Calculation of Code Combined Stress result

Hi there,

I'm trying to reconcile the stress results shown in AutoPIPE with what I would expect the code stresses to be based on the shown values.

The AutoPIPE code used set to ASME B31.4

Please see the screen shot below with reference to the highlighted line, the results of interest shown are:
- Hoop stress (Sh)= 180.41 N/mm2
- Max Long  (SL)= 317.05 N/mm2
- Combined (Se)= 362.84 N/mm2
- Shear stress (Ss)= 1.01 N/mm2

I'm currently doing a design to PD8010 so need to check for the equivalent Von Mises stress based on:

Se = (Sh^2 + SL^2 - Sh.SL + 3Ss^2)^0.5

Therefore using the numbers above - I calculate the Se to be 275.4 N/mm2, however as you can see the Combined stress reported by AutoPIPE (which I would have expected to be the VM stress as well) is much higher at 362.84 N/mm2.

Can you please help with clarifying how AutoPIPE calculates the Combined stress?

Cheers

Jay

Parents Reply Children
  • If you are doing a PD8010 code check you should be extracting the longitudinal stresses from the general stress output. This reports Lmax and Lmin, I am unaware of where the neutral axis axial stress is reported though and would be curious to find out. Also, for performing a PD81010 code check you require the hoop stress to be calculated using tmin (I generally do this with a hand calc outside of autopipe and then extract the longitudinal and shear from the general stress output).

  • Hi Shimmy,

    Thanks for the response and the advice on the PD8010 stress checks.  We will adopt this process.

    It is a little disconcerting however, as we had been using the ASME 31.4 output instead of the 'General' output and the maximum longitudinal stress values in the B31.4 are significant lower than the Lmax in the 'General' values e.g. 257MPa (B31.4) as opposed to 337MPa (General).

    Do you know why the values are so different in their reporting of the longitudinal stress? How is AutoPIPE calculating the longitudinal stress for ASME B31.4?

    Cheers,

    Jay

  • You need to use "Axial" and "Bending" columns to get the three SL values.

    As far as the diffrence between B31.4 offshore code stress and general stress:

    1. General stress uses corrosion plus mill tolerance for hoop stress. If you set mill tol=0, the hoop stress will match

    2. General stress uses rigorous shear stress (evaluate stress at every 15 degress along circumference). If you set "Direct Shear=R" in result options, the B31.4 offshore code stress will do the same.

    If you set mill=0 and Direct shear=R, the results will match.

    Karim

  • Karim, as discussed in this thread the longitudinal stress is calculated within AutoPIPE at the neutral axis (axial stress), at maximum bending and at minimum bending. What is not clear is whether this is at the extreme fibre or if it is a through thickness longitudinal stress? Is this included in the help files anywhere as I cannot find anything on it? I would assume it is at the extreme fiber. Thanks