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1. Introduction 

Tunnels may be constructed in an inherently anisotropic rock mass, such as metamorphic rock. 

This type of rock, which is composed of lamination of intact rock, can take the form of cross 

anisotropy or transverse isotropy commonly configured by one direction of stratification planes 

perpendicular to the direction of deposition. Since such a rock formation can exhibit significant 

strength and deformability in the direction parallel and perpendicular to the stratification planes, 

the response of the rock mass to excavation can be different from that under the assumption 

of isotropic rocks. 

2. Objectives 

The study objective is to investigate the mechanical response of an elastic cross anisotropic or 

transversely isotropic rock mass to circular excavation subjected to either uniform or non-

uniform in-situ stresses. 

3. Hoop Stress and Radial Deformation 

As long as the plane of cross anisotropy of the rock mass strikes parallel to the tunnel axis, the 

plane strain conditions are acceptable. Accordingly, the full mathematical treatise to calculate 

the excavation-induced hoop stresses and deformations along the perimeter of a circular tunnel 

embedded in such a rock mass with horizontal stratification planes is available in Hefny and Lo 

(1999). For completeness, they can be rewritten as follows (Simanjuntak, 2015): 
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in which Eh and Ev are the Young’s modulus in the plane of isotropy and in the direction normal 

to the plane of isotropy respectively, νh is the Poisson’s ratio in the plane of isotropy, νhv is the 

Poisson’s ratio for the effect of stress in the plane of isotropy on the strain in the direction 

normal to the plane of isotropy, νvh is the Poisson’s ratio for the effect of stress normal to the 

plane of isotropy on the strain in the plane of isotropy, and Gvh is the shear modulus normal to 

the plane of isotropy. 

 

The in-situ horizontal stress in the rock mass, σh, can be expressed as the product of the in-

situ vertical stress, σv, and a coefficient of earth pressure, k. The mean in-situ stress, σo, can 

be defined as (Carranza-Torres and Fairhurst, 2000): 

 

2

)1(

2
vhv

o

k σσσ
σ

+
=

+
=  (4) 

 

in which: k < 1 if the in-situ vertical stress is greater than the in-situ horizontal stress, and 

 k > 1 if the in-situ horizontal stress is greater than the in-situ vertical stress.  

 

 

Radial Deformation: 
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4. Numerical Results 

As an example, a circular tunnel with a radius, R, of 2 m is excavated though an elastic cross 

anisotropic or transversely isotropic rock mass subjected to the mean in-situ stresses, σo, of 40 

MPa. Herein, the dipping angle, α, is zero meaning that the stratification planes are horizontal. 
There are three cases studied by varying the in-situ stress ratio coefficient. Case A is for k 

equals 1.00, Case B for k equals 0.80, and Case C for k equals 1.25. 

 

When modelling anisotropy, distinction can be made between the elastic anisotropy and the 

plastic anisotropy. Elastic anisotropy refers to the use of different elastic stiffness properties in 

different directions, which can be described by five elastic parameters, while plastic anisotropy 

may involve the use of different strength properties in different directions. 

 

In this study, the elasto-plastic Jointed Rock model was used. The elastic response of the cross 

anisotropic rocks to circular excavation was ensured by providing an adequate cohesion along 

the sliding planes (Wittke, 1990; Tonon and Amadei, 2003; Tonon, 2004; Simanjuntak et al. 

2014). The five independent rock parameters required to simulate the stress-strain behaviour 

in the elastic range are given in Table 1.  

 

Table 1. Rock Data (Hefny and Lo, 1999) 
 

Eh (GPa) Ev (GPa) Gvh (GPa) νvh νh 

15.8 10.5 3.95 0.30 0.30 

 

For cases when the in-situ stresses in the rock mass are uniform or k is equal to 1.00, the 

distribution of radial deformations in the space around the tunnel as a result of excavation is 

shown in Fig. 1a. The predicted maximum radial deformation is 10.36 mm and is located at the 

tunnel roof and invert, while the minimum radial deformation is 8.23 mm and is found at the 

tunnel sidewalls. This implies that the tunnel is oval with its major axis parallel to the direction 

of stratification planes. 

 

For cases when the in-situ stress ratio, k, is equal to 0.80 representing the in-situ vertical stress 

greater than the horizontal, the predicted distribution of radial deformations around the tunnel 

is illustrated in Fig. 2a. It is seen that as great as 12.08 mm of deformation in radial direction 

was found at the tunnel roof and invert, whereas at the tunnel sidewalls it was 6.75 mm. This 

indicates that the tunnel remains oval with its major axis parallel to the direction of stratification 

planes and since the in-situ vertical stress is greater than the horizontal, this also contributes 

to a greater deformation at the tunnel roof and invert. 

 

When the in-situ stress ratio, k, is equal to 1.25 representing the in-situ horizontal stress 

greater than the vertical, the predicted distribution of radial deformations is depicted in Fig. 3a. 

Here, the predicted maximum deformation is 9.73 mm and is located at the tunnel sidewalls, 

while the minimum deformation is 8.63 mm and is situated at the tunnel roof and invert. This 

suggests that the tunnel is oval; however, its major axis is perpendicular to the direction of 

stratification planes. 

 

In view of model validation, the numerical result of radial deformations are compared with those 

calculated using the analytical solution. The predicted and calculated radial deformations along 

the tunnel perimeter, θ, are depicted in Fig. 4. It is seen that the numerical results using PLAXIS 

are in good agreement with those calculated using the analytical solution, rendering that the 

numerical approach presented herein are methodologically correct. The predicted and calculated 

results of radial deformations are summarised in Table 2. 
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(a) 

 

 
 (b) 

 

   Fig. 1. Case A (k = 1.00) - Distribution of (a) Radial Deformations and (b) Hoop Stresses 



 

5 

 

 
 (a) 

 

 
          (b) 

 

   Fig. 2. Case B (k = 0.80) - Distribution of (a) Radial Deformations and (b) Hoop Stresses 
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 (a) 

 

 
 (b) 

 

   Fig. 3. Case C (k = 1.25) - Distribution of (a) Radial Deformations and (b) Hoop Stresses 
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Fig. 4. Comparison of Radial Deformations between Analytical Solution and PLAXIS 

 

 

Fig. 5. Comparison of Hoop Stresses between Analytical Solution and PLAXIS 

 

Analogously, the predicted distribution of hoop stresses in the rock mass as a result of tunnel 

excavation for cases when the in-situ stresses in the rock mass are uniform or k is equal to 

1.00, is shown in Fig. 1b. The maximum hoop stress of 85.20 MPa in compressive state of stress 

is found at the tunnel roof and invert. For the case when the in-situ stress ratio, k, is 0.80, as 

high as 101.23 MPa of hoop stresses is situated at the tunnel sidewalls (Fig. 2b). If the in-situ 

stress ratio, k, is 1.25, the maximum hoop stress is found as 103.82 MPa and is located at the 

tunnel roof and invert (Fig. 3b). The comparison of the distribution of hoop stresses along the 

tunnel perimeter, θ, obtained using PLAXIS and the analytical solution is presented in Fig. 5. It 

is seen that the numerical results fit the results calculated using the analytical solution with 

great accuracy. The predicted and calculated hoop stresses along the tunnel perimeter are given 

in Table 3. 
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Table 2. Predicted and Calculated Radial Displacements along the Tunnel Perimeter 
 

θ (°) 

ur /R (%) 

 k = 1.00 k = 0.80 k = 1.25 

Analytical PLAXIS Analytical PLAXIS Analytical PLAXIS 

0 0,413 0,410 0,339 0,337 0,487 0,484 

10 0,416 0,414 0,347 0,347 0,486 0,483 

20 0,425 0,424 0,370 0,377 0,481 0,478 

30 0,440 0,439 0,406 0,419 0,474 0,471 

40 0,457 0,457 0,449 0,464 0,465 0,462 

50 0,476 0,475 0,496 0,508 0,456 0,453 

60 0,493 0,491 0,539 0,547 0,447 0,444 

70 0,507 0,504 0,575 0,576 0,440 0,437 

80 0,517 0,513 0,598 0,595 0,435 0,432 

90 0,520 0,516 0,606 0,601 0,434 0,430 

100 0,517 0,513 0,598 0,595 0,435 0,432 

110 0,507 0,504 0,575 0,576 0,440 0,437 

120 0,493 0,491 0,539 0,547 0,447 0,444 

130 0,476 0,475 0,496 0,508 0,456 0,453 

140 0,457 0,457 0,449 0,464 0,465 0,462 

150 0,440 0,439 0,406 0,419 0,474 0,471 

160 0,425 0,424 0,370 0,377 0,481 0,478 

170 0,416 0,414 0,347 0,347 0,486 0,483 

180 0,413 0,410 0,339 0,337 0,487 0,484 

190 0,416 0,414 0,347 0,347 0,486 0,483 

200 0,425 0,424 0,370 0,377 0,481 0,478 

210 0,440 0,439 0,406 0,419 0,474 0,471 

220 0,457 0,457 0,449 0,464 0,465 0,462 

230 0,476 0,475 0,496 0,508 0,456 0,453 

240 0,493 0,491 0,539 0,547 0,447 0,444 

250 0,507 0,504 0,575 0,576 0,440 0,437 

260 0,517 0,513 0,598 0,595 0,435 0,432 

270 0,520 0,516 0,606 0,601 0,434 0,430 

280 0,517 0,513 0,598 0,595 0,435 0,432 

290 0,507 0,504 0,575 0,576 0,440 0,437 

300 0,493 0,491 0,539 0,547 0,447 0,444 

310 0,476 0,475 0,496 0,508 0,456 0,453 

320 0,457 0,457 0,449 0,464 0,465 0,462 

330 0,440 0,439 0,406 0,419 0,474 0,471 

340 0,425 0,424 0,370 0,377 0,481 0,478 

350 0,416 0,414 0,347 0,347 0,486 0,483 

360 0,413 0,410 0,339 0,337 0,487 0,484 
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Table 3. Predicted and Calculated Hoop Stresses along the Tunnel Perimeter 
 

θ (°) 
σθ /σo 

k = 1.00 k = 0.80 k = 1.25 

Analytical PLAXIS Analytical PLAXIS Analytical PLAXIS 

0 2,123 2,106 2,545 2,521 1,702 1,692 

10 2,095 2,078 2,491 2,467 1,699 1,688 

20 2,024 2,012 2,351 2,334 1,697 1,690 

30 1,944 1,935 2,169 2,158 1,718 1,713 

40 1,887 1,879 1,990 1,980 1,784 1,778 

50 1,877 1,870 1,842 1,833 1,911 1,908 

60 1,922 1,915 1,738 1,731 2,106 2,099 

70 2,011 1,999 1,676 1,670 2,346 2,329 

80 2,106 2,087 1,649 1,642 2,562 2,534 

90 2,148 2,130 1,643 1,632 2,652 2,631 

100 2,106 2,087 1,649 1,642 2,562 2,534 

110 2,011 1,999 1,676 1,670 2,346 2,329 

120 1,922 1,915 1,738 1,731 2,106 2,099 

130 1,877 1,870 1,842 1,833 1,911 1,908 

140 1,887 1,879 1,990 1,980 1,784 1,778 

150 1,944 1,936 2,169 2,158 1,718 1,713 

160 2,024 2,012 2,351 2,335 1,697 1,690 

170 2,095 2,079 2,491 2,468 1,699 1,689 

180 2,123 2,106 2,545 2,521 1,702 1,692 

190 2,095 2,078 2,491 2,467 1,699 1,688 

200 2,024 2,012 2,351 2,334 1,697 1,690 

210 1,944 1,935 2,169 2,158 1,718 1,713 

220 1,887 1,879 1,990 1,980 1,784 1,778 

230 1,877 1,870 1,842 1,833 1,911 1,908 

240 1,922 1,915 1,738 1,731 2,106 2,099 

250 2,011 1,999 1,676 1,670 2,346 2,329 

260 2,106 2,087 1,649 1,642 2,562 2,534 

270 2,148 2,130 1,643 1,632 2,652 2,631 

280 2,106 2,087 1,649 1,642 2,562 2,534 

290 2,011 1,999 1,676 1,670 2,346 2,329 

300 1,922 1,915 1,738 1,731 2,106 2,099 

310 1,877 1,870 1,842 1,833 1,911 1,908 

320 1,887 1,879 1,990 1,980 1,784 1,778 

330 1,944 1,936 2,169 2,158 1,718 1,713 

340 2,024 2,012 2,351 2,335 1,697 1,690 

350 2,095 2,079 2,491 2,468 1,699 1,689 

360 2,123 2,106 2,545 2,521 1,702 1,692 

 

5. Concluding Remarks 

This report presents the mechanical response of an elastic cross anisotropic or transversely 

isotropic rock mass to circular excavation subjected to uniform and non-uniform in-situ stresses. 

It was assumed that the plane of cross anisotropy (transverse isotropy) strikes parallel to the 

tunnel axis so that the plane strain conditions are applicable. Accordingly, a two-dimensional 

model is adequate to investigate the deformations and stresses around the excavation.  
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The anisotropic rock mass being considered has horizontal planes and in one direction. With 

regard to the in-situ stresses in the rock mass, there are three cases studied herein. In the first 

case, the in-situ stresses are uniform or the in-situ stress ratio is equal to 1.00. In the second 

case, the in-situ vertical stress is greater than the horizontal with a ratio, k, of 0.80. In the third 

case, the in-situ horizontal stress is greater than the vertical with a ratio, k, of 1.25.  

 

In view of model validation, the numerical results obtained using PLAXIS are compared with 

the results calculated using the analytical solution. This study suggests that there is a global 

coherence between the numerical and analytical results, implying that the numerical approach 

is methodologically correct and can be applied for other cases within the scope of the study. 
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