code check in moses

I'm trying to verify the code-checks performed in moses.

For the purpose I set up a simple cantilever beam (with the axis along the Z-coordinate), loaded at the free end (axial compression load and lateral load causing bending on the strong axis). The analysis is linear static (disregarding p-delta effects).

The beam is a "french section" HEB300, long 10 m. The failure mechanism is the lateral-torsional buckling, with a length factor (KFAC) equal to 2 (cantilever beam).

In the annexed "cl.zip" file, the configuration files. The two models are expected to produce exactly the same results: in particular

  • cly uses the HEBY300 beam, load FX=0 FY=25 FZ=-100
  • clz uses the HEBZ300 beam, load FX=25 FY=0 FZ=-100

Reaction at the fixed end

The computed reactions at the restrained end are exact, i.e.

FXY =  25 kN
FZ  = 100 kN
MXY = 250 kNm

for all the models. So far so good.

Displacements

In the following table, displacements (due to the lateral load, in the XY plane, i.e. orthogonal to the beam axis) are acceptable. Indeed the results compare well with an independent calculation performed with SAP2000. Anyway I find a difference (not negligible, not justifiable by round-off errors) between the results computed in the two moses models, that should give exactly the same displacement. Please clarify this difference (about 0.6%).

displacement XY [mm]
moses cly 166.489
moses clz 165.494
SAP2000 166.5

Unity check (LRFD approach)

The two moses model should give exactly the same results if comparing the unity checks. Herebelow the results summary.

unity check
moses cly RP2A 0.79 Eq H1-1a
moses cly AISC 0.73 Eq H1-2
moses cly NORSOK 0.12 Eq. 6.61
moses cly ISO 0.12 Eq. 6.61
moses clz RP2A 1.07 Eq H1-1a
moses clz AISC 0.17 Eq H1-2
moses clz NORSOK 0.15 Eq. 6.62
moses clz ISO 0.15 Eq. 6.62
SAP2000 eurocode 3 0.908 (EC3 6.3.3(4)-6.62)

It is evident that, comparing the unity checks between the two moses models, the results are strongly different.

RP2A on the cly model is 0.79 and on clz is 1.07. The result should be the same. Please clarify.

AISC on the cly model is 0.73 and on clz is 0.17. The result should be the same. In particular 0.17 is surely wrong (SAP2000 gives 0.832). Please clarify.

NORSOK and ISO perform the same check, based on eurocode 3: on the cly model is 0.12 and on clz is 0.15. The result should be the same. Both checks are too low and surely wrong (SAP2000 gives 0.908). Please clarify.

Comparison with the SAP2000 AISC 360-16 code check

Moses results cite equation H1-2: in AISC the lateral-torsional buckling check is equation H1-3 (For the limit state of out-of-plane buckling and lateral-torsional buckling).

AISC on the cly model is 0.73 and on clz is 0.17. With SAP2000, the unity check is 0.832.

AISC 360-16 STEEL SECTION CHECK  (Summary for Combo and Station)
 Units  : KN, mm, C
 
 Frame : 1         X Mid: 0.000      Combo: COMB1            Design Type: Column              
 Length: 10000.000 Y Mid: 0.000      Shape: HE300B           Frame Type: SMF                
 Loc   : 0.000     Z Mid: 5000.000   Class: Compact          Princpl Rot: 0.000 degrees
 
 Provision: LRFD   Analysis: Direct Analysis          
 D/C Limit=0.950   2nd Order: General 2nd Order        Reduction: Tau-b Fixed             
 AlphaPr/Py=0.019  AlphaPr/Pe=0.237  Tau_b=1.000       EA factor=0.800   EI factor=0.800  
 
 PhiB=0.900        PhiC=0.900        PhiTY=0.900       PhiTF=0.750      
 PhiS=0.900        PhiS-RI=1.000     PhiST=0.900       
 
 A=14900.000       I33=251700000.0   r33=129.972       S33=1678000.000   Av3=9500.000     
 J=1890000.000     I22=85630000.0    r22=75.809        S22=570866.667    Av2=3300.000     
 E=200.000         fy=0.355          Ry=1.100          z33=1869000.000   Cw=1.690E+12     
 RLLF=1.000        Fu=0.510                            z22=870000.000    
 
 
 DESIGN MESSAGES
     Warning: kl/r > 200 (AISC E2)
 
 STRESS CHECK FORCES & MOMENTS (Combo COMB1)
     Location              Pu        Mu33        Mu22         Vu2         Vu3          Tu
     0.000           -100.000  250000.000       0.000      25.000       0.000       0.000
 
 PMM DEMAND/CAPACITY RATIO   (H1.3b,H1-2)
     D/C Ratio:   0.832 = 0.405 + 0.427 + 0.000
                        = (Pr/Pcy)*(1.5 - 0.5*(Pr/Pcy)) + (Mr33/(Cb*Mc33))^2 +  (Mr22/Mc22)
 
 AXIAL FORCE & BIAXIAL MOMENT DESIGN   (H1.3b,H1-2)
     Factor                 L          K1          K2          B1          B2          Cm
     Major Bending      2.000       1.000       1.000       1.000       1.000       1.000
     Minor Bending      2.000       1.000       1.000       1.000       1.000       1.000
 
                         Lltb        Kltb          Cb
     LTB                2.000       1.000       1.667
 
                           Pu     phi*Pnc     phi*Pnt
                        Force    Capacity    Capacity
     Axial           -100.000     333.532    4760.550
 
                           Mu      phi*Mn      phi*Mn      phi*Mn
                       Moment    Capacity      No LTB        Cb=1
     Major Moment  250000.000  382448.302  597145.500  229468.981
     Minor Moment       0.000  277965.000
 
 SHEAR CHECK  
                           Vu      phi*Vn      Stress      Status
                        Force    Capacity       Ratio       Check
     Major Shear       25.000     702.900       0.036          OK
     Minor Shear        0.000    2185.380       0.000          OK

Comparison with SAP2000 eurocode checks

The reference equation cited by moses on the eurocode checks should be 6.62 for both checks (not 6.61 as in "moses cly" model), and seems to be uncorrectly applied. Herebelow the detailed code check performed by SAP2000:

 Eurocode 3-2005 STEEL SECTION CHECK  (Flexural Details for Combo and Station)
 Units  : KN, mm, C
 
 Frame : 1         X Mid: 0.000      Combo: COMB1            Design Type: Column              
 Length: 10000.000 Y Mid: 0.000      Shape: HE300B           Frame Type: DCH-MRF            
 Loc   : 0.000     Z Mid: 5000.000   Class: Class 1          Rolled : Yes                    
 
 Country=CEN Default                 Combination=Eq. 6.10                  Reliability=Class 2                
 Interaction=Method 2 (Annex B)      MultiResponse=Envelopes               P-Delta Done? No                   
 Consider Torsion? No               
 
 GammaM0=1.00      GammaM1=1.00      GammaM2=1.25     
 An/Ag=1.00        RLLF=1.000        PLLF=0.750        D/C Lim=0.950    
 
 Aeff=14900.000    eNy=0.000         eNz=0.000        
 A=14900.000       Iyy=251700000.0   iyy=129.972       Wel,yy=1678000.000  Weff,yy=1678000.00
 It=1890000.000    Izz=85630000.0    izz=75.809        Wel,zz=570866.667   Weff,zz=570866.667
 Iw=1.690E+12      Iyz=0.000         h=300.000         Wpl,yy=1869000.000  Av,y=12018.000   
 E=200.000         fy=0.355          fu=0.510          Wpl,zz=870000.000   Av,z=4735.000    
 
 
 STRESS CHECK FORCES & MOMENTS
     Location             Ned      Med,yy      Med,zz       Ved,z       Ved,y         Ted
     0.000           -100.000  250000.000       0.000      25.000       0.000       0.000
 
 PMM DEMAND/CAPACITY RATIO   (Governing Equation EC3 6.3.3(4)-6.62)
     D/C Ratio:   0.908 = 0.270 + 0.638 + 0.000   <        0.950          OK
                        = NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM1)
                            + kzz (Mz,Ed+NEd eNz)/(Mz,Rk/GammaM1)       (EC3 6.3.3(4)-6.62) 
 
 BASIC FACTORS
     Buckling Mode   K Factor    L Factor       Lcr/i
     Major (y-y)        1.000       2.000     153.880
     Major Braced       1.000       2.000     153.880
     Minor (z-z)        1.000       2.000     263.821
     Minor Braced       1.000       2.000     263.821
     LTB                1.000       2.000     263.821
 
 AXIAL FORCE DESIGN
                          Ned       Nc,Rd       Nt,Rd
                        Force    Capacity    Capacity
     Axial           -100.000    5289.500    5289.500
 
                       Npl,Rd       Nu,Rd       Ncr,T      Ncr,TF       An/Ag
                     5289.500    5471.280    6790.147    6790.147       1.000
 
                Curve   Alpha         Ncr   LambdaBar         Phi         Chi       Nb,Rd
     Major (y-y)    b   0.340    1242.090       2.064       2.946       0.198    1047.699
     MajorB(y-y)    b   0.340    1242.090       2.064       2.946       0.198    1047.699
     Minor (z-z)    c   0.490     422.567       3.538       7.577       0.070     370.508
     MinorB(z-z)    c   0.490     422.567       3.538       7.577       0.070     370.508
     Torsional TF   c   0.490    6790.147       0.883       1.057       0.611    3229.531
 
 MOMENT DESIGN
                          Med    Med,span       Mc,Rd       Mv,Rd       Mn,Rd       Mb,Rd
                       Moment      Moment    Capacity    Capacity    Capacity    Capacity
     Major (y-y)   250000.000  250000.000  663495.000  663495.000  663495.000  361506.391
     Minor (z-z)        0.000       0.000  308850.000  308850.000  308850.000
 
                      Section      Flange         Web     Epsilon       Alpha         Psi
     Compactness      Class 1     Class 1     Class 1       0.814       0.562      -0.962
 
                Curve AlphaLT LambdaBarLT       PhiLT       ChiLT          C1         Mcr
     LTB            a   0.210       1.177       1.295       0.545       1.880  479158.985
 
     Factors  Cmy         Cmz        CmLT         kyy         kyz         kzy         kzz
            0.600       1.000       0.600       0.646       0.827       0.923       1.378

cl.zip

Parents
  • Appreciated for your interest in MOSES and detailed material.  

    I had a quick review and got to know that the problem stems from a malfunction of that option(HEBY/Z) in the post processing stage. To be specific, the switch in major/minor axis is not being accounted for in the structural post processor whereas it works fine in the structural solver. I`ve reported this to the programmers for the fix.

    Best regards,

    Bitna

  • Thank you Bitna,

      the bug you reported to the programmers only partially fixes the issues.

    There is an outstanding issue: the EUROCODE 3 check gives totally wrong results. Please look carefully at the code check performed with the ISO / NORSOK method. In the example the usage factor computed is 0.12 underestimating the real condition (independent calculations give an usage factor of about 0.9, details in my first post).

  • Hello Bitna

    No worries, that is also on the list. 

    Fine.

    As for the small difference in the displacement, by changing the axis with that option, the dimension is changed inside the MOSES. That make the arithmetic order different. We can expect those kind of small difference due to the numeric itself, not round-off.

    I'm really doubtful that simply changing the order of operations, if performed with double-precision real arithmetic, can propagate to an error that is 0.6%. As a further prove, if, instead of using the HEBZ300 beam, I simply "rotate" the HEBY300 beam (-CA 90), the displacements are exactly those expected. So, again the problem is due to the ..."Z"... beam.

    The correct explanation is the following: MOSES uses the Timoshenko beam theory (i.e. accounts for shear deformations), so also shear areas are relevant for forming the stiffness matrix (and consequently the deformations).

    In this case, if the section is not "rotated" properly (like for the HEBZ...), then we get wrong results (due to incorrect structural FEA matrices assemblage on the structural solution phase).

    To be specific, the switch in major/minor axis is not being accounted for in the structural post processor whereas it works fine in the structural solver.

    This is not true, as I just explained. This bug has implications also on the structural solver (shear deformation, according to Timoshenko beam theory).

    Regards

    Ig

  • You do not need to spend your time on the guess and tries here. We will start our own investigation in the near future. Thank you for bringing this to our attention.

    Best regards,

    Bitna

  • You do not need to spend your time on the guess and tries here. We will start our own investigation in the near future.

    Sorry but I don't agree. Maybe I'm wrong, but in more than 20 years of experience in offshore structural dynamics, we always verify and check the tools before we use them.

    It is also a legal issue: at the end of the day, if MY design fails due to a wrong code check, who will be charged guilty? Me or the software house? Obviously, when I sign a project I assume all responsibilities.

    The "bugless" code simply does not exist, and in that moses makes no difference. So when I identify a bug, apart from reporting it, I search for a RIGOROUS explanation to it (see the analysis I did about lateral displacements), and a possible workaround (instead of using the ...Z... beam I can use the ...Y... beam with 90 degrees rotation and performing a code check with AISC instead of eurocode - with manual eurocode checks on specific members).

    Reporting, isolation and workaround are obviously to be performed until we get a fix from the software house. If we don't do that procedure, should we suspend all design work waiting for a bugfix?

    Apart of that, I can tell you that more often we are getting requests to perform our code checks according to the Eurocode 3, and in particular adhering to specific "national annexes". In particular it would be great if at least the gammaM0 and gammaM1 factors could be set for moses unity checks (also other parameters in Eurocode 3 are susceptible to variation - see below, but these two are fundamental).

    Regards

    Ig

  • Hello Mr. Ig,

    I would like to start by stating that communication is an art.  This thread has involved communication across time-zones, languages, and cultures.

    There has been a misunderstanding. Bitna's last communication was stating that you have provided sufficient information for Bentley to classify this as a defect and we start working towards a fix.  The tone in his message is friendly  Maybe you were expecting a serious tone.

    We take your report very seriously.

    MOSES has over 400 tests that are run prior to release.  As you stated, bugless software does not exist.  We are always adding to the test suite.  The files we used to investigate your report, along with any other needed files to test a fix, will be added to the test suite.

    All members of the MOSES support team have also been engineers.  We understand the pressure and the legal issues you reference.  We want MOSES to be your tool of choice.  We will work toward restoring your confidence in our software. 

    We are working towards a fix.  I hope we can continue to count you as a MOSES user.

    Georgina Maldonado

    Bentley MOSES User support team

    Answer Verified By: the ig 

  • Hello Mr. The Ig,

    Let me start by saying the communication is an art.  This thread has been communicating across languages, time zones, and cultures.  Bitna's response was in a friendly tone.  Perhaps you were expecting a serious tone. Thank you for bringing this up to our attention.

    We take your reports seriously.  The information you have provided was used to develop files for the developers.  The developers are aware of this defect and have started the process to provide a fix.

    As you said, there is no such thing as defect-free software.  As part of the release process there are over 400 files that are run before each release.  The files test everything from colors, engineering results, to command sequences.  As a result of your report a file will be added to the test suite to test the properties on the HEB beams.  The above procedure is done with the intent to reduce defects.

    If you have further concerns, please contact me directly via message on this forum or contact me directly via email.

    Georgina Maldonado-Aguirre

    Manager MOSES AE Software Support

Reply
  • Hello Mr. The Ig,

    Let me start by saying the communication is an art.  This thread has been communicating across languages, time zones, and cultures.  Bitna's response was in a friendly tone.  Perhaps you were expecting a serious tone. Thank you for bringing this up to our attention.

    We take your reports seriously.  The information you have provided was used to develop files for the developers.  The developers are aware of this defect and have started the process to provide a fix.

    As you said, there is no such thing as defect-free software.  As part of the release process there are over 400 files that are run before each release.  The files test everything from colors, engineering results, to command sequences.  As a result of your report a file will be added to the test suite to test the properties on the HEB beams.  The above procedure is done with the intent to reduce defects.

    If you have further concerns, please contact me directly via message on this forum or contact me directly via email.

    Georgina Maldonado-Aguirre

    Manager MOSES AE Software Support

Children
No Data