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1 INTRODUCTION 
Consolidation problems in geotechnical and geo-environmental engineering involve the simultaneous solution of a series of 
partial differential equations (PDEs). The PDEs must be solved for all finite elements which when combined form a continuum 
representing the geometry of the problem. The theory of consolidation and its corresponding governing PDEs embrace the 
physical behavior of the geotechnical material and the laws of conservation of mass and momentum. Multiple constitutive 
models are required, including models for the flow of water and stress-strain relationships. These constitutive models are often 
nonlinear, with properties that are non-constant. For example, the hydraulic conductivity may be presented as a function of 
void ratio, the compressibility may change depending on the confining stress or on a yield criterium, and so on. In addition, the 
system of equations may consider a fixed or an updated frame of reference. In this case, a moving mesh is recommended, for 
example, for problems that present large displacements. The consideration of large displacements adds geometrical nonlinearity 
to the system of governing PDEs. Consolidation is a formidable problem with multiple nuances and complexities.   
 
The purpose of the theory manual is to provide the user with details regarding the theoretical formulation of the PDEs as well 
as the numerical method used in the solution of such PDEs. The intent of the theory manual is not to provide an exhaustive 
summary of all theories associated with consolidation. Rather, the intent is to clearly describe details of the theory used in the 
PLAXIS LE software.  
 
The basic theoretical foundation behind groundwater analyses is laid out in the Groundwater Theory Manual. This manual 
focuses on hydro-mechanical coupling.  
 
Coupled water flow and stress-strain problems can be found in numerous situations. The classical consolidation analysis 
described in the Soil Mechanics literature is one example of a problem involving flow and equilibrium. Hydro-mechanical analyses 
can be employed in the prediction of settlements that occur over extended periods of time, pore-water pressure built up due to 
loading, and many type of combined pore-water pressure and load conditions. 
 
PLAXIS LE is a numerical analysis software capable of solving consolidation models using the finite element method. PLAXIS LE 
embraces one-dimensional (1D), two-dimensional (2D) plane strain, and three-dimensional (3D) conditions. A user-friendly and 
streamlined interface allows the quick input of geometry, boundary conditions, and material properties. The software 
automatically generates the finite element mesh, saving a great deal of modeling time and allowing better control of the solution 
accuracy. Three-dimensional models that were considered extremely challenging to built in the past can now be created in a 
shorter time, thanks to the geometry input and automatic mesh generation system used by PLAXIS LE. 
 
Consolidation models use the PLAXIS LE front-end interface for model setup, the PLAXIS LE - Consolidation finite-element 
engine for the numerical analysis, and the PLAXIS LE Output back-end interface for results visualization. 
 
Consolidation is one module within the PLAXIS LE software. Other modules, such as PLAXIS Designer and SOILVISION SOILS 
found within PLAXIS LE may be used to generate input data.  
 
This Theory Manual provides a concise review of the theory and formulations on which consolidation as implemented in PLAXIS 
LE is based. For details regarding the software operation and modeling guidelines, please consult the USER MANUAL and the 
CONSOLIDATION TUTORIAL MANUAL, included with the software.  
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2 BASIC EQUATIONS FOR SMALL STRAIN CONSOLIDATION 

(SSC) 
The small strain consolidation theory supposes that a soil particle occupies the same location of the Euclidian space during the 
whole process of consolidation. It is also assumed that soil particles and pore water are incompressible. It will be greatly 
simplified to deduce the theory as described by Biot (1941). 

2.1 STATIC ADMISSIBLE STRESS FIELD 
Assuming a small amount of solid particles including pores is in equilibrium state, we have 
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where: 

zxyzxyzyx  ，，，，，  = effective stress components, 

wu = pore water pressure, 

 =unit weight of soil. 

 

2.2 ADMISSIBLE STRAIN FIELD AND DISPLACEMENT FIELD 

Displacement field  ( )
zyx

T
WWWW =  represents displacement in x, y and z directions on a point (x, y, z). It can be 

expressed as below when strain is small. 
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where: 

  ( )
zxyzxyzyx

T
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2.3 CONSTITUTIVE EQUATIONS 

A constitutive relationship connects the stress and strain fields together. Effective stress field can be expressed in the following 

increment equation: 

      0 −=  [ 3 ]  

 

In general, we can write the constitutive equations as follows: 

      = D  [ 4 ]  

where:  

  = incremental effective stress vector, 

  = incremental strain vector, 

 D = Correlation matrix between incremental effective stress and strain. 

 

2.4 SEEPAGE FIELD AND MASS CONSERVATIVE EQUATION 

Based on Darcy’s law, the velocity field of pore water flow in a porous media can be expressed as: 

     Hkv −=  [ 5 ]  

where: 
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k = permeability matrix, 

H = total head. 

Based on the conservation condition of mass, the amount of pore water flow out of a small portion of soil is equal to the 
volumetric variation of it, that is: 
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where: 

  ( )000111=
T

a . 

By substitution equation [ 5 ] into [ 6 ], we can have the mass conservation equation as: 
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The total head used in Darcy’s law can be expressed as: 

 
zguH ww += /  [ 8 ]  

where: 

H = total head, 

w = density of water, 

g = acceleration of gravity, 

z = elevation head. 

Using the relationship between total head and pore water pressure for saturated soils, equation [ 7 ] can be expressed as: 
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Expanding equation [ 9 ], we get: 
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3 GOVERNING EQUATION OF LARGE-STRAIN 

CONSOLIDATION (LSC) 
To solve consolidation problems considering large strains, the virtual work and continuity equations are derived considering 
large strains. The Jaumann rate of Cauchy stress is considered, along with an updated Lagrangian approach, as described in 
Bonet et al. (2008). This theory will be presented for the one-dimensional condition. The generalization to 2D and 3D conditions 
may be accomplished by following the principles presented in the small strain consolidation section. Note also that the sign 
conventions presented in the previous sections remain the same for the large strain theory. 

3.1 CONCEPTUAL FRAMEWORK 
Suppose a body at certain reference time 𝑡 = 𝑡𝑜 occupies a certain region of the Euclidian space. The position of a material point 

at this time can be described by its position vector X. Let the position vector of any material point be x at time t: 

 𝐱 = 𝐱(𝑿, 𝑡) [ 11 ]  

the variable x describes the path of any material point, which, at 𝑡 = 𝑡𝑜 is located at X. The configuration at this time is called 

the reference configuration. 

3.2 STRAIN AND STRAIN RATE 
Suppose a material point X and another point X + dX in its neighborhood at some reference time t0 changes to another 

configuration at time t, located at 𝐱(𝑿, 𝑡) and 𝐱(𝑿 + 𝑑𝑿, 𝑡). In this case, we can define: 

 d𝐱 = 𝑭d𝐗 [ 12 ]  

where: F represents the relative deformation tensor in the neighborhood of the material point. This is called the deformation 
gradient tensor.  
 

3.2.1 Deformation rate tensor and spin tensor 

Let us consider two adjacent material points X and X + dX at the reference configuration and located at x and x + dx at current 
time t. These two points are considered to have velocities of  and  + d. Then, the velocity gradient tensor L is defined by a 

linear transformation, as follows: 

 d𝛖 = 𝐋d𝐱 [ 13 ]  

The following relationship may be presented, between the velocity gradient tensor L and the deformation gradient tensor F: 

 
𝐋 = 𝐅 ∙ 𝐅−𝟏 [ 14 ]  

The general velocity gradient tensor L, may be decomposed into the sum of a symmetric and anti-symmetric part, as follows:  

 𝐋 = 𝐃+𝐖 [ 15 ]  

where: 

 
D 

= [L]s [the symmetric part] is known as the rate of deformation or the 
stretching tensor, and 

 W = [L]a   [the anti-symmetric part] is known as the spin tensor 

 

3.2.2 Cauchy stress and 1st Piola-Kirchholf stress 

The Cauchy stress σ is defined with respect to the current configuration. The 1st Piola-Kirchholf stress S, also known as the 
nominal stress, is defined on the reference configuration. The nominal stress S is commonly used to depict the motion and 
equilibrium of a body, for its simplicity. The relation between σ and S is as follows: 

 𝛔 =
1

𝐽
𝐅 ∙ 𝐒  [ 16 ]  

where: 

 
J = det(F) – is the Jacobian between the current and reference configuration 
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Let us consider an arbitrary volume v in space. If a continuous medium of density  fills the volume at time t, the total mass in 

volume v is defined by 

 m = ∫𝒗𝜌𝑑𝑣  [ 17 ]  

If no mass is added of removed from v, the mass m must independent of time t, i.e. 

 ṁ = 0  [ 18 ]  

We may transform the integral of Equation [ 17 ] to the reference configuration by using dv = JdV, resulting in:  

 m = ∫𝑉𝜌𝐽𝑑𝑉  [ 19 ]  

By taking the derivative, the following equation is obtained:  

 ∫𝑣(𝜌̇ + 𝜌div(𝛖))𝑑𝑣 = 0  [ 20 ]  

Extending the same concept to any part of the body, the continuity equation is obtained as: 

 𝜌̇ + 𝜌div(𝛖) = 0  [ 21 ]  

3.2.3 Momentum principle - equations of motion and equilibrium 

The Momentum principle for a collection of material points states that the time rate of change of the total momentum of a given 
set of material points equals the vector sum of all the external forces acting on the material points of the set, assuming that 
Newton's Third Law governs the internal forces. Based on the Momentum principle, the following equation may be presented: 
 

 div(𝝈) + 𝜌𝒈 = 𝜌𝒂  [ 22 ]  

These are the equations that must be satisfied for any continuum, whether it is a solid or a fluid in motion. These equations are 
also known as the Cauchy's equations of motion. If the acceleration vanishes, the equilibrium equations are reduced to the 
static condition, as follows: 

 div(𝝈) + 𝜌𝒈 = 𝟎  [ 23 ]  

Similarly, based on the nominal stress (in the reference configuration at to), the equilibrium equations become: 

 div(𝑺𝑡𝑜) + 𝜌𝑜𝒈 = 𝟎  [ 24 ]  

where: 

 o = denotes the density on the reference configuration at time t0 

 𝑺𝑡𝑜 = the nominal stress tensor in the reference configuration at t0 

Taking the material time derivatives for Equation [ 24 ], the following equation is obtained: 

 div(𝑺̇𝑡𝑜) + 𝜌𝑜𝒈̇ = 𝟎  [ 25 ]  

In most geotechnical engineering problems, the rate of gravity acceleration is negligible. Then, equation [ 25 ] reduces to 

 div(𝑺̇𝑡𝑜) = 𝟎  [ 26 ]  

Taking the current configuration as the reference configuration, the equilibrium equations based on the nominal stress rate 
become: 

 div(𝑺̇𝑡) = 𝟎  [ 27 ]  

where: 

 
𝑺̇𝑡 

= the rate of nominal stress which takes the current configuration at time t 
as the reference configuration 
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3.2.4 The moment of momentum principle 

In a collection of material points whose interactions are equal, opposite, and collinear forces, the time rate of change of the 
total moment of momentum for the given collection of material points is equal to the vector sum of the moments of the external 
forces acting on the system. Based on the moment of momentum principle, the Cauchy stress becomes a symmetric tensor: 

 σ𝑖𝑗 = σ𝑗𝑖  [ 28 ]  

which is written in a component form. 
 

3.2.5 Principle of virtual work 

Suppose that a body is in a certain equilibrium configuration, and that all the material points of the body are given an 
infinitesimal virtual strain rate tensor  from the equilibrium configuration. The virtual strain rate tensor is a function of the 
position within the body, and has continuous first-order partial derivatives with respect to x. It is common to prescribe  along 

certain boundary surfaces and in this case,  = 0.  

 
Applying the divergence theorem, the principle of virtual work [power] in terms of the first Piola-Kirchholf stress tensor on the 
reference configuration can be expressed as: 

 ∫
𝑣
(𝑺̇𝑡 ∙ 𝛿𝑳)𝑑𝑣 = ∫

Γ
(𝒔̇𝑡 ∙ 𝛿𝛖)𝑑Γ  [ 29 ]  

where: 

 𝑺̇𝑡 = is the nominal stress rate 

 𝒔̇𝑡 = is the nominal load rate along the domain boundary 

 

3.2.6 Conservation equation of mass of moisture 

Applying the principle of conservation of mass of water stored in the soil, the following equation is obtained: 

 𝜕

𝜕𝑦
[𝑘𝑦

𝜕𝜙

𝜕𝑦
] =

𝜕𝜀𝑣

𝜕𝑡
  [ 30 ]  

where: 

 ky = hydraulic conductivity for unsaturated soil, m/s, 

   = total water head, m, 

 v = volume strain, and 𝑣 = 𝑦 in 1D case. 

 

3.2.7 Constitutive equations  

The equations derived above, which are applicable to any continuous medium, will not be sufficient in number to determine all 
the unknowns. Constitutive equations characterizing the material, are required. 
 

The current stress-strain constitutive models available in PLAXIS LE for large strain consolidation analysis only consider 

saturated conditions. According to Bishop, the effective stress for saturated soils was first expressed as: 

 𝛔′ = 𝛔 − γ𝑤𝜙𝑰  [ 31 ]  

where: 

 I = identity tensor 

 
According to the principle of material frame indifference or principle of material objectivity, it is required that the stress rate 
used in the constitutive equations should be indifferent with the reference frame. It has been verified by various researchers 
that the Jaumann rate of Cauchy stress is a suitable stress rate, with objectivity. The Jaumann rate related to intrinsic rate of 
Cauchy stress is given by (Bonet et al., 2008): 

 𝝈′
∘

= 𝝈′̇ − 𝑾 ⋅ 𝝈′ + 𝝈′ [ 32 ]  

The constitutive equation for saturated soils is presented assuming that the soil behaves as an isotropic, linear or non-linear 
elastic material. The soil structure constitutive relationship can be written in the following rate form 

 𝝈′
∘

= 𝛩𝜀̇ [ 33 ]  

 
where: 

 𝝈′
∘

 = the Jaumann rate of Cauchy’s stress, 
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 𝛩 = Correlation tensor between stress rate and strain rate, 

   = strain rate. 

 
In a one-dimensional condition, two equations govern the consolidation phenomenon, one is the equilibrium equation and the 
other is the water mass continuity equation. Two- and three-dimensional problems include additional equations for the 
equilibrium in the added dimensions. A fully coupled analysis is required to correctly model soil displacement and the pore-
water pressure response to an applied load. Solving all these equations simultaneously by using the updated Lagrangian method 
is done using as main variables the displacements and pore-water pressures.  
 
The constitutive models available to represent the stress-strain relationship and to represent hydraulic conductivity are 
presented in the USER MANUAL. These relationships may be used in small-strain analyses. Some models are exclusively 
developed for large strain simulations because they were conceptualized to represent soft materials, such as tailings.  
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