<td>Shear strain at failure in triaxial compression</td>
<td>γ_f^C</td>
<td>1.0</td>
<td>3.0</td>
<td>2.966</td>
<td>%</td>
</tr>
<tr>
<td>Shear strain at failure in triaxial extension</td>
<td>γ_f^E</td>
<td>1.0</td>
<td>3.0</td>
<td>2.699</td>
<td>%</td>
</tr>
<tr>
<td>Shear strain at failure in direct simple shear</td>
<td>γ_f^{DSS}</td>
<td>1.0</td>
<td>3.0</td>
<td>2.946</td>
<td>%</td>
</tr>
<tr>
<td>Ratio of the cyclic compression shear strength over the undrained static compression shear strength</td>
<td>τ^C / S_{uC}</td>
<td>0.66</td>
<td>0.67</td>
<td>0.6667</td>
<td>-</td>
</tr>
<tr>
<td>Ratio of the cyclic DSS shear strength over the undrained static compression shear strength</td>
<td>τ^{DSS} / S_{uC}</td>
<td>0.47</td>
<td>0.49</td>
<td>0.4787</td>
<td>-</td>
</tr>
<tr>
<td>Ratio of the cyclic extension shear strength over the undrained static compression shear strength</td>
<td>τ^E / S_{uC}</td>
<td>0.57</td>
<td>0.59</td>
<td>0.5790</td>
<td>-</td>
</tr>
<tr>
<td>Reference degraded shear strength at failure in the triaxial compression test</td>
<td>τ^C_{ref}</td>
<td>-</td>
<td>-</td>
<td>86.67</td>
<td>-</td>
</tr>
<tr>
<td>Reference depth</td>
<td>y_{ref}</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>m</td>
</tr>
<tr>
<td>Increase of degraded shear strength at failure in the triaxial compression test with depth</td>
<td>τ^C_{inc}</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>kN/m²/m</td>
</tr>
<tr>
<td>Ratio of the degraded shear strength at failure in the triaxial extension test to the degraded shear strength in the triaxial compression test</td>
<td>τ^E / τ^C</td>
<td>-</td>
<td>-</td>
<td>0.8684</td>
<td>-</td>
</tr>
<tr>
<td>Initial mobilisation of the shear strength with respect to the degraded TXC shear strength</td>
<td>τ^0 / τ^C</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>-</td>
</tr>
<tr>
<td>Ratio of the degraded shear strength at failure in the direct simple shear test to the degraded shear strength in the triaxial compression test</td>
<td>τ^{DSS} / τ^C</td>
<td>-</td>
<td>-</td>
<td>0.7181</td>
<td>-</td>
</tr>
</tbody>
</table>
Use the following steps to calculate the optimised values.

1. Copy the **Clay - total load** material.
2. Enter Clay - cyclic load for the identification.
3. Go to the **Parameters** tab.

 Like for the first material, also here the parameters will be determined using the **Cyclic accumulation and optimisation tool**.
4. Click the **Cyclic accumulation and optimisation tool** button on the **Parameters** tab to open the tool.
5. Click the **Open file** button ![Open file](image) and choose the application state optimised_total.json that was saved after optimisation of the first material. All tabs will be filled with data.
6. Leave the **Cyclic accumulation** tab as is.
7. Go to the **Stress-strain curves** tab, set load type to **Cyclic load**.
8. Press **Calculate** and let the calculation finish.

 The stress-strain curves are shown:

 ![Stress-strain curves for cyclic load](image)

 Figure 107: Stress-strain curves for cyclic load

9. Go to the **Parameter optimisation** tab. Accept the notification about resetting the optimisation tab to get updated values.
10. Make sure that $s_{u,ref}$ is set to 130.0 and set K_0 determination to Automatic.
11. Modify the minimum and maximum values for the **Parameter ranges**, see [Table 21](#) on page 129 for values.
12. Click **Calculate** to get the optimised parameters.
The optimised parameters are shown in the figure below and are also listed in the column 'Optimised value' in Table 21 (on page 129).

13. Save the application state under the file name `optimised_cyclic.json`.
14. Copy the optimised material parameters: Click the Copy parameters button and go back to the Soil-UDCAM-S window.
15. Click the Paste material button.
 The values in the Parameters tab are replaced with the new values.
16. Click OK to close the created material.

8.5.3 Material: Concrete

Create a new material for the concrete foundation.

1. Choose Soil and interfaces as the Set type and click the New button.
2. Enter Concrete footing for the Identification and select Linear elastic as the Material model.
3. Set the Drainage type to Non-porous.
4. Enter the properties of the layer:
a. a unit weight of 24 kN/m³,
b. Young’s modulus of 30E6 kN/m² and
c. a Poisson’s ratio of 0.1.

5. Click OK to close the created material.
6. Click OK to close the Material sets window.

8.6 Define the structural elements

The concrete foundation and interfaces have to be defined.

8.6.1 Define the concrete foundation

1. Click the Structures tab to proceed with the input of structural elements in the Structures model.
2. Select the Create soil polygon feature in the side toolbar and click on (0.0, 0.0), (11.0, 0.0), (11.0, -1.0) and (0.0, -1.0).

 Note: Do not yet assign the Concrete footing material to the polygon.

8.6.2 Define the interfaces

Create an interface to model the interaction of the foundation and the surrounding soil. Extend the interface half a meter into the soil. Make sure the interface is at the outer side of the footing (inside the soil). The interface is created in two parts.

1. Click Create interface to create the upper part from (11.0, -1.0) to (11.0, 0.0), Figure 109 (on page 133).
2. Click Create interface to create the lower part (between foundation and soil) from (11.0, -1.5) to (11.0, -1.0), Figure 109 (on page 133).
3. The upper part interface (between the foundation and the soil) is modeled with a reduced strength of 30%.
 a. Make a copy of the Clay - total load material and name it Clay - total load - interface.
 b. Reduce the interface strength by setting R_{inter} to 0.3 and
c. assign this to the upper part of the interface.

4. For Phase 3 (Calculate vertical cyclic stiffness), another material with reduced strength is needed.
 a. Make a copy of the Clay - cyclic load material and name it Clay - cyclic load - interface.
 b. Reduce the interface strength by setting R_{inter} to 0.3.
 c. Do not assign this yet. It will be assigned when defining Phase 3.

5. For the interface material extended into the soil, full soil strength is applied ($R_{\text{water}} = 1.0$), as implicitly defined in the original clay material Clay - total load. Keep the default setting Material mode: From adjacent soil.

Figure 109: Geometry of the model
8.6.3 Define a vertical load

In order to calculate the cyclic vertical capacity and stiffness, a vertical load is applied at the top of the foundation.

1. Define a distributed load by selecting Create line load and click (0.0, 0.0) and (11.0, 0.0).
2. In the Selection explorer set the value of \(q_{y,\text{start,ref}} \) to \(-1000\) kN/m/m.

8.7 Generate the mesh

1. Proceed to the Mesh mode.
2. Click the Generate mesh button in the side toolbar. For the Element distribution parameter, use the option Medium (default).
3. Click the View mesh button to view the mesh.

![Image of generated mesh]

Figure 110: The generated mesh

4. Click the Close tab to close the Output program.
8.8 Define and perform the calculation

The calculation consists of the following phases:

- In the Initial phase, the initial stress conditions are generated by the K0 procedure, using the default values.
- In Phase 1 the footing is activated by assigning the Concrete material to the corresponding polygon. The interfaces are also activated.
- In Phase 2 the total cyclic vertical bearing capacity and stiffness are calculated.
- In Phase 3 the cyclic vertical bearing capacity and stiffness are computed.

8.8.1 Initial phase

1. Proceed to Staged construction mode.
2. In the Phases explorer double-click the initial phase.
3. Make sure that Calculation type is set to K0 procedure.
4. Click OK to close the Phases window.

8.8.2 Phase 1: Footing and interface activation

1. Click the Add phase button to create a new phase.
2. Phase 1 starts from the Initial phase.
3. Activate the footing by assigning the Concrete footing material to the corresponding polygon.
4. Activate the interfaces as well.

8.8.3 Phase 2: Bearing capacity and stiffness

In Phase 2 the total cyclic vertical bearing capacity and stiffness are calculated. The vertical bearing capacity is obtained by increasing the vertical load (stress) until failure. The stiffness is calculated as the force divided by the displacement.

1. Click the Add phase button to create a new phase.
2. Phase 2 starts from Phase 1.
3. In the Phases window go to the Deformation control parameters subtree and select the Reset displacements to zero option and Reset small strain.
4. Activate the line load.
8.8.4 Phase 3: Calculate vertical cyclic stiffness

In Phase 3, which also starts from Phase 1, the vertical cyclic stiffness is calculated by activating the Clay - cyclic load material. The vertical bearing capacity is obtained by increasing the vertical load (stress) until failure.

1. Click the Add phase button to create a new phase.
2. In the Phases window set the Start from phase to Phase 1.
3. Go to the Deformation control parameters subtree and select the Reset displacements to zero option and Reset small strain. Close this window.
4. Replace the soil material with the Clay - cyclic load.
5. Assign the material Clay - cyclic load - interface material to the upper part of the interface. The material mode of the lower part of the interface remains From adjacent soil.
6. Activate the line load.

The calculation definition is now complete.

8.8.5 Execute the calculation

Before starting the calculation it is recommended to select nodes or stress points for a later generation of load-displacement curves or stress and strain diagrams.

To do this, follow these steps:

1. Click the Select points for curves button in the side toolbar. The connectivity plot is displayed in the Output program and the Select points window is activated.
2. Select a node at the bottom of the footing (0.0, 0.0). Close the Select points window.
3. Click on the Update tab to close the Output program and go back to the Input program.
4. Click the Calculate button to calculate the project.

8.9 Results

8.9.1 Total load cyclic vertical bearing capacity

Applied vertical stress (load): \(q_y = -1000 \text{ kN/m}^2 \)

Failure at: \(q_y = 719.1 \text{ kN/m}^2 \) \(\text{[Figure 111 (on page 137)]} \)

Total vertical bearing capacity: \(V_{\text{cap}} = q_y \cdot \text{Area} = 719.1 \text{ kN/m}^2 \cdot \pi \cdot (11 \text{ m})^2 = 273.35 \text{ MN} \)
For comparison, the static vertical bearing capacity (using the static undrained shear strength) is found to be 228.1 MN. The reason for the larger vertical bearing capacity is that the shear strengths increase due to the higher strain rate during wave loading, compared to the value obtained from standard monotonic laboratory tests, and this effect is larger than the cyclic degradation during the storm.

8.9.2 Cyclic load cyclic vertical bearing capacity

Applied vertical stress (load): \(q_y = -1000 \, \text{kN/m}^2 \)

Failure at: \(q_y = 458.1 \, \text{kN/m}^2 \) (Figure 112 (on page 137))

Total vertical bearing capacity:

\[
V_{\text{cap}} = q_y \cdot \text{Area} = 458.1 \, \text{kN/m}^2 \cdot \pi \cdot (11 \, \text{m})^2 = 174.14 \, \text{MN}
\]
8.9.3 Vertical stiffness

The vertical stiffness (accounting for cyclic loading) is calculated as $k_y = F_y / u_y$ for both the total and the cyclic component. The total vertical displacement includes accumulated vertical displacements during the storm. Load versus stiffness is shown in the following image:

![Figure 113: Vertical load versus stiffness for total and cyclic load components](image-url)

Figure 113: Vertical load versus stiffness for total and cyclic load components
This example concerns the stability of a reservoir dam under conditions of drawdown. Fast reduction of the reservoir level may lead to instability of the dam due to high pore water pressures that remain inside the dam. To analyse such a situation using the finite element method, a fully coupled flow-deformation analysis is required. Time-dependent pore pressure is coupled with deformations development and used in a stability analysis. This example demonstrates how coupled analysis and stability analysis can interactively be performed in PLAXIS 2D.

Objectives

- Defining time-dependent hydraulic conditions (Flow functions)
- Defining transient flow conditions using water levels

Geometry

The dam to be considered is 30 m high and the width is 172.5 m at the base and 5 m at the top. The dam consists of a clay core with a well graded fill at both sides. The normal water level behind the dam is 25 m high. A situation is considered where the water level drops 20 m. The normal phreatic level at the right hand side of the dam is 10 m below ground surface.

9.1 Create new project

To create the new project, follow these steps:

1. Start the Input program and select Start a new project from the Quick start dialog box.
2. In the **Project** tab sheet of the **Project properties** window, enter an appropriate title.

3. Keep the default units and constants and set the model **Contour** to:
 - \(x_{\text{min}} = -130.0 \text{ m}, x_{\text{max}} = 130.0 \text{ m} \)
 - \(y_{\text{min}} = -30.0 \text{ m} \) and \(y_{\text{max}} = 30.0 \text{ m} \)

9.2 Define the soil stratigraphy

In order to define the underlying foundation soil, a borehole needs to be added and material properties must be assigned. A layer of 30 m overconsolidated silty sand is considered as sub-soil in the model.

1. Click the **Create borehole** button and create a borehole at \(x = 0 \).
 The **Modify soil layers** window pops up.

2. Add a soil layer extending from ground surface \((y = 0.0) \) to a depth of 30 m \((y = -30.0) \).

9.3 Create and assign material data sets

Three material data sets need to be created for the soil layers.

The layers have the following properties:

Table 22: Material properties of the dam and subsoil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Core</th>
<th>Fill</th>
<th>Subsoil</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>Model</td>
<td>Mohr-Coulomb</td>
<td>Mohr-Coulomb</td>
<td>Mohr-Coulomb</td>
<td>-</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>Type</td>
<td>Undrained (B)</td>
<td>Drained</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>(\gamma_{\text{unsat}})</td>
<td>16.0</td>
<td>16.0</td>
<td>17.0</td>
<td>kN/m(^3)</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>(\gamma_{\text{sat}})</td>
<td>18.0</td>
<td>20.0</td>
<td>21.0</td>
<td>kN/m(^3)</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young's modulus</td>
<td>(E')</td>
<td>1.5 \cdot 10^3</td>
<td>2.0 \cdot 10^4</td>
<td>5.0 \cdot 10^4</td>
<td>kN/m(^2)</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>(\nu_{ur})</td>
<td>0.35</td>
<td>0.33</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion</td>
<td>(c_{\text{ref}})</td>
<td>-</td>
<td>5.0</td>
<td>1.0</td>
<td>kN/m(^2)</td>
</tr>
<tr>
<td>Undrained shear strength</td>
<td>(s_{u,\text{ref}})</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>kN/m(^2)</td>
</tr>
</tbody>
</table>
Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Core</th>
<th>Fill</th>
<th>Subsoil</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction angle</td>
<td>φ’</td>
<td>-</td>
<td>31</td>
<td>35.0</td>
<td>°</td>
</tr>
<tr>
<td>Dilatancy angle</td>
<td>ψ</td>
<td>-</td>
<td>1.0</td>
<td>5.0</td>
<td>°</td>
</tr>
<tr>
<td>Young’s modulus inc.</td>
<td>E_{inc}</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>kN/m2/m</td>
</tr>
<tr>
<td>Reference level</td>
<td>y_{ref}</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td>Undrained shear strength inc.</td>
<td>$s_{u,\text{inc}}$</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>kN/m2</td>
</tr>
</tbody>
</table>

Groundwater

Data set	-	Hypres	Hypres	Hypres	-
Model	-	Van Genuchten	Van Genuchten	Van Genuchten	-
Subsoil /Topsoil	-	Subsoil	Subsoil	Subsoil	-
Type	-	Very fine	Coarse	Coarse	-
Flow parameters - Use defaults	None	None	None	None	-
Horizontal permeability	k_x	1.0·10$^{-4}$	1.00	0.01	m/day
Vertical permeability	k_y	1.0·10$^{-4}$	1.00	0.01	m/day

To create the material sets, follow these steps:

1. ![Material sets](Image) Open the **Material sets** window.
2. Create data sets under the **Soil and interfaces** set type according to the information given in Table 22 (on page 140). Note that the **Thermal**, **Interfaces** and **Initial** tabsheets are not relevant (no thermal properties, no interfaces or **K0 procedure** are used).
3. Assign the **Subsoil** material dataset to the soil layer in the borehole.

9.4 Define the dam

The dam will be defined in the **Structures** mode.

1. Click the **Polygon** button ![Polygon](Image) to define a polygon. Specify points located at (-80.0 0.0), (92.5 0.0), (2.5 30.0) and (-2.5 30.0).
2. Click the **Cut polygon** button ![Cut polygon](Image) to create the sub-clusters in the dam. Define two cutting lines from (-10.0 0.0) to (-2.5 30.0) and from (10.0 0.0) to (2.5 30.0).
3. Assign the corresponding material datasets to the soil clusters.
9.5 Generate the mesh

1. Proceed to the Mesh mode.
2. Click the Generate mesh button in the side toolbar. For the Element distribution parameter, use the option Fine.
3. Click the View mesh button to view the mesh.

![Figure 115: The generated mesh](image)

4. Click the Close tab to close the Output program.

9.6 Define and perform the calculation

The following cases will be considered:

- A long term situation with water level at 25 m
- A quick drop of the water level from 25 to 5 m
- A slow drop of the water from 25 to 5 m
- A long term situation with water level at 5 m

In addition to Initial phase, the calculation consists of eight phases. In the initial phase, initial stresses and initial pore water pressures of the dam under normal working conditions are calculated using Gravity loading. For this situation the water pressure distribution is calculated using a steady-state groundwater flow calculation. The first and second phases both start from the initial phase (i.e. a dam with a reservoir level at 25 m) and the water level is lowered to 5 m. A distinction is made in the time interval at which this is done (i.e. different speeds of water level reduction; rapid drawdown and slow drawdown). In both cases the water pressure distribution is calculated using a fully coupled flow-deformation analysis. The third calculation phase also starts from the initial phase and considers the long-term behaviour of the dam at the low reservoir level of 5 m, which involves a steady-state groundwater flow calculation to calculate the water pressure distribution. Finally, for all the water pressure situations the safety factor of the dam is calculated by means of phi-c reduction.

Note that only the water conditions will be defined for different calculation phases. The model requires no changes in the geometry. Water levels can be defined in the Flow conditions mode.
9.6.1 Initial phase: Gravity loading

By default the initial phase is added in the Phases explorer.

1. Proceed to the Flow conditions mode by clicking the corresponding tab.
2. Activate Fill and Core.
3. In the Phases explorer double-click Initial phase.
4. In the General subtree specify the name of the phase (e.g. High reservoir).
5. Select the Gravity loading option as calculation type.
6. Select the Steady state groundwater flow option as Pore pressure calculation type.
7. Uncheck the Ignore suction option in the Deformation control parameters subtree. The Phases window is displayed.

![Figure 116: The Phases window]

8. Click OK to close the Phases window.

Note: Note that by default Undrained behaviour (A) and (B) are ignored for a Gravity loading calculation type. The corresponding option is available in the Deformation control parameters subtree in the Phases window.

9. Define the water level corresponding to the level of water in the reservoir prior to the drawdown. The water level consists of four points; starting at the very left side at a level of 25 m above the ground surface (-132.0 25.0); the second point is just inside the dam at a level of 25 m (-10.0 25.0); the third point is near the dam toe (93.0 -10.0) and the forth point just outside the right boundary at a level of 10 m below the ground surface (132.0 -10.0).

Note: Straight lines can be defined by keeping the Shift key pressed while defining the geometry.

The defined water level is shown in the figure:
Define and perform the calculation

10. Right-click the created water level and select the **Make global** option in the appearing menu. Note that the global water level can also be specified by selecting the corresponding option in the *GlobalWaterLevel* menu in the *Water* subtree in the *Model conditions*.

11. In the *Model explorer* expand the *Attributes library*.

12. Expand the *Water levels* subtree. The levels created in the *Flow conditions* mode are grouped under *User water levels*.

13. Expand the *User water levels* subtree. The created water level can be seen named as *UserWaterLevel_1*. The location of the water levels in *Model explorer* is shown in the figure:

![Figure 118: Water levels in Model explorer](image)

14. Double-click on the created water level and rename it as 'FullReservoir_steady'. This is a distinctive name that satisfies the naming requirements (no invalid characters).

15. Expand the *Model conditions* subtree.

16. Expand the *GroundWaterFlow* subtree. Note that by default the boundary at the bottom of the model is set to *Closed*. This is relevant for this example.
Phase 1: Rapid drawdown

In this phase rapid drawdown of the reservoir level is considered.

1. Click the Add phase button to create a new phase.
2. In the Phases explorer double-click the newly added phase. The Phases window is displayed.
3. In the General subtree specify the name of the phase (e.g. Rapid drawdown). Note that the High reservoir phase is automatically selected in the Start from phase drop-down menu.
4. Select the Fully coupled flow-deformation option as calculation type.
5. Assign a value of 5 days to the Time interval parameter.
6. Make sure that the Reset displacements to zero and Reset small strain options are selected in the Deformation control parameters subtree.
7. Click OK to close the Phases window.
8. Due to the global nature of the water levels, if an attribute is assigned to a water level in the model it will affect it in all phases. The water level in this phase has the same geometry with the one previously defined, however it is time dependent and a function needs to be assigned to it. As a result, it is required to create a new water level with the same geometry and different attributes. In Model explorer right-click on FullReservoir_Steady and select the Duplicate option in the appearing menu.

Figure 119: GroundwaterFlow boundary conditions in Model explorer
A copy of the water level is created.

9. Rename the newly created water level as 'FullReservoir_Rapid'.

The behaviour of the water levels can be described by specifying **Flow functions**. Note that **Flow functions** are global entities and are available under the **Attributes library** in **Model explorer**.

To define the flow functions:

a. Right-click the **Flow functions** option in the **Attributes library** in the **Model explorer** and select the **Edit** option in the appearing menu. The **Flow functions** window is displayed.

b. In the **Head functions** tabsheet add a new function by clicking the corresponding button. The new function is highlighted in the list and options to define the function are displayed.

c. Specify a proper name to the function for the rapid drawdown (e.g. Rapid).

d. Select the **Linear** option from the **Signal** drop-down menu.

e. Specify a time interval of 5 days.

f. Assign a value of -20 m to **ΔHead**, representing the amount of the head decrease.

A graph is displayed showing the defined function.
Stability of dam under rapid drawdown

Define and perform the calculation

10. In the Model explorer right-click on FullReservoir_Rapid and select the Use as global water level option in the appearing menu.

11. Expand the FullReservoir_Rapid subtree. Note that the water level is composed of 3 water segments. Select the water segment in the upstream shoulder (left from the dam, at the reservoir side).

12. Expand the subtree of the selected segment and select the Time dependent option for the TimeDependency parameter.

13. Select the Rapid option for the HeadFunction parameter.

The following figure shows the selected water segment in Model explorer.

14. In the Water subtree under the Model conditions in the Model explorer note that the new water level (FullReservoir_Rapid) is assigned to GlobalWaterLevel.
The configuration of the phase is shown in the following figure.

Figure 122: Configuration of the rapid drawdown phase

Note that the shadow under the water level segment in the upstream shoulder indicates the variation of the water level during the phase.

9.6.3 Phase 2: Slow drawdown

In this phase the drawdown of the reservoir level is performed at a lower rate.

1. Select the High reservoir phase in the Phases explorer.
2. Click the Add phase button to create a new phase.
3. In Phases explorer double-click the newly added phase. The Phases window is displayed.
4. In the General subtree specify the name of the phase (e.g. Slow drawdown). The High reservoir phase is automatically selected for the Start from phase parameter.
5. Select the Fully coupled flow deformation option as calculation type.
6. Assign a value of 50 days to the Time interval parameter.
7. Make sure that the Reset displacements to zero and Reset small strain options are selected in the Deformation control parameters subtree. The Ignore suction option is unchecked by default.
8. Click OK to close the Phases window.
9. Create a new duplicate of the high water level. The newly created water level will be used as Global water level in the slow drawdown phase. Even though the water level in this phase has the same geometry as the previously defined ones, the flow function for the time dependency is different.
10. Rename the newly created water level as 'FullReservoir_Slow'.
11. Add a new flow function following the steps described for the previous phase.
 a. Specify a proper name to the function for the slow drawdown (e.g. Slow).
 b. Select the Linear option from the Signal drop-down menu.
 c. Specify a time interval of 50 days.
 d. Assign a value of -20 m to ΔHead, representing the amount of the head decrease. A graph is displayed showing the defined function.
 e. Click OK to close the Flow functions window.
12. In the Model explorer right-click on FullReservoir_Slow and select the Use as global water level option in the appearing menu.

13. Expand the FullReservoir_Slow subtree. Select the water segment in the upstream shoulder (left from the dam, at the reservoir side).
 The segment selected in Model explorer is indicated by a red colour in the model.

14. Expand the subtree of the selected segment and select the Time dependent option for the TimeDependency parameter.

15. Select the Slow option for the HeadFunction parameter.
 In the Water subtree under the Model conditions in the Model explorer note that the new water level (FullReservoir_Slow) is assigned to GlobalWaterLevel.

9.6.4 Phase 3: Low level

This phase considers the steady-state situation of a low reservoir level.

1. Select the High reservoir phase in the Phases explorer.
2. Click the Add phase button to create a new phase.
3. In Phases explorer double-click the newly added phase.
 The Phases window is displayed.
4. In the General subtree specify the name of the phase (e.g. Low level). The High reservoir phase is automatically selected for the Start from phase parameter.
5. Make sure that the Plastic option is selected as calculation type.
6. Make sure that the Steady state groundwater flow option is selected as Pore pressure calculation type.
7. In the Deformation control subtree, select Ignore und. behaviour (A,B) and make sure that the Reset displacements to zero and Reset small strain options are selected in the Deformation control parameters subtree.
8. Uncheck the Ignore suction option in the Deformation control parameters subtree.
9. Click **OK** to close the **Phases** window.

10. Define the water level corresponding to the level of water in the reservoir after the drawdown. The water level consists of four points: starting at the very left side at a level of 5 m above the ground surface (-132.0 5.0); the second point is inside the dam at a level of 5 m (-60.0 5.0); third point at (93.0 -10.0) and the fourth point just outside the right boundary at a level of 10 m below the ground surface (132.0 -10.0).

11. Rename the newly created water level as 'LowLevel_Steady'.

12. In the **Water** subtree under the **Model conditions** in the **Model explorer** assign the new water level (LowLevel_Steady) to **GlobalWaterLevel**.

![Figure 124: Model for the low level case in the Flow conditions mode](image)

All the defined water levels are shown in the following figure.

9.6.5 Phase 4 to 7

In Phases 4 to 7 stability calculations are defined for the previous phases.

1. Select the parent phase in the **Phases explorer**.
2. Click the **Add phase** button to create a new phase. Proceed to the **Phases** window.
3. Set **Calculation type** to **Safety**.
4. In the **Deformation control** subtree, select **Reset displacements to zero**.
5. In the **Numerical control parameters** subtree, uncheck **Use default iter parameter** box and set the **Max steps** parameter to 30 for Phase 4 and to 50 for phases 5 to 7.
6. In the **Deformation control parameters** subtree, check the **Ignore suction** option for all the safety analyses.

Note: Taking suction into account in a **Safety** phase gives a higher factor of safety, hence ignoring suction in a **Safety** phase is more conservative. In the **Safety** analysis of PLAXIS 2D, any unbalance due to changing from suction to no suction is first solved before the factor of safety is determined. As a result, ΣM_f can decrease in the first part of the calculation.
9.6.6 Execute the calculation

1. Proceed to the **Staged construction** mode.
2. Select nodes located at the crest (-2.5 30.0) and at the toe of the dam (-80.0 0.0).
3. Click the **Calculate** button to calculate the project and ignore the warnings regarding the influence of suction in the **Safety** analysis.
4. Save the project after the calculation has finished.

9.7 Results

The results of the four groundwater flow calculations in terms of pore pressure distribution are shown in the figures below. Four different situations were considered:

- The steady-state situation with a high (standard) reservoir level.
- The pore pressure distribution after rapid drawdown of the reservoir level.

Figure 126: Pore pressure distribution, \(p_{\text{active}} \), for high reservoir level
Stability of dam under rapid drawdown

Results

Figure 127: Pore pressure distribution, \((p_{\text{active}}) \), after rapid drawdown

- The pore pressure distribution after slow drawdown of the reservoir level

Figure 128: Pore pressure distribution, \((p_{\text{active}}) \), after slow drawdown

- The steady-state situation with a low reservoir level

Figure 129: Pore pressure distribution, \((p_{\text{active}}) \), for low reservoir level

Note:

The phreatic level can be smoother with a high refinement of the mesh in the core.

When the change of pore pressure is taken into account in a deformation analysis, some additional deformation of the dam will occur. These deformations and the effective stress distribution can be viewed on the basis of the results of the first four calculation phases. Here, attention is focused on the variation of the safety factor of the dam for the different situations. Therefore, the development of \(\Sigma M_{\text{sf}} \) is plotted for the phases 4 to 7 as a function of the displacement of the dam crest point \((-2.5\,30.0)\), see .
Rapid drawdown of a reservoir level can reduce the stability of a dam significantly. Fully coupled flow-deformation and stability analysis can be performed with PLAXIS 2D to effectively analyse such situations.

Note:
By removing the suction in the safety analysis, an out-of-balance force is introduced at the beginning of the calculation. Without the contribution of the suction, the ΣM_{sf} can decrease in the first part of the calculation.
In this chapter the flow through an embankment will be considered. Flow takes place from the left side (river) to the right side (polder). As a result seepage will take place at the right side of the embankment. The position of the phreatic level depends on the river water level, which varies in time.

Objectives

- Performing **Flow only** analysis
- Using cross section curves

Geometry

The figure below shows the layout of the embankment problem where free surface groundwater flow occurs. The crest of the embankment has a width of 2.0 m. Initially the water in the river is 1.5 m deep. The difference in water level between the river and the polder is 3.5 m.

![Figure 131: Geometry of the project](image)

10.1 **Create new project**

To create a new project, follow these steps:

1. Start the Input program and select **Start a new project** from the **Quick select** dialog box.
2. In the **Project** tab sheet of the **Project properties** window, enter an appropriate title.
3. In the **Model** tab sheet keep the default options for **Model (Plane strain)**, and **Elements (15-Node)**.
4. Set the model dimensions to:
a. $x_{\text{min}} = 0.0$ m, $x_{\text{max}} = 23.0$ m
b. $y_{\text{min}} = 0.0$ m and $y_{\text{max}} = 6.0$ m

5. Keep the default values for units, constants and the general parameters and click **OK**. The Project properties window closes.

10.2 Define the soil stratigraphy

A number of boreholes has to be defined according to the information in the table below.

Table 23: Information on the boreholes in the model

<table>
<thead>
<tr>
<th>Borehole number</th>
<th>Location (x)</th>
<th>Head</th>
<th>Top</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>4.5</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>8.0</td>
<td>4.5</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>10.0</td>
<td>4.0</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>20.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

To define the soil stratigraphy:

1. Click the Create borehole button and create a borehole at $x = 2$. The Modify soil layers window pops up.
2. Specify the head value as 4.5.
3. Add a soil layer in the borehole. Set the top level to 3. No change is required for the bottom boundary of the layer.
4. Create the rest of the required boreholes according to the information given in **Table 23** (on page 155).

10.3 Create and assign material data set

A material data set needs to be created for the soil layer. The sand layer has the following properties:

Table 24: Material properties of the embankment material (sand)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Sand</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>-</td>
<td>Linear elastic</td>
<td>-</td>
</tr>
</tbody>
</table>
Flow through an embankment

Generate the mesh

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Sand</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage type</td>
<td>-</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>γ_{unsat}</td>
<td>20</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>20</td>
<td>kN/m3</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus</td>
<td>E'</td>
<td>$1.0 \cdot 10^4$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>$\nu_{ur'}$</td>
<td>0.3</td>
<td>-</td>
</tr>
</tbody>
</table>

Groundwater

<table>
<thead>
<tr>
<th>Data set</th>
<th>-</th>
<th>Standard</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Type</td>
<td>-</td>
<td>Medium fine</td>
<td>-</td>
</tr>
<tr>
<td>Flow parameters - Use defaults</td>
<td>-</td>
<td>From data set</td>
<td>-</td>
</tr>
<tr>
<td>- Horizontal permeability</td>
<td>k_x</td>
<td>0.02272</td>
<td>m/day</td>
</tr>
<tr>
<td>- Vertical permeability</td>
<td>k_y</td>
<td>0.02272</td>
<td>m/day</td>
</tr>
</tbody>
</table>

To create the material sets, follow these steps:

1. Define the soil material according to the table above and assign the material dataset to the cluster. Skip the Interfaces and Initial tabsheets as these parameters are not relevant.
2. After assigning the material to the soil cluster close the Modify soil layers window.

10.4 Generate the mesh

1. Proceed to the Mesh mode.
2. Select the lines as shown in the figure below. In Selection Explorer specify a Coarseness factor of 0.5.

3. Click the Generate mesh button to generate the mesh. The Mesh options window appears.
4. Select the **Fine** option in the **Element distribution** drop-down menu and generate the mesh.

5. Click the **View mesh** button to view the mesh.

![Figure 132: The generated mesh](image)

6. Click the **Close** tab to close the Output program.

10.5 Define and perform the calculation

In this project only the flow related behaviour will be analysed. The calculation process consists of three phases that will be defined in the **Staged construction** mode. In the initial phase, the groundwater flow in steady state is calculated for an average river level. In Phase 1, the transient groundwater flow is calculated for a harmonic variation of the water level. In Phase 2, the calculation is similar as in Phase 1, but the period is longer.

Click the **Staged construction** tab to proceed to the corresponding mode. A global level is automatically created according to the head values specified for each borehole ([Table 23](#) (on page 155)). The model in the **Staged construction** mode is shown in the figure below.

![Figure 133: The model in the Staged construction mode](image)

Note: Note that the ‘internal’ part of the global water level will be replaced by the result of the groundwater flow calculation.

10.5.1 Initial phase

1. Double-click the initial phase in the **Phases** explorer.
2. In the **General** subtree select the **Flow only** option as the **Calculation type**.
3. The default values of the remaining parameters are valid for this phase. Click **OK** to close the **Phases** window.
4. In the **Model explorer** expand the **Model conditions** subtree.
5. In the **Model conditions** expand the **GroundwaterFlow** subtree. The default boundary conditions are relevant for the initial phase. Check that only the bottom boundary is closed.
6. In the **Model explorer** expand the **Groundwater flow BCs** subtree. The boundary conditions at the extremities of the model are automatically created by the program and listed under the **GWFlowBaseBC**.

Note: Note that when the boundary conditions under the **Groundwater flow BCs** subtree are active, the model conditions specified in the **GroundwaterFlow** are ignored.

10.5.2 Phase 1

1. Click the **Add phase** button to create a new phase.
2. In the **Phases explorer** double-click the current phase.
3. In the **General** subtree select the **Transient groundwater flow** option as pore pressure calculation type.
4. Set the **Time interval** to 1.0 day.
5. In the **Numerical control parameters** subtree set the **Max number of steps stored** parameter to 50. The default values of the remaining parameters will be used.
6. Click **OK** to close the **Phases** window.
7. Click the **Select multiple objects** button in the side toolbar.
8. Click **Select lines** > **Select water boundaries**.
9. Select the hydraulic boundaries as shown in the following figure.
10. Right-click and click **Activate**.
11. In the **Selection explorer** set the **Behaviour** parameter to **Head**.
12. Set h_{ref} to 4.5.
13. Select the **Time dependent** option in the **Time dependency** drop-down menu.
14. Click on the **Head function** parameter.
15. Click the **Add** button ↗ to add a new head function.
16. In the **Flow functions** window select the **Harmonic** option in the **Signal** drop-down menu. Set the amplitude to 1.0 m, the phase angle to 0° and the period to 1.0 day.

![Flow functions window](image)

Figure 135: The flow function for the rapid case

17. Click **OK** to close the **Flow functions** window.

10.5.3 Phase 2

1. Click the **Add phase** button 🚀 to create a new phase.
2. In the **Phases explorer** double-click the current phase.
3. In the **General** subtree select the **Initial phase** in the **Start from phase** drop-down menu.
Flow through an embankment
Define and perform the calculation

4. Select the Transient groundwater flow option as Pore pressure calculation type.
5. Set the Time interval to 10.0 day.
6. In the Numerical control parameters subtree set the Max number of steps stored parameter to 50. The default values of the remaining parameters will be used.
7. Click OK to close the Phases window.
8. In the Selection explorer click on the Head function parameter.
9. Click the Add button to add a new head function.
10. In the Flow functions window select the Harmonic option in the Signal drop-down menu. Set the amplitude to 1.0 m, the phase angle to 0° and the period to 10.0 day.

![Harmonic Signal Parameter](image)

Figure 136: The flow function for the slow case

11. Click OK to close the Flow functions window.

10.5.4 Execute the calculation

To select points to be considered in curves:

1. In the Staged construction mode click the Select point for curves button in the side toolbar. The Connectivity plot is displayed in the Output program.
2. In the Select points window select nodes located nearest to (0.0 3.0) and (8.0 2.5) to be considered in curves.
3. Click Update to close the output program.
4. Click the Calculate button to calculate the project.
5. Save the project after the calculation has finished.
10.6 Results

In the Output program the Create animation tool can be used to animate the results displayed in the Output program. To create the animation follow these steps:

1. Click the menu Stresses > Pore pressures > Groundwater head.
2. Select the menu File > Create animation. The corresponding window pops up.
3. Define the name of the animation file and the location where it will be stored. By default the program names it according to the project and stores it in the project folder. In the same way animations can be created to compare the development of pore pressures or flow field.
4. Deselect the Initial phase and Phase 2, such that only Phase 1 is included in the animations and rename the animation accordingly. The Create animation window looks like this:

![Create animation window](image)

Figure 137: Create animation window

To view the results in a cross section:

1. Click the Cross section button in the side toolbar.

 The Cross section points window pops up and the start and the end points of the cross section can be defined.

 Draw a cross section through the points (2.0 3.0) and (20.0 1.0). The results in the cross section are displayed in a new window.

2. In the Cross section view select the menu Stresses > Pore pressures > p active.
3. Select the Cross section curves option in the Tools menu. After the curves window pops up, select the menu Selection style > Individual steps.

4. Select Phase 1. The variation of the results in the cross section is displayed in a new window.

5. Do the same for Phase 2. This may take about 30 seconds.

6. The variation of the results due to different time intervals in harmonic variation at a specific cross section can be compared, see the figures below.

It can be seen that the slower variation of the external water level has a more significant influence on the pore pressures in the embankment and over a larger distance.

![Cross section curve graph](image)

Figure 138: Active pore pressure variation in the cross section in Phase 1
Figure 139: Active pore pressure variation in the cross section in Phase 2
Flow around a sheet pile wall

In this tutorial the flow around a sheetpile wall will be analysed. The geometry model of the tutorial Dry excavation using a tie back wall (on page 51) will be used. The Well feature is introduced in this example.

Objectives
- Using wells

11.1 Create and assign material data set

The material parameters remain unchanged from the original project. The used groundwater parameters are shown in the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Silt</th>
<th>Sand</th>
<th>Loam</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data set</td>
<td>-</td>
<td>USDA</td>
<td>USDA</td>
<td>USDA</td>
<td>-</td>
</tr>
<tr>
<td>Model</td>
<td>-</td>
<td>Van Genuchten</td>
<td>Van Genuchten</td>
<td>Van Genuchten</td>
<td>-</td>
</tr>
<tr>
<td>Soil - Type</td>
<td>-</td>
<td>Silt</td>
<td>Sand</td>
<td>Loam</td>
<td>-</td>
</tr>
<tr>
<td>< 2μm</td>
<td>-</td>
<td>6.0</td>
<td>4.0</td>
<td>20.0</td>
<td>%</td>
</tr>
<tr>
<td>2μm - 50μm</td>
<td>-</td>
<td>87.0</td>
<td>4.0</td>
<td>40.0</td>
<td>%</td>
</tr>
<tr>
<td>50μm - 2mm</td>
<td>-</td>
<td>7.0</td>
<td>92.0</td>
<td>40.0</td>
<td>%</td>
</tr>
<tr>
<td>Flow parameters - Use defaults</td>
<td>-</td>
<td>From data set</td>
<td>From data set</td>
<td>From data set</td>
<td>-</td>
</tr>
<tr>
<td>Permeability in horizontal direction</td>
<td>K_x</td>
<td>0.5996</td>
<td>7.128</td>
<td>0.2497</td>
<td>m/day</td>
</tr>
<tr>
<td>Permeability in vertical direction</td>
<td>K_y</td>
<td>0.5996</td>
<td>7.128</td>
<td>0.2497</td>
<td>m/day</td>
</tr>
</tbody>
</table>
To create the project:

1. Open the project defined in the tutorial Dry excavation using a tie back wall (on page 51).
2. Save the project under a different name (e.g. 'Flow around a sheet pile wall').

11.2 Define the structural elements

1. In the **Structures** mode click the **Create hydraulic conditions** button in the side toolbar.
2. Select the **Create well** option in the appearing menu.
3. Draw the first well by clicking on (42.0 23.0) and (42.0 20.0).
4. Draw the second well by clicking on (58.0 23.0) and (58.0 20.0).

11.3 Generate the mesh

1. Proceed to the **Mesh** mode.
2. Select the cluster and two wells as shown in the figure below. In **Selection Explorer** specify a **Coarseness factor** of 0.25.

![Figure 140: Indication of the local refinement of the mesh in the model](image)

3. Click the **Generate mesh** button to generate the mesh. Use the default option for the **Element distribution** parameter (Medium).
4. Click the **View mesh** button to view the mesh.

![Figure 141: The generated mesh](image)
5. Click the Close tab to close the Output program.

11.4 Define and perform the calculation

1. Proceed to the Staged construction mode. In this project only a groundwater flow analysis will be performed.
2. In the Phases explorer remove the existing phases (Phases 1 to 6).

11.4.1 Initial phase

In this phase the initial steady-state pore pressure distribution is considered. To define the initial phase:

1. In the General subtree of the Phases window select the Flow only option in the Calculation type dropdown menu.
2. The standard settings for the remaining parameters are valid for this phase.
3. The default groundwater flow boundary conditions are valid. Only the bottom boundary of the model (BoundaryYMin) is Closed whereas the rest of the boundaries are Open.
4. The water level created according to the head specified in the borehole is assigned as GlobalWaterLevel.

11.4.2 Phase 1

In this phase the lowering of the phreatic level in the excavation down to \(y = 20 \) m. This corresponds to the final excavation level in the project Dry excavation using a tie back wall (on page 51).

1. Click the Add phase button \(\text{Add phase} \) to create a new phase.
2. In the Phases window the calculation type is by default defined as Flow only.
3. The default option (Steady state groundwater flow) will be used as Pore pressure calculation type.
4. In the Staged construction mode activate the interface elements along the wall.
5. Multi-select the wells in the model and activate them.
6. In the Selection explorer the behaviour of the wells is by default set to Extraction.
7. Set the discharge value to 0.7 m\(^3\)/day/m.
8. Set the \(h_{\text{min}} \) value to 20.0 m. This means that water will be extracted as long as the groundwater head at the wall location is at least 20 m.

The figure below shows the parameters assigned to the wells in the Selection explorer.
Note: Total discharge in Phase 1 is similar to the total outflow at the final excavation level as obtained from the tutorial [Dry excavation using a tie back wall](on page 51).

11.4.3 Execute the calculation

The definition of the calculation process is complete.

1. Click the **Calculate** button to calculate the project.
2. Save the project after the calculation has finished.

11.5 Results

To display the flow field:

1. Select the Phase 1 in the drop down menu.
2. Click the menu **Stresses** > **Groundwater flow** > |q|.

 A scaled representation of the results (scale factor = 5.0) is shown:

 ![Figure 143: The resulting flow field at the end of Phase 1](image)

 Figure 143: The resulting flow field at the end of Phase 1

Click the menu **Stresses** > **Pore pressures** > |p active|. Compare the results with the ones of the Phase 6 of the project defined in the tutorial [Dry excavation using a tie back wall](on page 51).

In the following figure, the resulting active pore pressures when the water level in the excavation is at \(y = 20 \) m is displayed for both projects.
Figure 144: Comparison of the resulting active pore pressures

A: Active pore pressures (Phase 6 in the tutorial Dry excavation using a tie back wall (on page 51))

B: Active pore pressures (Phase 1 in the current project)
This tutorial demonstrates the applicability of PLAXIS 2D to agricultural problems. The potato field tutorial involves a loam layer on top of a sandy base. The water level in the ditches remains unchanged. The precipitation and evaporation may vary on a daily basis due to weather conditions. The calculation aims to predict the variation of the water content in the loam layer in time as a result of time-dependent boundary conditions.

Objectives
- Defining precipitation

Geometry
Due to the symmetry of the problem, it is sufficient to simulate a strip with a width of 15.0 m, as indicated in the image below. The thickness of the loam layer is 2.0 m and the sand layer is 3.0 m deep.

![Potato field geometry](image)

Figure 145: Potato field geometry

12.1 Create new project
To create a new project, follow these steps:

1. Start the Input program and select **Start a new project** from the Quick select dialog box.
2. In the Project tabsheet of the Project properties window, enter an appropriate title.
3. In the Model tabsheet keep the default options for Model (Plane strain), and Elements (15-Node).
4. Set the model dimensions to:
 a. \(x_{\text{min}} = 0.0 \text{ m} \) and \(x_{\text{max}} = 15.0 \text{ m} \)
 b. \(y_{\text{min}} = 0.0 \text{ m} \) and \(y_{\text{max}} = 5.0 \text{ m} \)
5. Keep the default values for units, constants and the general parameters and press OK.
 The Project properties window closes.

12.2 Define the soil stratigraphy

Due to the geometry of the model, the options for snapping should be changed.

1. Click the Snapping options button \(\) in the bottom toolbar.

 ![Snapping Options](image)

 Figure 146: Modification of the Number of snap intervals

2. In the appearing window set the Number of snap intervals to 100.
3. Click OK to close the Snapping window.

To define the soil stratigraphy:

4. Click the Create borehole button \(\) and create two boreholes located at \(x = 0.75 \) and \(x = 2.00 \) respectively.
5. In the Modify soil layers window add two soil layers.
6. In the first borehole set Top = 3.75 and Bottom = 3.00 for the uppermost soil layer. Set Bottom = 0 for the lowest soil layer.
7. In the second borehole set Top = 5.00 and Bottom = 3.0 for the uppermost soil layer. Set Bottom = 0 for the lowest soil layer.
8. For both boreholes the Head is located at \(y = 4.25 \).

The image below shows the soil stratigraphy defined in the Modify water levels window.
12.3 Create and assign material data sets

Two material data sets need to be created for the soil layers.

The layers have the following properties:

Table 26: Material properties of the material

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Loam</th>
<th>Sand</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>Model</td>
<td>Linear elastic</td>
<td>Linear elastic</td>
<td>-</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>Type</td>
<td>Drained</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>γ_{unsat}</td>
<td>19</td>
<td>20</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>19</td>
<td>20</td>
<td>kN/m3</td>
</tr>
</tbody>
</table>

*Figure 147: Soil stratigraphy in the **Modify soil layers** window*
To create the material sets, follow these steps:

1. Create the material data sets according to Table 26 (on page 171).
2. Assign the material data set to the corresponding clusters in the model.

12.4 Generate the mesh

1. Proceed to the **Mesh** mode.
2. Multi-select the line segments composing the upper boundary of the model:

 ![Figure 148: The upper boundary of the model](image)

3. In the **Selection explorer** set the **Coarseness factor** parameter to 0.5.
4. Click the **Generate mesh** button to generate the mesh. Use the default option for the **Element distribution** parameter (**Medium**).
Potato field moisture content

Define and perform the calculation

5. Click the **View mesh** button to view the mesh.

![Figure 149: The generated mesh](image)

6. Click the **Close** tab to close the Output program.

12.5 Define and perform the calculation

The calculation process consists of two phases. In the initial phase, the groundwater flow in steady state is calculated. In Phase 1, the transient groundwater flow is calculated.

12.5.1 Initial phase

1. Proceed to the **Staged construction** mode. In this project only groundwater flow analysis will be performed.
2. In the **Phases** window select the **Flow only** option as the **Calculation type** in the **General** subtree.
3. The default values of the remaining parameters are valid for this phase. Click **OK** to close the **Phases** window.
4. Right-click the bottom boundary of the model and select the **Activate** option in the appearing menu.
5. In the **Selection explorer** select the **Head** option in the **Behaviour** drop-down menu and set \(h_{ref} \) to 3.0.

6. In the **Model explorer** expand the **Model conditions** subtree.
7. Expand the **GroundwaterFlow** subtree. Set **BoundaryXMin** and **BoundaryXMax** to **Closed**.
8. Expand the **Water** subtree. The borehole water level is assigned to **GlobalWaterLevel**.

Note: Note that the conditions explicitly assigned to groundwater flow boundaries are taken into account. In this tutorial the specified **Head** will be considered for the bottom boundary of the model, NOT the **Closed** condition specified in the **GroundwaterFlow** subtree under the **Model conditions**.
12.5.2 Transient phase

In the transient phase the time-dependent variation of precipitation is defined. A discharge function with the following precipitation data will be defined.

Table 27: Precipitation data

<table>
<thead>
<tr>
<th>ID</th>
<th>Time [days]</th>
<th>Δ Discharge [m3/day/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>$1 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$3 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>$-2 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>$1 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>$1 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>$-2 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>$-2 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>$-2 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>$-1 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>$-1 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Click the Add phase button to create a new phase.
2. In General subtree of the Phases window select the Transient groundwater flow as Pore pressure calculation type.
3. Set the Time interval to 15 days.
4. In the Numerical control parameters subtree set the Max number of steps stored to 250. The default values of the remaining parameters will be used.
5. Click **OK** to close the **Phases** window.

6. **Note:** To define the precipitation data a discharge function should be defined.

In the **Model explorer** expand the **Attributes library** subtree.

7. Right-click on **Flow functions** and select the **Edit** option in the appearing menu. The **Flow functions** window pops up.

8. In the **Discharge functions** tabsheet add a new function.

9. Specify a name for the function and select the **Table** option in the **Signal** drop-down menu.

10. Click the **Add row** button to introduce a new row in the table. Complete the data using the values given in the **Table 27** (on page 174).

 The following image shows the defined function for precipitation.

 ![Image of the Flow function window](image)

 Figure 150: The **Flow function** window displaying the precipitation data and plot

11. Close the windows by clicking **OK**.

12. In the **Model explorer** expand the **Precipitation** subtree under **Model conditions** and activate it. The default values for discharge \((q)\) and condition parameters \((\psi_{\text{min}} = -1.0 \text{ m} \text{ and } \psi_{\text{max}} = 0.1 \text{ m})\) are valid.

13. For the precipitation select the **Time dependent** option in the corresponding drop-down menu and assign the defined function.

14. In the **Model explorer** set DischargeFunction_1 under **Discharge function**.
12.5.3 Execute the calculation

1. Click the Calculate button to calculate the project.
2. Save the project after the calculation has finished.

12.6 Results

The calculation was focused on the time-dependent saturation of the potato field.

To view the results:

1. Click the menu Stresses > Groundwater flow > Saturation.
2. Double click the legend.

The Legend settings window pops up. Define the settings as shown:
3. The following figure shows the spatial distribution of the saturation for the last time step.

![Saturation field at day 15](image)

Figure 153: Saturation field at day 15

4. Create an animation of the transient phase for a better visualisation of the results.

5. It is also interesting to create a vertical cross section at $x = 4$ m and draw cross section curves for pore pressure and saturation.
Using PLAXIS 2D, it is possible to simulate dynamic soil-structure interaction. Here the influence of a vibrating source on its surrounding soil is studied. Oscillations caused by the generator are transmitted through the footing into the subsoil.

The physical damping due to the viscous effects is taken into consideration via the Rayleigh damping. Also, due to axisymmetry 'geometric damping' can be significant in attenuating the vibration.

The modelling of the boundaries is one of the key points. In order to avoid spurious wave reflections at the model boundaries (which do not exist in reality), special conditions have to be applied in order to absorb waves reaching the boundaries.

Objectives

- Defining a **Dynamic** calculation
- Defining dynamic loads
- Defining dynamic boundary conditions (viscous)
- Defining material damping by means of Rayleigh damping

Geometry

The vibrating source is a generator founded on a 0.2 m thick concrete footing of 1 m in diameter.

Figure 154: Generator founded on elastic subsoil
13.1 Create new project

To create the new project, follow these steps:

1. Start the Input program and select Start a new project from the Quick select dialog box.
2. In the Project tabsheet of the Project properties window, enter an appropriate title.
3. Due to the three dimensional nature of the problem, an axisymmetric model is used. In the Model tabsheet select the Axisymmetric option for Model and keep the default option for Elements (15-Noded).
4. Keep the default values for units and constants and set the model contour to:
 a. \(x_{\text{min}} = 0.0 \text{ m} \) and \(x_{\text{max}} = 20.0 \text{ m} \)
 b. \(y_{\text{min}} = 0.0 \text{ m} \) and \(y_{\text{max}} = 20.0 \text{ m} \)

 Note: The model boundaries should be sufficiently far from the region of interest, to avoid disturbances due to possible reflections. Although special measures are adopted in order to avoid spurious reflections (viscous boundaries), there is always a small influence and it is still a good habit to put boundaries far away. In a dynamic analysis, model boundaries are generally taken further away than in a static analysis.

13.2 Define the soil stratigraphy

The subsoil consists of one layer with a depth of 10 m. The ground level is defined at \(y = 0 \). Note that water conditions are not considered in this example. To define the soil stratigraphy:

1. Click the Create borehole button and create a borehole at \(x = 0 \).
2. Create a soil layer extending from ground surface (\(y = 0.0 \)) to a depth of 10 m (\(y = -10.0 \)).
3. Keep the Head in the borehole at 0.0 m. This means that the sub-soil is fully saturated.

13.3 Create and assign material data sets

The soil layer consists of sandy clay, which is assumed to be elastic. Create a data set under the Soil and interfaces set type according to the information given in Table 28 (on page 180). The specified Young’s modulus seems relatively high. This is because the dynamic stiffness of the ground is generally considerably larger than the static stiffness, since dynamic loadings are usually fast and cause very small strains.
Table 28: Material properties of the material

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>Model</td>
<td>Linear elastic</td>
<td>-</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>Type</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>y_{unsat}</td>
<td>20</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>y_{sat}</td>
<td>20</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td>E'</td>
<td>$5.0 \cdot 10^4$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν'</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_0 determination</td>
<td>-</td>
<td>Automatic</td>
<td>-</td>
</tr>
<tr>
<td>Lateral earth pressure coefficient</td>
<td>$K_{0,x}$</td>
<td>0.50</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: When using Mohr-Coulomb or linear elastic models the wave velocities V_p and V_s are calculated from the elastic parameters and the soil weight. V_p and V_s can also be entered as input; the elastic parameters are then calculated automatically. See also Elastic parameters and the Wave Velocity relationships in the Parameters Tabsheet of the Reference Manual.

13.4 Define the structural elements

The generator is defined in the **Structures** mode.

The material properties of the footing are defined in the table below.

Table 29: Material properties of the footing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>-</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Isotropic</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Axial stiffness</td>
<td>EA</td>
<td>$7.6 \cdot 10^6$</td>
<td>kN/m</td>
</tr>
<tr>
<td>Flexural rigidity</td>
<td>EI</td>
<td>$2.4 \cdot 10^4$</td>
<td>kNm2/m</td>
</tr>
</tbody>
</table>
Generate the mesh

1. Proceed to the **Mesh** mode.

2. Click the **Generate mesh** button to generate the mesh. Use the default option for the **Element distribution** parameter (**Medium**).

3. Click the **View mesh** button to view the mesh.

 The resulting mesh is shown. Note that the mesh is automatically refined under the footing.
4. Click the Close tab to close the Output program.

13.6 Define and perform the calculation

The calculation consists of 4 phases and it will be defined in the Staged construction mode.

13.6.1 Initial phase

1. Click the Staged construction tab to proceed with the definition of the calculation phases.
2. The initial phase has already been introduced. The default settings of the initial phase will be used in this tutorial.

13.6.2 Phase 1: Footing

1. Click the Add phase button to create a new phase. The default settings of the added phase will be used for this calculation phase.
2. Activate the footing.
3. Activate the static component of the distributed load. In the Selection explorer set $q_{y,\text{start},\text{ref}}$ value to -8 kN/m/m. Do not activate the dynamic component of the load.
13.6.3 Phase 2: Start generator

In this phase, a vertical harmonic load, with a frequency of 10 Hz and amplitude of 10 kN/m2, is applied to simulate the vibrations transmitted by the generator. Five cycles with a total time interval of 0.5 sec are considered.

1. Click the Add phase button to create a new phase.
2. In the General subtree in the Phases window, select the Dynamic option as calculation type.
3. Set the Dynamic time interval parameter to 0.5 s.
4. In the Deformation control parameters subtree in the Phases window select the Reset displacements to zero parameter. The default values of the remaining parameters will be used for this calculation phase.
5. In the Model explorer expand the Attributes library subtree.
6. Right-click the Dynamic multipliers subtree and select the Edit option from the appearing menu. The Multipliers window pops up.
7. Click the Load multipliers tab.
8. Click the Add button to introduce a multiplier for the loads.
9. Define a Harmonic signal with an Amplitude of 10, a Phase of 0° and a Frequency of 10 Hz and as shown:
10. In the **Selection explorer**, activate the dynamic component of the load (DynLineLoad_1).

11. Specify the components of the load as \((q_x,\text{start, ref}, q_y,\text{start, ref}) = (0.0, -1.0)\). Click Multiplier_y in the dynamic load subtree and select the LoadMultiplier_1 option from the drop-down menu.
Note: The dynamic multipliers can be defined in the Geometry modes as well as in the Calculation modes.

12. Special boundary conditions have to be defined to account for the fact that in reality the soil is a semi-infinite medium. Without these special boundary conditions the waves would be reflected on the model boundaries, causing perturbations. To avoid these spurious reflections, viscous boundaries are specified at Xmax and Ymin. The dynamic boundaries can be specified in the Model explorer > Model conditions > Dynamics subtree.

![Image of Model explorer](image)

Figure 160: Boundary conditions for Dynamic calculations

13.6.4 Phase 3: Stop generator

1. Click the Add phase button to create a new phase.
2. In the General subtree in the Phases window, select the Dynamic option as calculation type.
3. Set the Dynamic time interval parameter to 0.5 s.
4. In the Staged construction mode deactivate the dynamic component of the surface load. Note that the static load is still active. The dynamic boundary conditions of this phase should be the same as in the previous phase.
13.6.5 Execute the calculation

1. Click the Select points for curves button in the side toolbar and select nodes located at the ground surface (ex: (1.4 0.0), (1.9 0.0), (3.6 0.0)) to consider in curves.
2. Click the Calculate button to calculate the project.
3. After the calculation has finished, save the project by clicking the Save button.

13.6.6 Additional calculation with damping

In a second calculation, material damping is introduced by means of Rayleigh damping. Rayleigh damping can be entered in the material data set. The following steps are necessary:

1. Save the project under another name.
2. Open the material data set of the soil.
3. In the General tabsheet click the box next to the Rayleigh α parameter.
 Note that the display of the General tabsheet has changed displaying the Single DOF equivalence box.
4. In order to introduce 5% of material damping, set the value of the ξ parameter to 5% for both targets and set the frequency values to 1 and 10 for the Target 1 and Target 2 respectively.
5. Click on one of the definition cells of the Rayleigh parameters. The values of α and β are automatically calculated by the program.
6. Click **OK** to close the data base.
7. Check whether the phases are properly defined (according to the information given before) and start the calculation.

13.7 Results

The **Curve generator** feature is particularly useful for dynamic analysis. You can easily display the actual loading versus time (input) and also displacements, velocities and accelerations of the pre-selected points versus time. The evolution of the defined multipliers with time can be plotted by assigning **Dynamic time** to the x-axis and u_y to the y-axis.

The figure below shows the response of the pre-selected points at the surface of the structure. It can be seen that even with no damping, the waves are dissipated which can be attributed to the geometric damping.

![Figure 161: Input of Rayleigh damping](image-url)
The presence of damping is clear in the following figure.

It can be seen that the vibration is totally seized when some time is elapsed after the removal of the force (at $t = 0.5$ s). Also, the displacement amplitudes are lower. Compare the curves without and with damping.

It is possible in the Output program to display displacements, velocities and accelerations at a particular time, by choosing the appropriate option in the **Deformations** menu. The figure below shows the total accelerations in the soil at the end of phase 2 ($t = 0.5$ s).
Figure 164: Acceleration ($|a|$) in the soil at the end of phase 2 (with damping)
Pile driving is a dynamic process that causes vibrations in the surrounding soil. Moreover, excess pore pressures are generated due to the quick stress increase around the pile. In this example focus is put on the irreversible deformations below the pile. In order to simulate this process most realistically, the behaviour of the sand layer is modelled by means of the Hardening Soil model with small-strain stiffness.

Geometry

This example involves driving a concrete pile through an 11 m thick clay layer into a sand layer. The pile has a diameter of 0.4 m.

![Figure 165: Pile driving situation](image)

14.1 Create new project

To create the new project, follow these steps:

1. Start the Input program and select **Start a new project** from the **Quick start** dialog box.
2. In the **Project** tab sheet of the **Project properties** window, enter an appropriate title.
3. In the **Model** tab sheet select the **Axisymmetry** option for **Model** and keep the default option for **Elements** (15-Noded).

4. Keep the default values for units and constants and set the model **Contour** to:
 - \(x_{\text{min}} = 0.0 \text{ m} \) and \(x_{\text{max}} = 30.0 \text{ m} \)
 - \(y_{\text{min}} = 0.0 \text{ m} \) and \(y_{\text{max}} = 18.0 \text{ m} \)

14.2 Define the soil stratigraphy

The subsoil is divided into an 11 m thick clay layer and a 7 m thick sand layer. The phreatic level is assumed to be at the ground surface. Hydrostatic pore pressures are generated in the whole geometry according to this phreatic line. To define the soil stratigraphy:

1. Click the **Create borehole** button and create a borehole at \(x = 0 \).
2. Create two soil layers extending from \(y = 18.0 \) to \(y = 7.0 \) and from \(y = 7.0 \) to \(y = 0.0 \).
3. Set the **Head** in the borehole at 18.0 m.

14.3 Create and assign material data sets

The clay layer is modelled with the Mohr-Coulomb model. The behaviour is considered to be **Undrained (B)**. An interface strength reduction factor is used to simulate the reduced friction along the pile shaft.

In order to model the non-linear deformations below the tip of the pile in a right way, the sand layer is modelled by means of the Hardening Soil model with small-strain stiffness. Because of the fast loading process, the sand layer is also considered to behave undrained. The short interface in the sand layer does not represent soil-structure interaction. As a result, the interface strength reduction factor should be taken equal to unity (rigid).

The layers have the following properties:

Table 30: Material properties of the material

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Clay</th>
<th>Sand</th>
<th>Pile</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>Model</td>
<td>Mohr-Coulomb</td>
<td>HS small</td>
<td>Linear elastic</td>
<td></td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>Type</td>
<td>Undrained (B)</td>
<td>Undrained (A)</td>
<td>Non-porous</td>
<td></td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>(\gamma_{\text{unsat}})</td>
<td>16</td>
<td>17</td>
<td>24</td>
<td>kN/m³</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>(\gamma_{\text{sat}})</td>
<td>18</td>
<td>20</td>
<td>-</td>
<td>kN/m³</td>
</tr>
<tr>
<td>Parameter</td>
<td>Name</td>
<td>Clay</td>
<td>Sand</td>
<td>Pile</td>
<td>Unit</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young's modulus (constant)</td>
<td>E'</td>
<td>5.0·10^3</td>
<td>-</td>
<td>3·10^7</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Secant stiffness in standard drained triaxial test</td>
<td>E_{50}^{ref}</td>
<td>-</td>
<td>5.0·10^4</td>
<td>-</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Tangent stiffness for primary oedometer loading</td>
<td>E_{oed}^{ref}</td>
<td>-</td>
<td>5.0·10^4</td>
<td>-</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Unloading / reloading stiffness</td>
<td>E_{ur}^{ref}</td>
<td>-</td>
<td>1.5·10^5</td>
<td>-</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Power for stress-level dependency of stiffness</td>
<td>m</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν_{ur}</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion</td>
<td>c'_{ref}</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Undrained shear strength</td>
<td>$s_{u,ref}$</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Friction angle</td>
<td>φ'</td>
<td>0</td>
<td>31.0</td>
<td>-</td>
<td>°</td>
</tr>
<tr>
<td>Dilatancy parameter</td>
<td>ψ</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>°</td>
</tr>
<tr>
<td>Shear strain at which $G_s = 0.722 \ G_0$</td>
<td>$\gamma_{0.7}$</td>
<td>-</td>
<td>1.0·10^{-4}</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shear modulus at very small strains</td>
<td>G_{0}^{ref}</td>
<td>-</td>
<td>1.2·10^5</td>
<td>-</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Young's modulus inc.</td>
<td>E'_{inc}</td>
<td>1.0·10^3</td>
<td>-</td>
<td>-</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Reference level</td>
<td>y_{ref}</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td>Undrained shear strength inc.</td>
<td>$s_{u,inc}$</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Reference level</td>
<td>y_{ref}</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>m</td>
</tr>
</tbody>
</table>

Interface

<table>
<thead>
<tr>
<th>Interface strength type</th>
<th>Type</th>
<th>Manual</th>
<th>Rigid</th>
<th>Rigid</th>
<th>-</th>
</tr>
</thead>
</table>

Initial

| K_0 determination | - | Automatic | Automatic | Automatic | - |
| Lateral earth pressure coefficient | $K_{0,x}$ | 0.5000 | 0.4850 | 0.5000 | - |

1. Create the material data sets according to Table 30 (on page 191).
14.4 Define the structural elements

The pile is defined as a column of 0.2 m width. The Interface elements are placed along the pile to model the interaction between the pile and the soil. The interface should be extended to about half a meter into the sand layer. Note that the interface should be defined only at the side of the soil. A proper modelling of the pile-soil interaction is important to include the material damping caused by the sliding of the soil along the pile during penetration and to allow for sufficient flexibility around the pile tip.

Note: Use the Zoom in feature to create the pile and the interface.

![Figure 166: Extended interface](image)

14.4.1 Define the pile

To define the concrete pile:

1. Click the Structures tab to proceed with the input of structural elements in the Structures mode.
2. Select the Create polygon feature in the side toolbar and click on (0.0 18.0), (0.2 18.0), (0.2 7.0) and (0.0 7.0).
3. Create a negative interface to model the interaction of the pile with the surrounding soil by clicking on (0.2 6.6) and (0.2 18.0).

The pile is made of concrete, which is modelled by means of the linear elastic model considering non-porous behaviour. In the beginning, the pile is not present, so initially the clay properties are also assigned to the pile cluster.
14.4.2 Define a load

In order to model the driving force, a distributed unit load is created on top of the pile. To create a dynamic load:

1. Define a distributed load by clicking on **Create load > Create line load** from the tool bar and then on (0.0 18.0) and (0.2 18.0).

2. The load components will be defined in the **Selection explorer**. Note that the static component of the load will not be used in this project. The program will neglect the static components of the load if it (static load) is not activated.

3. Expand the **Dynamic load** subtree and specify a unit load in the gravity direction.

4. Click the Multiplier_y drop down menu and click on the appearing plus button. The **Multipliers** window pops up and a new load multiplier is automatically added.

5. Define a **Harmonic** signal with an **Amplitude** of 5000, a **Phase** of 0° and a **Frequency** of 50 Hz and as shown in the figure below. During the pile driving phase, we will only consider half a cycle (0.01 s) of this signal.

![Figure 167: Definition of an Harmonic multiplier](image)

Note:

Note that dynamic multipliers can be defined by right-clicking the **Dynamic multipliers** subtree under **Attributes library** in the **Model explorer**.

Note that dynamic multipliers are attributes and as such it is possible to define them in all the program's modes.

The final geometry model is shown in the following figure:
14.5 Generate the mesh

1. Proceed to the **Mesh** mode.
2. Click the **Generate mesh** button to generate the mesh. Use the default option for the **Element distribution** parameter (**Medium**).
3. Click the **View mesh** button to view the mesh.
 The resulting mesh is shown. Note that the mesh is automatically refined under the footing.
4. Click the Close tab to close the Output program.

14.6 Define and perform the calculation

The calculation consists of 3 phases. In the Initial phase, the initial stress conditions are generated. In the Phase 1 the pile is created. In the Phase 2 the pile is subjected to a single stroke, which is simulated by activating half a harmonic cycle of load. In the Phase 3 the load is kept zero and the dynamic response of the pile and soil is analysed in time. The last two phases involve dynamic calculations.

14.6.1 Initial phase

Initial effective stresses are generated by the K0 procedure, using the default values. Note that in the initial situation the pile does not exist and that the clay properties should be assigned to the corresponding cluster. The phreatic level is assumed to be at the ground surface. Hydrostatic pore pressures are generated in the whole geometry according to this phreatic line.

14.6.2 Phase 1: Pile activation

1. Click the Add phase button to create a new phase.
2. In the General subtree in the Phases window, the Plastic option is selected as Calculation type.
3. The **Staged construction** option is by default selected as **Loading type**.

4. In the **Staged construction** mode assign the pile properties to the pile cluster.

5. Activate the interface in the **Clay** layer. The model for the Phase 1 in the **Staged construction** mode is displayed below.

![Figure 170: Configuration of Phase 1 in the Staged construction mode](image)

14.6.3 Phase 2: Pile driving

1. Click the **Add phase** button to create a new phase.

2. In the **General** subtree in the **Phases** window, select the **Dynamic** option as **Calculation type**.

3. Set the **Dynamic time interval** to 0.01 s.

4. In the **Deformation control parameters** subtree select **Reset displacements to zero**.

5. In the **Staged construction** mode activate the dynamic component of the distributed load.
 The activated dynamic component of the load in **Selection explorer** is shown in the figure below.
6. Expand the subtree **Model explorer > Model conditions > Dynamics.**

![Selection explorer](image)

Figure 171: The dynamic load component in the Selection explorer

7. Specify viscous boundaries at x_{max} and y_{min}.

The result of this phase is half a harmonic cycle of the external load. At the end of this phase, the load is back to zero.
14.6.4 Phase 3: Fading

1. Click the **Add phase** button to create a new phase.
2. In the **General** subtree in the **Phases** window, select the **Dynamic** option as **Calculation type**.
3. Set the **Dynamic time interval** to 0.19 s.
4. In the **Staged construction** mode de-activate the dynamic load.

14.6.5 Execute the calculation

1. Click the **Select points for curves** button in the side toolbar and select a node at the top of the pile for load displacement curves.
2. Click the **Calculate** button to calculate the project.
3. After the calculation has finished, save the project by clicking the **Save** button.

14.7 Results

Figure 173 (on page 200) shows the settlement of the pile (top point) versus time. From this figure the following observations can be made:

- The maximum vertical settlement of the pile top due to this single stroke is about 13 mm. However, the final settlement is almost 10 mm.
- Most of the settlement occurs in phase 3 after the stroke has ended. This is due to the fact that the compression wave is still propagating downwards in the pile, causing additional settlements.
- Despite the absence of Rayleigh damping, the vibration of the pile is damped due to soil plasticity and the fact that wave energy is absorbed at the model boundaries.
When looking at the output of the second calculation phase (t = 0.01 s, i.e. just after the stroke), it can be seen that large excess pore pressures occur very locally around the pile tip. This reduces the shear strength of the soil and contributes to the penetration of the pile into the sand layer. The excess pore pressures remain also in the third phase since consolidation is not considered.

Figure 174 (on page 200) shows the shear stresses in the interface elements at t = 0.01 s. The plot shows that the maximum shear stress is reached all along the pile, which indicates that the soil is sliding along the pile.

When looking at the deformed mesh of the last calculation phase (t = 0.2 s), it can also be seen that the final settlement of the pile is about 10 mm. In order to see the whole dynamic process it is suggested to use the option **Create Animation** to view a 'movie' of the deformed mesh in time. You may notice that the first part of the animation is slower than the second part.
This example demonstrates the natural frequency of a five-storey building when subjected to free vibration and earthquake loading. The two calculations employ different dynamic boundary conditions:

- In the free vibration, the **Viscous** boundary conditions are considered. This option is suitable for problems where the dynamic source is inside the mesh.
- For the earthquake loading, the **Free-field** and **Compliant base** boundary conditions are considered. This option is preferred for earthquake analysis, where the dynamic input is applied at the bottom of the model.

Objectives

- Performing a **Dynamic** calculation
- Defining dynamic boundary conditions (free-field, compliant base and viscous)
- Defining earthquakes by means of dynamic multipliers
- Modelling free vibration of structures
- Modelling hysteretic behaviour by means of Hardening Soil model with small-strain stiffness
- Evaluating the natural frequency from Fourier spectrum

Geometry

The building consists of 5 floors and a basement. It is 10 m wide and 17 m high including basement. The total height from the ground level is 5 x 3 m = 15 m and the basement is 2 m deep. A value of 5 kN/m² is taken as the weight of the floors and the walls. The building is constructed on a clay layer of 15 m depth underlain by a deep sand layer. In the model, 25 m of the sand layer will be considered.
15.1 Create new project

To create the new project, follow these steps:

1. Start the Input program and select **Start a new project** from the **Quick start** dialog box.
2. In the **Project** tabsheet of the **Project properties** window, enter an appropriate title.
3. In the **Model** tabsheet keep the default options for **Model** (*Plane strain*) and **Elements** (*15-Noded*).
4. Keep the default units and constants and set the model **Contour** to:
 a. \(x_{\text{min}} = -80.0 \text{ m} \) and \(x_{\text{max}} = 80.0 \text{ m} \)
 b. \(y_{\text{min}} = -40.0 \text{ m} \) and \(y_{\text{max}} = 15.0 \text{ m} \)

15.2 Define the soil stratigraphy

The subsoil is divided into a 15 m thick clay layer and a 25 m thick sand layer. The phreatic level is assumed to be at \(y = -15.0 \text{ m} \). Hydrostatic pore pressures are generated in the whole geometry according to this phreatic line.

1. Click the **Create borehole** button \(\) and create a borehole at \(x = 0 \).
 The **Modify soil layers** window pops up.
2. Add two soil layers extending from \(y = 0.0 \) to \(y = -15.0 \) and from \(y = -15.0 \) to \(y = -40.0 \).
3. Set the **Head** in the borehole at -15.0 m.
15.3 Create and assign material data sets

The upper layer consists of mostly clayey soil and the lower one is sandy. Both have Hardening Soil model with small-strain stiffness properties. The presence of the groundwater is neglected. The soil layers with Hardening Soil model with small-strain stiffness properties have inherent hysteretic damping.

- Open the Material sets window.
- Create data sets under Soil and interfaces set type according to the information given in Table 31 (on page 203).
- Assign the material datasets to the corresponding soil layers in the borehole.

Table 31: Material properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Upper clay layer</th>
<th>Lower sand layer</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>-</td>
<td>HS small</td>
<td>HS small</td>
<td>-</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>-</td>
<td>Drained</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>γ_{unsat}</td>
<td>16</td>
<td>20</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>20</td>
<td>20</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secant stiffness in standard drained triaxial test</td>
<td>$E_{50\text{ref}}$</td>
<td>$2.0\cdot10^4$</td>
<td>$3.0\cdot10^4$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Tangent stiffness for primary oedometer loading</td>
<td>$E_{\text{oed ref}}$</td>
<td>$2.561\cdot10^4$</td>
<td>$3.601\cdot10^4$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Unloading / reloading stiffness</td>
<td>$E_{\text{ur ref}}$</td>
<td>$9.484\cdot10^4$</td>
<td>$1.108\cdot10^5$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Power for stress-level dependency of stiffness</td>
<td>m</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion</td>
<td>c'_{ref}</td>
<td>10</td>
<td>5</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Friction angle</td>
<td>ϕ'</td>
<td>18</td>
<td>28</td>
<td>°</td>
</tr>
<tr>
<td>Dilatancy angle</td>
<td>ψ</td>
<td>0</td>
<td>0</td>
<td>°</td>
</tr>
<tr>
<td>Shear strain at which $G_s = 0.722 G_0$</td>
<td>$\gamma_{0.7}$</td>
<td>$1.2\cdot10^{-4}$</td>
<td>$1.5\cdot10^{-4}$</td>
<td>-</td>
</tr>
<tr>
<td>Shear modulus at very small strains</td>
<td>G_0^{ref}</td>
<td>$2.7\cdot10^5$</td>
<td>$1.0\cdot10^5$</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν_{ur}'</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
</tr>
</tbody>
</table>
When subjected to cyclic shear loading, the Hardening Soil model with small-strain stiffness will show typical hysteretic behaviour. Starting from the small-strain shear stiffness, G_0^{ref}, the actual stiffness will decrease with increasing shear. The figures below display the Modulus reduction curves, i.e. the decay of the shear modulus with strain. The upper curve shows the secant shear modulus and the lower curve shows the tangent shear modulus.

In the Hardening Soil model with small-strain stiffness, the tangent shear modulus is bound by a lower limit, G_{ur}.

$$G_{ur} = \frac{E_{ur}}{2(1 + \nu_{ur})}$$
The values of G_{ur}^{ref} for the Upper clay layer and Lower sand layer and the ratio to G_0^{ref} are shown in the table below. This ratio determines the maximum damping ratio that can be obtained.

Table 32: G_{ur} values and ratio to G_0^{ref}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Upper clay layer</th>
<th>Lower sandy layer</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{ur}</td>
<td>39517</td>
<td>41167</td>
<td>kN/m2</td>
</tr>
<tr>
<td>G_0^{ref}/G_{ur}</td>
<td>6.75</td>
<td>2.5</td>
<td>-</td>
</tr>
</tbody>
</table>

The figures below show the damping ratio as a function of the shear strain for the material used in the model. A more detailed description about the modulus reduction curve to the damping curve can be found in the literature.\(^6\)

15.4 Define the structural elements

The structural elements of the model are defined in the Structures mode.

15.4.1 Define the building

The building consists of 5 floors and a basement. It is 10 m wide and 17 m high including the basement. A value of 5 kN/m² is taken as the weight of the floors and the walls. The total height from the ground level is 5 x 3 m = 15 m and the basement is 2 m deep.

The plates, representing the walls and the floors in the building, are considered to be linear elastic. Note that two different material datasets are used, one for the basement and the other for the rest of the building. The physical damping in the building is simulated by means of Rayleigh damping. A description of Rayleigh damping parameters is given in the Reference Manual.

Table 33: Material properties of the building (plate properties)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Rest of building</th>
<th>Basement</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>-</td>
<td>Elastic</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Isotropic</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Axial stiffness</td>
<td>EA_1</td>
<td>9.0×10^6</td>
<td>1.2×10^7</td>
<td>kN/m</td>
</tr>
<tr>
<td>Bending stiffness</td>
<td>EI</td>
<td>6.75×10^4</td>
<td>1.6×10^5</td>
<td>kNm²/m</td>
</tr>
<tr>
<td>Weight</td>
<td>w</td>
<td>10</td>
<td>20</td>
<td>kN/m/m</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>ν</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>Rayleigh α</td>
<td>-</td>
<td>0.2320</td>
<td>0.2320</td>
<td>-</td>
</tr>
<tr>
<td>Rayleigh β</td>
<td>-</td>
<td>8.0×10^{-3}</td>
<td>8.0×10^{-3}</td>
<td>-</td>
</tr>
<tr>
<td>Prevent punching</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 34: Material properties of the node-to-node anchor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Column</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>Type</td>
<td>Elastic</td>
<td>-</td>
</tr>
<tr>
<td>Axial stiffness</td>
<td>EA</td>
<td>2.5×10^6</td>
<td>kN</td>
</tr>
</tbody>
</table>
Define the structural elements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Column</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-plane spacing</td>
<td>L_{spacing}</td>
<td>3.0</td>
<td>m</td>
</tr>
</tbody>
</table>

1. Create the vertical walls of the building passing through (-5.0 0.0) to (-5.0 15.0) and through (5.0 0.0) to (5.0 15.0).

2. Use the same feature to define the vertical walls of the basement passing through (-5.0 -2.0) to (-5.0 0.0) and through (5.0 -2.0) to (5.0 0.0).

3. Define the floors and the basement of the building as plates passing through (-5.0 -2.0) to (5.0 -2.0), (-5.0 0.0) to (5.0 0.0), (-5.0 3.0) to (5.0 3.0), (-5.0 6.0) to (5.0 6.0), (-5.0 9.0) to (5.0 9.0), (-5.0 12.0) to (5.0 12.0) and (-5.0 15.0) to (5.0 15.0).

4. Define the material datasets for the structural elements in the building according to Table 33 (on page 206).

5. Assign the Basement material dataset to the vertical plates (2) and the lowest horizontal plate (all under the ground level) in the model.

6. Assign the rest of the building material dataset to the remaining plates in the model.

7. Use the Node-to-node anchor feature to define the column at the centre of the building connecting consecutive floors, (0.0 -2.0) to (0.0 0.0), (0.0 0.0) to (0.0 3.0), (0.0 3.0) to (0.0 6.0), (0.0 6.0) to (0.0 9.0), (0.0 9.0) to (0.0 12.0) and (0.0 12.0) to (0.0 15.0).

8. Define the properties of the anchor according to Table 34 (on page 206) and assign the material dataset to the anchors in the model.

9. Define an interface to model the interaction between soil and the building.

15.4.2 Define the loads

1. In order to model the driving force, a distributed unit load is created on top of the pile. To create a dynamic load:
 a. Create a point load at the top left corner of the building.
 b. Specify the components of the load as (1.0.0 0.0).

2. The earthquake is modelled by imposing a prescribed displacement at the bottom boundary. To define the prescribed displacement:
 a. Define a prescribed displacement at the bottom of the model, through (-80.0 -40.0) and (80.0 -40.0).
 b. Set the x-component of the prescribed displacement to Prescribed and assign a value of 1.0. The y-component of the prescribed displacement is Fixed. The default distribution (Uniform) is valid.

3. To define the dynamic multipliers for the prescribed displacement:
 a. Expand the Dynamic displacement.
 b. Click the Multiplier_x drop down menu and click on the appearing plus button. The Multipliers window pops up and a new displacement multiplier is automatically added.
 c. From the Signal drop-down menu select the Table option.
d. The file containing the earthquake data is available in the PLAXIS Knowledge Base (tutorial Free vibration and earthquake analysis of a building). Copy all the data to a text editor file (e.g. Notepad) and save the file in your computer with the extension .smc.

e. In the Multipliers window click the Open button and select the saved .smc file. In the Import data window select the Strong motion CD-ROM files option from the Parsing method drop-down menu and press OK to close the window.

f. Select the Acceleration option in the Data type drop-down menu.

g. Select the Drift correction options and click OK to finalize the definition of the multiplier. The defined multiplier is displayed:

![Dynamic multipliers window](image)

Figure 180: Dynamic multipliers window

15.4.3 Create interfaces on the boundary

Free-field and Compliant base boundaries require the creation of interface elements along the vertical and bottom boundaries of the model in the Structures mode. The interface elements must be added inside the model, else the Free-field and Compliant base boundary conditions are ignored. To define the interfaces:

1. Click the Create interfaces on the boundary button to automatically generate the interfaces at the boundary of the model.

The geometry of the model is shown in the following figure:
15.5 Generate the mesh

1. Proceed to the Mesh mode.
2. Click the Generate mesh button to generate the mesh. Set the Element distribution to Fine.
3. Click the View mesh button to view the mesh. The resulting mesh is shown:

4. Click the Close tab to close the Output program.

15.6 Define and perform the calculation

The calculation process consists of the initial conditions phase, simulation of the construction of the building, loading, free vibration analysis and earthquake analysis.
15.6.1 Initial phase

1. Click on the Staged construction tab to proceed with definition of the calculation phases.
2. The initial phase has already been introduced. The default settings of the initial phase will be used in this tutorial.
3. In the Staged construction mode check that the building and load are inactive.

![Figure 183: Initial phase](image)

15.6.2 Phase 1: Building

1. Click the Add phase button to create a new phase. The default settings of the added phase will be used for this calculation phase.
2. In the Staged construction mode construct the building (activate all the plates, the interfaces and the anchors) and deactivate the basement volume.

![Figure 184: Construction of the building](image)
15.6.3 Phase 2: Excitation

1. Click the Add phase button to create a new phase (Phase_2).
2. In the Phases window select the Reset displacement to zero in the Deformation control parameters subtree. The default values of the remaining parameters will be used in this calculation phase.
3. In the Staged construction mode activate the load. The value of the load is already defined in the Structures mode.

15.6.4 Phase 3: Free vibration

1. Click the Add phase button to create a new phase (Phase_3).
2. In the Phases window select the Dynamic option as Calculation type.
3. Set the Dynamic time interval parameter to 5 sec.
4. In the Staged construction mode release (deactivate) the point load.
5. In the Model explorer expand the Model conditions subtree.
6. Expand the Dynamics subtree. Check the boundary conditions BoundaryXMin, BoundaryXMax and BoundaryYMin are viscous which is the default option.

Figure 185: Boundary conditions for Dynamic calculations
Note:
For a better visualisation of the results, animations of the free vibration and earthquake can be created. If animations are to be created, it is advised to increase the number of the saved steps by assigning a proper value to the Max steps saved parameter in the Parameters tabsheet of the Phases window.

15.6.5 Phase 4: Earthquake

1. Click the Add phase button to create a new phase (Phase_4).
2. In the Phases window set the Start from phase option to Phase 1 (construction of building).
3. Select the Dynamic option as Calculation type.
4. Set the Dynamic time interval parameter to 20 sec.
5. Select the Reset displacement to zero in the Deformation control parameters subtree. The default values of the remaining parameters will be used in this calculation phase.
6. In the Model explorer expand the Model conditions subtree.
7. Expand the Dynamics subtree. Set the BoundaryXMin and BoundaryXMax to Free-field. Set the BoundaryYMin to Compliant base.

8. Interface elements do not need to be active to enable the use of Free-field or Compliant base boundaries.
9. In the Model explorer activate the Line displacements and its dynamic component. Make sure that the value of \(u_{x,\text{start,ref}} \) is set to 0.5 m. Considering that the boundary condition at the base of the model will be defined using a Compliant base, the input signal has to be taken as half of the bedrock (within) motion.
15.6.6 Execute the calculation

1. Click the Select points for curves button in the side toolbar and select a point at the top of the building for curves (0.0 15.0).
2. Click the Calculate button to calculate the project.
3. After the calculation has finished, save the project by clicking the Save button.

15.7 Results

The figure below shows the deformed structure at the end of the Phase 2 (application of horizontal load).

![Deformed mesh of the system](image)

Figure 187: Deformed mesh of the system

The figure below shows the time history of displacements of the selected points A (0 15) for the free vibration phase. It may be seen from the figure that the vibration slowly decays with time due to damping in the soil and in the building.
In the Fourier tabsheet of the Curve generation window select the Power (spectrum) and click OK to create the plot. The plot is shown below. From this figure it can be evaluated that the dominant building frequency is around 1 Hz.

The figure below shows the time history of the lateral acceleration of the selected points A (0 15) for the earthquake phase (dynamic analysis). For a better visualisation of the results animations of the free vibration and earthquake can be created.
Free vibration and earthquake analysis of a building

Results

Figure 190: Variation of acceleration in dynamic time
A navigable lock is temporarily 'empty' due to maintenance. After some time there is significant increase of the air temperature, which causes thermal expansion of the inner side of the lock, while the soil-side of the concrete block remains relatively cold. This leads to backward bending of the wall and, consequently, to increased lateral stress in the soil behind the wall and increased bending moments in the wall itself.

Objectives

This example demonstrates the use of the **Thermal** module to analyse this kind of situations.

- Defining a thermal temperature function
- Use of thermal expansion
- Performing a fully coupled analysis for THM calculation

Geometry

![Figure 191: Geometry of the project](image)

Figure 191: Geometry of the project
16.1 Create new project

1. Start the Input program and select **Start a new project** from the **Quick start** dialog box.
2. In the **Project** tabsheet of the **Project properties** window, enter an appropriate title.
3. In the **Model** tabsheet, the default options for **Model** and **Elements** are used for this project. Also the default options for the units are used in this tutorial.
4. Set the model **Contour** to
 a. \(x_{\text{min}} = 0.0 \text{ m} \) and \(x_{\text{max}} = 25.0 \text{ m} \),
 b. \(y_{\text{min}} = -16.0 \text{ m} \) and \(y_{\text{max}} = 0.0 \text{ m} \).
5. Click **OK** to close the **Project properties** window.

16.2 Define the soil stratigraphy

To define the soil stratigraphy:

1. Click the **Create borehole** button and create a borehole at \(x = 0 \).
 The **Modify soil layers** window pops up.
2. Create a single soil layer with top level at \(0.0 \text{ m} \) and bottom level at \(-16.0 \text{ m}\). Set the head at \(-4.0 \text{ m}\).

16.3 Create and assign material data sets

Two data sets need to be created; one for the sand layer and one for the concrete block.

1. Open the **Material sets** window.
2. Define a data set for the **Sand** layer with the parameters given in **Table 35** (on page 217), for the **General, Parameters, Groundwater, Thermal** and **Initial** tabsheets.
3. Create another dataset for **Concrete** according to the **Table 35** (on page 217).
4. Assign the material dataset **Sand** to the borehole soil layer.

Table 35: Material properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Sand</th>
<th>Concrete</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>-</td>
<td>HS small</td>
<td>Linear elastic</td>
<td>-</td>
</tr>
<tr>
<td>Drainage type</td>
<td>-</td>
<td>Drained</td>
<td>Non-porous</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>(\gamma_{\text{unsat}})</td>
<td>20.0</td>
<td>24.0</td>
<td>kN/m(^3)</td>
</tr>
</tbody>
</table>
Thermal expansion of a navigable lock

Create and assign material data sets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Sand</th>
<th>Concrete</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>γ_{sat}</td>
<td>20.0</td>
<td>-</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Initial void ratio</td>
<td>e_{init}</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Parameters

- **Young's modulus** E': $25 \cdot 10^6$ kN/m2
- **Poisson's ratio** ν: 0.15
- **Secant stiffness in standard drained triaxial test** E_{sd}^{ref}: $40 \cdot 10^3$ kN/m2
- **Tangent stiffness for primary oedometer loading** E_{oed}^{ref}: $40 \cdot 10^3$ kN/m2
- **Unloading / reloading stiffness** E_{ur}^{ref}: $1.2 \cdot 10^5$ kN/m2
- **Power for stress-level dependency of stiffness** m: 0.5
- **Cohesion** c_{ref}': 2.0 kN/m2
- **Friction angle** ϕ': 32.0°
- **Dilatancy angle** ψ: 2.0°
- **Shear strain at which $G_s = 0.722 G_0$** $\gamma_{0.7}$: $0.1 \cdot 10^{-3}$
- **Shear modulus at very small strains** G_0^{ref}: $8 \cdot 10^4$ kN/m2

Groundwater

- **Data set** - USDA
- **Model** - Van Genuchten
- **Soil - Type** - Sandy clay
- **Flow parameters - Use defaults** - From data set

Thermal

- **Specific heat capacity** c_s: 860, 900 kJ/t/K
- **Thermal conductivity** λ_s: $4.0 \cdot 10^{-3}$, $1.0 \cdot 10^{-3}$ kW/m/K
- **Solid thermal expansion** - Linear
- **Soil density** ρ_s: 2.6, 2.5 t/m3
Thermal expansion of a navigable lock

Define the structural elements

The lock will be modelled as a concrete block during the staged construction.

1. Proceed to **Structures** mode.
2. Click the **Create soil polygon** button in the side toolbar and select the **Create soil polygon** option.
3. Define the lock in the drawing area by clicking on (0.0 -5.0), (5.0 -5.0), (5.0 0.0), (5.5 0.0), (6.0 -6.0), (0.0 -6.0) and (0.0 -5.0).

Note:

The **Snapping options** can be selected, and the **Spacing** can be set to 0.5 to easily create the polygon.

The **Concrete** material will be assigned later in the **Staged construction**.

4. Click the **Create line** button in the side toolbar.
5. Select the **Create thermal flow bc** option in the expanded menu.
6. Create thermal boundaries at vertical boundaries and the bottom boundary (X_{min}, X_{max}, and Y_{min}).
7. The vertical boundaries have the default option of **Closed** for the **Behaviour**.
8. Select the bottom boundary, in the **Selection explorer** set the **Behaviour** to **Temperature**.
9. Set the reference temperature, T_{ref} to 283.4 K.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Sand</th>
<th>Concrete</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-component of thermal expansion</td>
<td>α_x</td>
<td>$0.5 \cdot 10^{-6}$</td>
<td>$0.1 \cdot 10^{-4}$</td>
<td>1/K</td>
</tr>
<tr>
<td>Y-component of thermal expansion</td>
<td>α_y</td>
<td>$0.5 \cdot 10^{-6}$</td>
<td>$0.1 \cdot 10^{-4}$</td>
<td>1/K</td>
</tr>
<tr>
<td>Z-component of thermal expansion</td>
<td>α_z</td>
<td>$0.5 \cdot 10^{-6}$</td>
<td>$0.1 \cdot 10^{-4}$</td>
<td>1/K</td>
</tr>
</tbody>
</table>

Interfaces

<table>
<thead>
<tr>
<th>Interface strength</th>
<th>-</th>
<th>Rigid</th>
<th>Manual</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength reduction factor</td>
<td>R_{inter}</td>
<td>1.0</td>
<td>0.67</td>
<td>-</td>
</tr>
</tbody>
</table>

Initial

<table>
<thead>
<tr>
<th>K_0 determination</th>
<th>-</th>
<th>Automatic</th>
<th>Automatic</th>
<th>-</th>
</tr>
</thead>
</table>
16.5 Generate the mesh

1. Proceed to the Mesh mode.
2. Select the polygon representing the concrete block, and in the Selection explorer set the Coarseness factor to 0.25.
3. Click the Generate mesh button to generate the mesh. The default element distribution of Medium is used for this example.
4. Click the View mesh button to view the mesh. The resulting mesh is shown:
5. Click the Close tab to close the Output program.

16.6 Define and perform the calculation

The calculations for this tutorial is carried out in three phases. The concrete lock is activated in a plastic calculation, after which the temperature increase is defined as a fully coupled flow deformation analysis.

16.6.1 Initial phase

1. Click on the Staged construction tab to proceed with the definition of the calculation phases.
2. Double click on Initial phase in the Phases explorer.
3. The default options for Calculation type and Pore pressure calculation type are used in this example.
4. Select Earth gradient for the Thermal calculation type option and close the Phases window.
5. In the Staged construction activate the ThermalFlow under the Model conditions subtree and set the value for T_{ref} to 283 K. The default values for h_{ref} and Earth gradient are valid.
16.6.2 Phase 1: Construction

1. Click the Add phase button to create a new phase (Phase_1).
2. Double click on Phase_1 in the Phases explorer.
3. In the Phases window, enter an appropriate name for the phase ID and select Steady state groundwater flow as Pore pressure calculation type.
4. Set the Steady state thermal flow for the Thermal calculation type.
5. Make sure that the Reset displacements to zero and Ignore suction options are selected.
6. In the Staged construction mode, assign the Concrete dataset to the created polygon which represents the navigable lock.
7. Right click the soil cluster which is cut-off by the polygon and select the option Deactivate from the appearing menu.

8. In the Selection explorer, set the WaterConditions of this cluster to Dry.

9. Multi-select the vertical and bottom horizontal wall of the excavation.

10. In the Selection explorer, activate the Groundwater flow boundary condition.

11. Set the Behaviour to Head and the hreff to -5.0 m. This will simulate an 'empty' lock.

12. In the Model explorer, activate all the Thermal flow boundary conditions.

13. In the Model explorer, activate the Model conditions > Climate condition.

14. Set the Air temperature to 283.0 K and the Surface transfer to 1.0 kW/m²/K. This will define the thermal conditions at the ground surface and the inside of the lock.
15. Deactivate the ThermalFlow option. This is because the thermal flow boundary conditions, including climate condition, are used in a steady state thermal flow calculation, instead of the earth gradient option.

The following figure shows the model at the end of Phase_1

![Model conditions for Phase_1](image)

16.6.3 Phase 2: Heating

1. Click the Add phase button to create a new phase (Phase_2).
2. Double click on Phase 2 in the Phases explorer.
3. Set the Calculation type to Fully coupled flow deformation.
4. The Thermal calculation type is set to Use temperatures from previous phase. This is to indicate that temperature needs to be considered and that the initial temperature is taken from the previous phase.
5. The Time interval is set to 10 days.
6. Make sure that the Reset displacements to zero and Reset small strain options are selected in the Deformation control parameters subtree. The Ignore suction option is unchecked by default.
7. A temperature function is defined for the Time dependency in Climate which is used for this phase. Follow these steps to create a temperature function.
 a. Right-click the Thermal functions option in the Attributes library in the Model explorer and select Edit option in the appearing menu. The Thermal functions window is displayed.
 b. In the Temperature functions tabsheet add a new function by clicking on the corresponding button. The new function is highlighted in the list and options to define the function are displayed.
 c. The default option of Harmonic is used for this signal.
 d. Assign a value of 15.0 for the Amplitude and 40 days for the Period. A graph is displayed showing the defined function. Since the time interval of the phase is 10 days, only a quarter of a temperature cycle is considered in this phase, which means that after 10 days the temperature has increased by 15 K.

 ![Figure 201: The temperature function](image)

 e. Click OK to close the Thermal functions window.
8. Expand the subtree Model conditions in the Model explorer.
9. In the Climate option, set the Time dependency to Time dependent and assign the temperature function which was created.
The calculation definition is now complete.

16.6.4 Execute the calculation

Before starting the calculation it is suggested that you select nodes or stress points for a later generation of curves.

1. Click the **Select points for curves** button in the side toolbar and select some characteristic points for curves (for example at the top of the excavation, (5.0, 0.0)).

2. Click the **Calculate** button to calculate the project and ignore the warnings regarding different stress type used in the **Fully coupled flow deformation** analysis.

3. After the calculation has finished, save the project by clicking the **Save** button.

16.7 Results

In the **Phases explorer**, select the **Initial phase** and click the **View calculation results** button on the toolbar. In the Output program, select the menu **Stresses > Heat flow > Temperature**.

The figure below shows the initial temperature distribution, which is obtained from the reference temperature at the ground surface and the earth gradient. This gives a temperature of 283.0 K at the ground surface and 283.4 at the bottom of the model.
The figure below shows the temperature distribution obtained from Phase_1 using a steady-state thermal flow calculation. In fact, the temperatures at the top and bottom are equal to the temperatures as defined in the \textbf{Initial phase}; however, since the temperature at the ground surface is now defined in terms of \textbf{Climate} conditions (air temperature), this temperature is also applied at the inner side of the lock and affects the temperature distribution in the ground.

\textit{Figure 203: Initial temperature distribution}

\textit{Figure 204: Steady-state temperature distribution in Phase_1}
The most interesting results are obtained in Phase 2 in which the air temperature in the Climate condition increases gradually from 283 K to 298 K (defined by a quarter of a harmonic cycle with an amplitude of 15K). The figure below shows the temperature at the ground surface as a function of time.

As a result of the short increase in temperature at the inside of the concrete block, while the outer side (soil side) remains 'cold', the wall will bend towards the soil. The figure below shows the deformed mesh at the end of Phase 2.

Figure 205: Temperature distribution in Point A as a function of time

Figure 206: Deformed mesh at the end of Phase 2
As a result of this backward bending, the lateral stresses in the soil right behind the concrete block will increase, tending towards a passive stress state.

Figure 207: Effective principal stresses at the end of Phase 2 in the Principal directions

Note: Note that the visualisation is different for Figure 207 (on page 229), because it displays the stresses in the porous materials. This can be changed in View > Settings on the tab Results (see the Reference Manual for more information).
This tutorial illustrates change in coupling of groundwater flow and thermal flow as a result of ground freezing. A tunnel is constructed with the use of freeze pipes. By first installing freeze pipes in the soil, the soil freezes and becomes watertight so that tunnel construction can take place. This method of construction requires a lot of energy for the cooling of the soil, so by being able to model the cooling behaviour while groundwater flow is present an optimal freezing system can be designed.

Objectives
- Modelling soil freezing, coupling between thermal flow and groundwater flow
- Modelling unfrozen water content.
- Using the command line for structure definition.

Geometry
In this tutorial a tunnel with a radius of 3.0 m will be constructed in a 30 m deep soil layer. A groundwater flow from left to right is present, influencing the thermal behaviour of the soil. First the soil will be subjected to the low temperatures of the freeze pipes, and once the soil has frozen sufficiently, tunnel construction can take place. The latter is not included in this tutorial.

Because groundwater flow causes an asymmetric temperature distribution, the whole geometry needs to be modelled, where in previous examples only half of the geometry was sufficient.
17.1 Create new project

1. Start the Input program and select **Start a new project** from the **Quick start** dialog box.
2. In the **Project** tabsheet of the **Project properties** window, enter an appropriate title.
3. In the **Model** tabsheet, the default options for **Model** and **Elements** are used for this project. Also the default options for the units are used in this tutorial. Note that the unit of **Mass** is set automatically to **tonnes**.
4. Set the model **Contour** to
 a. $x_{\text{min}} = 0.0 \text{ m}$ and $x_{\text{max}} = 85.0 \text{ m}$,
 b. $y_{\text{min}} = -30.0 \text{ m}$ and $y_{\text{max}} = 0.0 \text{ m}$.
5. In the **Constants** tabsheet, set T_{water} and T_{ref} to 283 K, other constants keep their default values. A description of constants can be found in the Reference Manual.
6. Click **OK** to close the **Project properties** window.

17.2 Define the soil stratigraphy

To define the soil stratigraphy:

1. Click the **Create borehole** button and create a borehole at $x = 0$. The **Modify soil layers** window pops up.
2. Create a single soil layer with top level at 0.0 m and bottom level at -30.0 m. Set the head at ground level (0.0 m).

17.3 Create and assign material data sets

1. Click the **Materials** button in the **Modify soil layers** window.
2. Define a data set for soil with the parameters given in **Table 36** (on page 232), for the **General, Parameters** and **Groundwater** tabsheets.
Table 36: Material properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Sand</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material model</td>
<td>-</td>
<td>Mohr-Coulomb</td>
<td>-</td>
</tr>
<tr>
<td>Type of material behaviour</td>
<td>-</td>
<td>Drained</td>
<td>-</td>
</tr>
<tr>
<td>Soil unit weight above phreatic level</td>
<td>y_{unsat}</td>
<td>18.0</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Soil unit weight below phreatic level</td>
<td>y_{sat}</td>
<td>18.0</td>
<td>kN/m3</td>
</tr>
<tr>
<td>Initial void ratio</td>
<td>e_{init}</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young's modulus</td>
<td>E'</td>
<td>1·105</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Cohesion</td>
<td>c_{ref}'</td>
<td>0.0</td>
<td>kN/m2</td>
</tr>
<tr>
<td>Friction angle</td>
<td>φ'</td>
<td>37.0</td>
<td>°</td>
</tr>
<tr>
<td>Dilatancy angle</td>
<td>ψ</td>
<td>0.0</td>
<td>°</td>
</tr>
<tr>
<td>Groundwater</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil - Data set</td>
<td>-</td>
<td>Standard</td>
<td>-</td>
</tr>
<tr>
<td>Soil - Type</td>
<td>-</td>
<td>Medium</td>
<td>-</td>
</tr>
<tr>
<td>Flow parameters - Use defaults</td>
<td>-</td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td>Horizontal permeability</td>
<td>k_x</td>
<td>1.00</td>
<td>m/day</td>
</tr>
<tr>
<td>Vertical permeability</td>
<td>k_y</td>
<td>1.00</td>
<td>m/day</td>
</tr>
<tr>
<td>Change of permeability</td>
<td>c_k</td>
<td>1.0·1015</td>
<td>-</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>c_s</td>
<td>860</td>
<td>kJ/t/K</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>λ_s</td>
<td>4.0·10$^{-3}$</td>
<td>kW/m/K</td>
</tr>
<tr>
<td>Soil density</td>
<td>ρ_s</td>
<td>2.6</td>
<td>t/m3</td>
</tr>
<tr>
<td>X-component of thermal expansion</td>
<td>α_s</td>
<td>5.0·10$^{-6}$</td>
<td>1/K</td>
</tr>
</tbody>
</table>
To model the amount of (fluid) water available to flow through the soil at certain temperatures, a curve for unfrozen water content needs to be determined by defining a table with values for unfrozen water content at certain temperatures. The same curve can be applied in other projects, hence the table can be saved and loaded into the soil properties of other projects. For more information, refer to the Reference Manual.

3. Click the **Thermal** tab. Enter the values as given in the table below.

Table 37: Input for unfrozen water content curve for sand

<table>
<thead>
<tr>
<th>#</th>
<th>Temperature [K]</th>
<th>Unfrozen water content [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>273.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>272.0</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>271.6</td>
<td>0.96</td>
</tr>
<tr>
<td>4</td>
<td>271.4</td>
<td>0.90</td>
</tr>
<tr>
<td>5</td>
<td>271.3</td>
<td>0.81</td>
</tr>
<tr>
<td>6</td>
<td>271.0</td>
<td>0.38</td>
</tr>
<tr>
<td>7</td>
<td>270.8</td>
<td>0.15</td>
</tr>
<tr>
<td>8</td>
<td>270.6</td>
<td>0.06</td>
</tr>
<tr>
<td>9</td>
<td>270.2</td>
<td>0.02</td>
</tr>
<tr>
<td>10</td>
<td>269.5</td>
<td>0.00</td>
</tr>
</tbody>
</table>

4. Select the option **User defined** from the drop down menu for **Unfrozen water content** at the bottom of the tabsheet.

5. Add rows to the table by clicking the **Add row** button. Complete the data using the values given in [Table 37](#) (on page 233).
6. Enter the values for Interfaces and Initial tabsheets as given in Table 36 (on page 232).
7. Click OK to close the dataset.
8. Assign the material dataset to the soil layer.

Note:
The table can be saved by clicking the Save button in the table. The file must be given an appropriate name. For convenience, save the file in the same folder as the project is saved.

17.4 Define the structural elements

The freeze pipes are modelled by defining lines with a length similar to the freeze pipe diameter (10 cm), containing a convective boundary condition. For simplicity, in this tutorial only 12 cooling elements are defined, while in reality more elements may be implemented in order to achieve a sufficient share of frozen soil.

1. Proceed to Structures mode.
2. Click the Create line button in the side toolbar.
3. Click the command line and type "line 45.141 -13.475 45.228 -13.425". Press Enter to create the first freezing pipe. For more information regarding command line, see Reference Manual.
4. Similarly create the remaining freeze pipes according to the following table.

Table 38: Coordinates of the end points of the freezing pipes, modelled as lines

<table>
<thead>
<tr>
<th>Line number</th>
<th>Xpoint 1</th>
<th>Ypoint 1</th>
<th>Xpoint 2</th>
<th>Ypoint 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.141</td>
<td>-13.475</td>
<td>45.228</td>
<td>-13.425</td>
</tr>
<tr>
<td>2</td>
<td>44.025</td>
<td>-12.359</td>
<td>44.075</td>
<td>-12.272</td>
</tr>
<tr>
<td>3</td>
<td>42.500</td>
<td>-11.950</td>
<td>42.500</td>
<td>-11.850</td>
</tr>
<tr>
<td>4</td>
<td>40.975</td>
<td>-12.359</td>
<td>40.925</td>
<td>-12.272</td>
</tr>
<tr>
<td>6</td>
<td>39.450</td>
<td>-15.000</td>
<td>39.350</td>
<td>-15.000</td>
</tr>
<tr>
<td>7</td>
<td>39.859</td>
<td>-16.525</td>
<td>39.772</td>
<td>-16.575</td>
</tr>
<tr>
<td>8</td>
<td>40.975</td>
<td>-17.641</td>
<td>40.925</td>
<td>-17.728</td>
</tr>
<tr>
<td>9</td>
<td>42.500</td>
<td>-18.050</td>
<td>42.500</td>
<td>-18.150</td>
</tr>
<tr>
<td>10</td>
<td>44.025</td>
<td>-17.641</td>
<td>44.075</td>
<td>-17.728</td>
</tr>
<tr>
<td>11</td>
<td>45.141</td>
<td>-16.525</td>
<td>45.228</td>
<td>-16.575</td>
</tr>
<tr>
<td>12</td>
<td>45.550</td>
<td>-15.000</td>
<td>45.650</td>
<td>-15.000</td>
</tr>
</tbody>
</table>
Freeze pipes in tunnel construction

Define the structural elements

Note:

A file containing the commands for the definition of the lines, is available in the PLAXIS 2D Knowledge Base (LineCoordinatesCommands.p2dxlog in tutorial Freeze pipes in tunnel construction). This can be downloaded and copied in the Commands runner, to get the pipes.

5. Multi select the created lines using the Select lines option from the side toolbar.
6. Right click the selected lines and select Thermal flow BC to create the thermal flow boundary conditions for the freeze pipes.
7. For the selected freeze pipes, in the Selection explorer expand the subtree for the ThermalFlowBC.
8. The Behaviour is set to Convection, the T_{fluid} to 250 K and the Transfer coefficient to 1.0 kW/m2/K.
9. Click the Create line button in the side toolbar.
10. Select the Create thermal flow BC option in the expanded menu. In the drawing area create a thermal boundary condition from (0.0 0.0) to (85.0 0.0)
11. Click the Create line button in the side toolbar, select the Create groundwater flow BC option in the expanded menu. In the drawing area create a groundwater flow boundary condition from (0.0 0.0) to (85.0 0.0).
12. Similarly follow the above steps to create thermal and groundwater flow boundary for the following lines (85.0 0.0) to (85.0 -30.0); (85.0 -30.0) to (0.0 -30.0) and finally (0.0 -30.0) to (0.0 0.0).

PLAXIS 2D allows different types of Thermal boundary conditions to be applied. In this tutorial the freeze pipes will be modelled as convective boundary conditions.

1. Multi select the created boundaries.
2. For the ThermalFlowBC, set the Behaviour to Temperature and T_{ref} to 283 K.

To assign the groundwater boundary conditions, the following steps are followed:

1. Multi select the top and bottom boundary.
2. For the GWFlowBC, set the Behaviour to Closed.
3. Select the left boundary, set the Behaviour to Inflow with a q_{ref} value of 0.1 m/day.
4. The right boundary has the default behaviour of Seepage.

The tunnel is created with the help of the Tunnel designer. Because deformations are not considered in this calculation, there is no need to assign a plate material to the tunnel. The generated tunnel will only be used for generating a more dense and homogeneous mesh around the freezing pipes. The tunnel will not be activated during any calculation phase, but PLAXIS 2D will detect the line elements and will generate the mesh according to these elements. Changing the coarseness factor of the pipe elements will cause a denser, but not a more homogeneous mesh.

1. Click the Create tunnel button in the side toolbar and click on (42.5 -18) in the drawing area.
2. The option Circular is selected for Shape type. Note that the default option is Free.
3. The default option of Define whole tunnel is used in this example.
4. Proceed to the Segments tab and set Radius to 3.0 m to the two multi selected segments.
5. Click on Generate to generate the defined tunnel in the model. Close the Tunnel designer window.

The geometry of the model is shown in the figure below.
17.5 Generate the mesh

1. Proceed to the Mesh mode.
2. Click the Generate mesh button to generate the mesh. The default element distribution of Medium is used for this example.
3. Click the View mesh button to view the mesh. The resulting mesh is shown:

4. Click the Close tab to close the Output program.

17.6 Define and perform the calculation

The calculations for this tutorial are carried out in the Flow only mode.
17.6.1 Initial phase

1. Click on the Staged construction tab to proceed with the definition of the calculation phases.
2. Double click on Initial phase in the Phases explorer.
3. In the Phases window select the Flow only option from the Calculation type drop-down menu.
4. Choose the Earth gradient option for the Thermal calculation type.
5. In the Staged construction option for the Earth gradient.

![Image](image1.png)

Figure 211: Initial phase

17.6.2 Phase 1: Transient calculation

1. Click the Add phase button to create a new phase.
2. Double click the new phase in the Phases explorer.
3. In the Phases window, enter an appropriate name for the phase ID (e.g. Transient calculation).
4. Set Transient groundwater flow as the option for the Pore pressure calculation type.
5. Set Transient thermal flow as the option for the Thermal calculation type.
6. Set Time interval to 180 days and the Max number of steps stored to 100. This is to be able to view intermediate time steps after the calculation.
7. In Staged construction mode, activate all the thermal boundary conditions by clicking the check box for the Thermal flow BCs in the Model explorer.
8. In the Model explorer, activate the four groundwater flow boundary conditions corresponding to the left, top, right and bottom boundary conditions in the Groundwater flow BCs subtree.
9. In the Model explorer, deactivate the ThermalFlow condition under the Model conditions subtree.

The calculation definition is now complete.
17.6.3 Execute the calculation

Before starting the calculation it is suggested that you select nodes or stress points for a later generation of curves.

1. Click the **Select points for curves** button in the side toolbar. Select some characteristic points for curves (for example between two freezing pipes and in the middle of the model).
2. Click the **Calculate** button to calculate the project.
3. After the calculation has finished, save the project by clicking the **Save** button.

17.7 Results

Interesting results from this calculation can be the point in time when there is no groundwater flow in between two freezing pipes, groundwater flow over the whole model and temperature distribution for both steady state and transient calculations.

To view the results in the Output program:

1. Click the **View calculation results** button on the toolbar.
2. Select the menu **Stresses > Heat flow > Temperature**.
3. The figure below shows the spatial distribution of the temperature for transient calculation in the final step.

![Figure 212: Temperature distribution for transient phase](image)

1. Select the menu **Stresses > Groundwater flow > |q|**.
2. Select the menu **View > Arrows** or click the corresponding button in the toolbar to display the results arrows.

In the Output program, it is possible to view the results for the intermediate saved steps. More information is available in the Reference Manual. It is possible to view the progression of the freezing of the tunnel.

The figure below shows the distribution of the of groundwater flow field for an intermediate step for the transient calculation (around 80 days).
The figure below shows the groundwater flow field for the last time step for the transient flow calculation. Here it is clearly noticeable that the entire tunnel area is frozen and no flow occurs.

Figure 213: Groundwater flow field for transient phase for an intermediate step (t_{approx} 38 days)

Figure 214: Groundwater flow field after 180 days