What is Bentley Descartes?

Image Processing
- Raster Geo-Referencing
- Advanced raster transformation (warping, register)
- Raster Scene Creation (merge tool)
- Persistent coordinate system transformation
- Raster Mosaic Creation
- Image Mosaicing (Contrast Stretch, Density slicing, etc)
- Viewing Oracle Spatial Georaster
- Viewing Raster DEM and applying filter on Raster DEM

Hybrid Raster/Vector
- Binary Raster Editing (ala I/RAS B)
- Color Raster Editing
- Snap on raster content
- Raster to Vector conversion and Vector to Raster conversion
- Convert Raster Text to Vector Text

3D Modeling
- Advanced Textures Creation/Editing (e.g., 3D building texture)

Terrain Modeling
- Create Scalable Terrain Model (STM)
- Billions of points DTM
- Display Scalable Terrain Model
- High-Resolution Draping of Imagery on STM
- Export to MicroStation Terrain

Point Cloud Processing
- Point Cloud Classification, Editing
- Point Cloud Line Draping
- Point Cloud Advanced Export
- Point Cloud Geometry Extraction
- Point Cloud Visual Explorer
- Point Cloud Smart Snap Mode
What’s new in V8i (SELECTseries 3)

- Point Cloud Processing
 - Point Cloud Classification
 - Point Cloud Line Draping
 - Point Cloud Advanced Export
 - Point Cloud Geometry Extraction
 - Point Cloud Visual Explorer
 - Point Cloud Smart Snap

- Scalable Terrain Model
 - Create Scalable Terrain Model (STM)
 - Billions of points DTM
 - Display Scalable Terrain Model
 - High-Resolution Draping of imagery on STM
 - Export to MicroStation Terrain

Point Clouds: Industry-wide, Entire Lifecycle
Point Clouds for Infrastructure: The Benefits

- Cheaper and safer
 - Field operations are shortened, reducing field cost and risks
- Enables creation of traditional 3D model
- Enables hybrid workflow
 - No requirement to vectorize everything
 - Easy to update model by updating point cloud
 - Reduce design time
- Bring the field truth to everyone’s desk
 - Reduce the need for field operations
 - Measure on demand

Point Clouds for Infrastructure: Challenges?

- Accessing
 - Interoperability needs
 - Enterprise access
- Understanding
 - Viewing, navigate
 - Focus
- Extracting Information
 - Measure and edit
 - Extract geometries
 - Link information to objects in point cloud
What is LiDAR?

- A method to determine size and location of objects by measuring the return from a scanning laser
 - Terrestrial
 - Mobile
 - Airborne

- Produce large data sets that used to require specialized software to view, extract and model for CADD use

Airborne Scanning

- Large areas, relatively low density
Mobile Scanning

- Relatively large areas, medium density

Terrestrial Scanning

- Small areas, medium – high density
LiDAR process

• Planning:
 – Determine area to be scanned and methodology
 – Determine vertical and horizontal accuracy
 – Determine result set (Intensity, RGB, classification)…

• Raw processing
 – Spatial registration
 – Point Cloud colorizing & Clean-up
 – Automatic Classification…

• Post processing (i.e. where Bentley starts)
 – Visualise,
 – Measure,
 – Extract models,
 – Hybrid workflows,

Point Cloud support in desktop products

• Support for
 – High speed display and viewing of very large point clouds
 – Clipping of point cloud for faster display and better visualization
 – Multiple presentation modes
 • Classification
 • RGB
 • Intensity
 • Elevation
 – Snapping to the point cloud
 – Many formats supported
 • BIN, CL3, FLS, FWS, LAS, PTG, PTS, PTX, 3DD, RDB, RXP, RSP, XYZ, e57
Advanced Point Cloud Workflows

Why you need Descartes for Point Cloud

- Need to leverage point cloud data on engineering projects
- Need to fix point cloud classification mistakes
- Difficulty understanding very dense point clouds
- Difficulty selecting the correct points from very dense point clouds
- Requirement to produce point cloud deliverables
Point Cloud support in desktop products

- Support for
 - High speed display and viewing of very large point clouds
 - Clipping of point cloud for faster display and better visualization
 - Multiple presentation modes
 - Classification
 - RGB
 - Intensity
 - Elevation
 - Snapping to the point cloud
 - Many formats supported
 - BIN, CL3, FLS, FWS, LAS, PTG, PTS, PTX, 3DD, RDB, RXP, RSP, XYZ, e57

Point Cloud Functionality Overview

Bentley Pointools
- Clash Detection
- Color Editing
- Conversion
- Visualization
- Element Manipulation
- Fly Through Movie
- Segmentation and Classification
- Layer based editing

Bentley Descartes
- Clash Resolution (not yet with Point Clouds)
- Clip/section manager
- Create scalable terrain model from point clouds
- Smart Snap on point clouds
- Cylinder & plane extraction
- Enhanced display style manager

Bentley Pointools View
- Conversion
- Measurement
- Visualization

MicroStation, Navigator, Civil, Geospatial, Plant, Building Products
- View, manipulate, control point clouds
- Publish to Navigator for iPad
- Fast, reliable native data type
- Third party APIs

ProjectWise
- Centrally manage point clouds
- Stream point clouds to multiple clients

Bentley Geo Web Publisher
- View 3D scenes on the web including point clouds
Bentley Descartes

- Point Cloud Processing
 - Point Cloud Classification Editing
 - Point Cloud Line Draping
 - Point Cloud Advanced Export
 - Point Cloud Geometry Extraction
 - Point Cloud Visual Explorer
 - Point Cloud Smart Snap

Visual Explorer

- Patent pending technology
- Visual helper dynamically re-coloring points in the cursor neighborhood
- Simplifies understanding of complex point clouds
Smart Snap

- Fully integrated with MicroStation AccuSnap
- Pick key points such as the lowest, highest, average or median point
- Simplifies modeling with point clouds

Draping/Snapping

- Automatically drape/snap lines or points
- Convert line approximation into lines following the point cloud surface exactly
- Convert random points into points exactly on the point cloud surface
Classification Editing

- Fix classification errors
- Eliminate point cloud noise
- Enables hybrid/retrofitting workflows

Geometry Extraction

- Extract primitives from point cloud
 - Planes
 - Cylinder
 - Cylinder center line
- Based on a point cloud subset selection
- Produce vector models from point cloud

Demonstration
Bentley Acquired Pointools Q4 2011

• The leading hardware-neutral provider of point cloud software
• Point clouds become a fundamental data type
• Point cloud support to be ubiquitous in Bentley products

Pointools Products for standalone point cloud processing

• Bentley Pointools View [iWare]
 – Fastest Point cloud viewer
 – (previously Pointools View Pro in free mode)
• Bentley Pointools POD Creator [iWare]
 – Batch import of Point Cloud data
• Bentley Pointools
 – View, Edit, Animate, Render
 – (previously Pointools Edit)
Bentley Descartes vs. Bentley Pointools

<table>
<thead>
<tr>
<th></th>
<th>Descartes</th>
<th>Bentley Pointools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>• Numerous tools to support geometry extraction</td>
<td>• Very focused</td>
</tr>
<tr>
<td></td>
<td>• Advanced CAD/AEC capabilities</td>
<td>• Fastest display on the market</td>
</tr>
<tr>
<td></td>
<td>• High quality rendering with Luxology</td>
<td>• Intuitive navigation/fly through</td>
</tr>
<tr>
<td></td>
<td>• High interoperability with engineering files</td>
<td>• Easy to create nice animation/rendering</td>
</tr>
<tr>
<td></td>
<td>• Multiple Views</td>
<td>• Fast rendering</td>
</tr>
<tr>
<td>Cons</td>
<td>• Limitation of Luxology rendering & MicroStation animation</td>
<td>• Single View</td>
</tr>
<tr>
<td></td>
<td>• speed improvements required</td>
<td>• No CAD/AEC capabilities</td>
</tr>
<tr>
<td></td>
<td>• Not as easy to use</td>
<td>• Limited interoperability with CAD/AEC (no properties)</td>
</tr>
<tr>
<td></td>
<td>• No support of normal in rendering</td>
<td>• No tools to extract geometries</td>
</tr>
<tr>
<td></td>
<td>• Display performance not good enough with very high density point clouds</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Terrain Modeling Workflows
Why you need Descartes for Terrain Modeling

• Large scale visualization requirements
• Need to use very large data sets in engineering projects
• Need to display high resolution imagery on the terrain

Imagery courtesy Quebec City

Scalable Terrain Model

• STM is a revolutionary new technology that enables high-performance display of digital terrain models (DTMs) covering very large areas and containing billions of points
• For viewing huge digital terrain models at geospatial scale
 – City, Region, State, Country
• Potential users
 – Municipal, States, Federal agency and government
 – EPC working in GIS
 – Large infrastructure project
Demo – Scalable Terrain Model and High-Resolution Draping

- Scalable Terrain Model display
- High-resolution draping

Data provided by Quebec City and Images provided by Aero-Photo (1961) Inc, Quebec, Canada

Benefits – Scalable Terrain Model

- Enables high-performance display of terrain models covering very large areas and containing billions of points and breaklines
- Saves time by displaying very large seamless terrain models enabling unprecedented workflows dealing with wide areas
- Scalable Terrain Model comes with high-resolution draping capabilities to display the raster backdrop on the terrain model with extremely good resolution regardless of the terrain model or image size
- The STM is easily kept up to date by synchronizing it with a wide variety of sources including DGN, Civil DTM, Point Cloud, XYZ. As the sources changes you can easily regenerate the STM
Wrap-up

- Point clouds are viewable in most Bentley desktop products
- Bentley Descartes is the tool for advanced point cloud workflows
- Bentley Descartes also adds tools for fast display of very large digital elevation models and draped imagery
- Bentley Descartes works directly with most Bentley desktop software.