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1. Introduction 

For cases where there is no preferred orientation of joints in a rock mass, the rock mass can be 

considered to behave as an isotropic medium. This report aims at investigating the mechanical 

response of an elasto-plastic rock mass as a result of circular excavation subjected to uniform 

in-situ stresses based on the Hoek-Brown failure criterion. 

 

In cases of deep tunnels, the gravitational force can be assumed negligible due to the fact that 

the variation of vertical loading across the height of excavation is small compared to the 

magnitude of the stresses at the excavation location (Detournay and Fairhurst, 1987). Herein, 

the tunnel being considered is long and has a circular geometry. It is assumed that plane strain 

conditions are valid along the tunnel axis.  

 

Two cases are investigated based on whether the rock mass behaves as either an elasto-plastic 

isotropic non-dilatant or a dilatant material. For the former case, the rock mass undergoes no 

change in volume during plastic deformations, while for the latter case, it does. In view of model 

validation, the numerical results are compared with those calculated using the closed-form 

solution.  

2. Objectives 

The study objectives are: 

1. to investigate the behaviour of an elasto-plastic isotropic rock mass to circular excavation 

subjected to uniform in-situ stresses 

2. to study the influence of dilatancy on the rock deformations in the plastic region when the 

rate of dilation is constant. 

3. The Hoek-Brown Failure Criterion 

The non-linear Hoek-Brown failure criterion (Hoek and Brown, 1980) is expressed as: 
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σci is the uniaxial compressive strength of the intact rock material, and σ1 and σ3 represent the 

major and minor principal stress respectively. Parameters constants mb and s depend on the 

structure and surface conditions of the joints in the rock mass, and are given by: 
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where GSI is the Geological Strength Index (Marinos et al., 2005) that takes into account the 

geometrical shape of intact rock fragments as well as the condition of joint faces, and D is the 

disturbance factor that can vary between 0 (undisturbed) and 1 (disturbed) depending on the 

amount of stress relief, weathering and blast damage as a result of nearby excavations. For the 

significance of the parameters and their values, one can refer to Hoek et al., 2002.  
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If the intact rock modulus, Ei, is known, the rock mass modulus, Erm, can be determined from 

(Hoek and Diederichs, 2006): 

 

 










+

−
+=

−+ 11/)1560(1

)2/(1
02.0

GSIDirm
e

D
EE  (5) 

 

Otherwise, the rock mass modulus, Erm, is calculated using (Hoek and Marinos, 2007): 
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The Hoek-Brown failure surfaces in three-dimensional principal stress space can be piecewise 

written as (Benz et al., 2008): 
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The plastic potential function can be defined as (Carranza-Torres and Fairhurst, 1999; Benz et 

al., 2008): 
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where ψmob is the mobilised angle of dilatancy and Si are the transformed stresses.  

 

The transformed stresses, Si, can be written as (Carranza-Torres and Fairhurst, 1999): 

 

3,2,1
2

=+= ifor
m

s

m
S

bcib

i
i

σ

σ
 (9) 

 

With increasing minor principal stress, the initial angle of dilatancy ψ is reduced to zero in a 

linear manner (0 ≥ σ3 ≥ σψ) (Benz et al., 2008): 

 

 0
)( 3

≥
−−

= ψ
σ

σσσ
ψ

ψ

ψ t

mob  (10) 

 

where σψ and σt are the threshold stress and the maximum allowable tensile stress respectively. 

The tensile stress is determined using: 
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In order to allow for plastic expansion in the tensile zone (σt ≥ σ3 ≥ 0), an increased artificial 

value of the mobilised dilatancy is used and can be expressed as: 
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The evolution of the mobilised dilatancy angle as a function of σ3 is shown in Fig. 1. 

 

 

Fig. 1. Evolution of Mobilised Dilatancy Angle 

4. Plastic Zone 

The total deformations in the rock mass are made up of two components, namely the elastic 

and plastic component. The radius of elastic-plastic interface, Rpl, around a circular excavation 

can be determined by using (Carranza-Torres and Fairhurst, 1999): 
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where Pe and Pe
cr are the scaled support pressure and the scaled critical pressure, respectively. 

They can be calculated using the following equations: 
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If the critical pressure is higher than the scaled support pressure, plasticity occurs around the 

excavation. The radial stress at the elastic-plastic interface, σr,Rpl, can be obtained as: 
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5. Stresses and Deformation in the Elastic Region 

In the elastic region, the radial and hoop stress as well as the radial deformation around the 

tunnel can be calculated using the Lame’s solution, which can be written as (Sharan 2005; 

Carranza-Torres and Fairhurst, 1999): 
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where σo and ν are the mean in-situ stress in the rock mass and the Poisson’s ratio of an intact 

rock respectively.  

6. Stresses and Deformation in the Plastic Region 

Based on the transformation rule for stresses and the assumption of ideally plastic behaviour 

of the rock mass, the radial and hoop stresses in the plastic region can be determined using 

(Carranza-Torres, 2004): 
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Considering that there is no change in rock mass volume during plastic deformations, the 

radial deformation in the plastic region can be calculated using (Carranza-Torres and Fairhurst 

1999; Carranza-Torres 2004): 
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For cases of dilatant rocks, the radial deformation in the plastic region is given by (Carranza-

Torres and Fairhurst 1999; 2000): 
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where a dilation coefficient Kψ is calculated using (Carranza-Torres and Fairhurst 1999): 
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7. Numerical Results 

In the following, the mechanical response of both an elasto-plastic isotropic non-dilatant and 

dilatant rock mass to circular excavation is analysed. The in-situ stresses in the rock mass are 

uniform and are characterised by a compressive stress of 25 MPa. The radius of excavation, R, 

is 10 m and the excavation is assumed to result in minimal disturbance. The data for the intact 

rock are adopted from (Carranza-Torres and Fairhurst, 1999).  

 

The parameter constants mb, s and a are calculated using Eqs. (2), (3) and (4) respectively, 

whereas the rock mass modulus Erm was calculated using Eq. (5) since the intact rock modulus 

is known. The rock mass data used in the analysis are summarised in Table 1. 

 

Table 1. Rock Mass Data (Carranza-Torres and Fairhurst, 1999) 

GSI D σci (MPa) Ei (GPa) νr mi mb s a Er (GPa) σo (MPa) 

50 0 30 20 0.25 10 1.68 0.004 0.5 6.14 25 

 

Case A – Elasto-Plastic Isotropic Non-Dilatant Rock Mass 
 
a) Excavation-Induced Radial Deformations 

Fig. 2 presents the numerical results of excavation-induced radial deformations around the 

tunnel for cases where the rock mass is assumed to behave as an elasto-plastic isotropic non-

dilatant material. The predicted radial deformation along the tunnel perimeter was obtained as 

0.23 m or is equal to ur/R of 2.3%, and is uniformly distributed along the tunnel walls. If 

calculated using Eq. (23), the radial deformation at the tunnel walls was found as 0.22 m. The 

distribution of radial deformations in the space around the excavation is shown in Fig. 3. It is 

evident that the numerical results are in good agreement with those obtained using the closed-

form solution. 
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Fig. 2. Predicted Excavation-Induced Radial Deformations (ψ = 0°) 

 

 
 

Fig. 3. Distribution of Radial Deformations (ψ = 0°) 

 
b) Excavation-Induced Radial Stresses 

The numerical results of excavation-induced radial stresses in the space surrounding the tunnel 

are depicted in Fig. 4. Since the tunnel is unsupported, the radial stress along the tunnel walls 

is zero. The radial stress increases towards a value near to the far field stress, i.e. 25 MPa as 

the tunnel radius increases. For instance, at the distance of 10R, the radial stress was found as 

0.97σo. Using Eqs. (16), (17) and (20), the radial deformation at the tunnel walls was obtained 

as 0.97σo. The comparison between the analytical and numerical solution is shown in Fig. 5.  
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Fig. 4. Predicted Excavation-Induced Radial Stresses (ψ = 0°) 

 

 
 

Fig. 5. Distribution of Radial Stresses (ψ = 0°) 

 
c) Excavation-Induced Hoop Stresses 

Additionally, the predicted distribution of hoop stresses around the tunnel are shown in Fig. 6. 

The classical jump indicating the plastic and elastic interface in the rock mass can be seen in 

Fig. 7. The maximum hoop stress was obtained as 1.50σo and the plastic zone, Rpl, was predicted 

to occur as far as 25.3 m measured from the tunnel centre. When calculated using Eqs. (18) 

and (21), the hoop stress at the plastic and elastic interface was obtained as 1.50σo. The 

comparison of the distribution of hoop stresses obtained using the numerical and analytical 

solution is depicted in Fig. 7. 
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Fig. 6. Predicted Excavation-Induced Hoop Stresses (ψ = 0°) 

 

Fig. 7. Distribution of Hoop Stresses (ψ = 0°) 

 

The numerical and analytical results are summarised in Table 2. It is seen that the results 

obtained using PLAXIS 2D are comparable with those calculated using the closed-form solution 

with great accuracy. Similar observation can be found in Simanjuntak et al., 2012. 

 

Table 2. Comparison of Results for Cases of Non-Dilatant Rock Mass 

Methods Rpl (m) ur, r = 0  (m) σr, r = 10R (MPa) σθ, r = Rpl (MPa) 

Analytical Solutions 25.2 0.22 24.20 (0.97σo) 37.55 (1.50σo) 

PLAXIS 25.3 0.23 24.17 (0.97σo) 37.43 (1.50σo) 
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Case B – Elasto-Plastic Dilatant Rock Mass 
 

For cases where the rock mass can be assumed to behave as an elasto-plastic isotropic dilatant 

material, the numerical results of excavation-induced radial deformations are shown in Fig. 8. 

In this particular example, the dilation angle was taken as 30°.  

 

In order to have a constant rate of dilation, σψ which is the minor principal stress at which zero 

volumetric plastic flow is reached, should be set very high, i.e. 50 GPa. The predicted radial 

deformation at the tunnel walls was found as 0.96 m or it is equal to ur/R of 9.6%. When 

calculated using Eq. (23), the radial deformation at the tunnel walls was obtained as 0.93 m.  

 

The distribution of radial deformations in the space around the tunnel is illustrated in Fig. 9. 

Again, it can be seen that the numerical results are in good agreement with those obtained 

using the closed-form solution.  The comparison of results between the case of non-dilatant 

material and that of dilatant material is shown in Fig. 10. It is obvious that dilatancy significantly 

affects the radial deformations in the plastic region.  

 

Table 3. Comparison of Results for Cases of Dilatant Rock Mass 

Methods Rpl (m) ur, r = 0  (m) σr, r = 10R (MPa) σθ, r = Rpl (MPa) 

Analytical Solutions 25.2 0.93 24.20 (0.97σo) 37.55 (1.50σo) 

PLAXIS 25.3 0.96 24.18 (0.97σo) 37.41 (1.50σo) 

 

 

 
Fig. 8. Predicted Excavation-Induced Radial Deformations (ψ = 30°) 
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Fig. 9. Distribution of Radial Deformations (ψ = 30°) 

 

 

Fig. 10. Comparison of Radial Deformations for Cases of Non-Dilatant and Dilatant Rock Mass 

8. Concluding Remarks 

This report presents the mechanical response of an elasto-plastic isotropic rock mass to circular 

excavation using the numerical and analytical solutions. Two cases are distinguished based on 

whether the rock mass is assumed to behave as a non-dilatant or dilatant material. The bearing 

capacity of the rock mass was assessed using the Hoek-Brown failure criterion. The tunnel being 

considered is embedded deep in a dry rock mass where the gravitational force can be assumed 

negligible.  
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In view of model validation, the numerical results obtained using PLAXIS 2D are compared 

against the analytical results calculated using the closed-form solution. This study reports that 

the numerical results are comparable to the results from the literature with great accuracy, 

meaning that the approach presented herein are methodologically correct and therefore, can 

be applied to further investigate the mechanical behaviour of an elasto-plastic isotropic rock 

mass as a result of circular excavation subjected to non-uniform in-situ stresses. 
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