Water Model Calibration Tips

Product(s): WaterGEMS, WaterCAD
Version(s): V8i, CONNECT Edition
Area: Modeling
Original Author Dr. Tom Walski, Bentley Systems

Introduction

The purpose of this article is to provide guidelines and best practices for hydraulic model calibration of water systems.

Model Calibration and Darwin Calibrator

When a water distribution system model is first constructed, the model results need to be compared with field data to ensure that the model accurately represents the real world. Initially, most models do not agree well with the field data. The model inputs must be adjusted (or in some cases incorrect field data must be discarded or corrected) to bring the model into acceptable calibration. Calibration is defined in attachment #1 at the bottom of this article.

The difficulty with calibration is that there are many reasons that a model and field data will not be in agreement. The primary problem is not making the adjustments, but understanding what is causing the discrepancy in the first place. Some of the reasons a model may appear uncalibrated would include:

  • Inaccurate pipe roughness
  • Inaccurately placed demands
  • Incorrectly closed valves
  • Incorrect model connectivity
  • Incorrect elevation data
  • Wrong pump curves
  • Wrong pump operating status/speed
  • Wrong tank/reservoir water levels
  • Wrong control valve settings
  • Inaccurate field data
  • Plus many more

It takes considerable judgment and experience to identify the source of the discrepancies. Users are often overwhelmed by the possible choices. It is best to take a logical set of steps through the calibration process. Attachment #2 at the bottom of this article provides a procedure to approach calibration.

Darwin Calibrator (available in WaterGEMS) provides a tool to adjust the first three parameters from the above list once the user has identified that one of them is the source of the discrepancy. If a user decides to adjust the wrong parameter in order to make the model look calibrated, it is referred to as “Calibration by compensating error” which uses one error to correct for another. It may be acceptable to assume that a certain parameter is the sole source of discrepancy and allow Darwin Calibrator to make adjustments, but these adjustments must be used with caution.

Darwin Calibrator uses the head loss between the water source as the primary driving force for its solution. It is therefore essential to ensure that the head loss between the source and the pressure measuring point is significantly greater than the error in measurement. For example, if the head loss from a tank to a pressure gage is 1 m, and the error in measurement is +/- 2 m, this data should not be used. For more on data accuracy, see attachment #3 at the bottom of this article.

Before beginning to work on calibration, users are encouraged to read the attachments to this article and take the Bentley training classes on Calibration and Darwin Calibrator:

Water Distribution Design and Modeling Advanced using WaterGEMS CONNECT Edition (see "Automated Calibration" on-demand lecture and workshop)

Attachments:

Attachment #1 -  JAWWA - Defining Calibration.pdf(JAWWA, 2013) 

Attachment #2 -  JAWWA - Procedure for Hydraulic Model Calibration.pdf(JAWWA, 2017) 

Attachment #3 -   JAWWA - Model Calibration Data - the Good the Bad and the Useless.PDF(JAWWA, 2000) 


See Also

Using Darwin Calibrator

Calibrating a model based on hydrant flow tests

Darwin Calibrator Performance Improvement Tips for Large Models

Tips on Sewer Calibration

OpenFlows | Hydraulics and Hydrology Forum (search for many conversations on the subject of calibration)

YouTube Videos:

Automated Calibration with Darwin Calibrator in WaterGEMS:

Water Model Calibration Tips and Tricks

Anonymous
Recommended
Related