Bentley Communities
Bentley Communities
  • Site
  • User
  • Site
  • Search
  • User
AutoPIPE
  • Product Communities
AutoPIPE
AutoPIPE Wiki 01. How to apply harmonic load case at a non-support point in AutoPIPE?
    • Sign In
    • -Pipe and Vessel Stress Analysis - Wiki
      • -.Bentley AutoPIPE
        • +a. General Information about AutoPIPE
        • +b. NEW User Guide for AutoPIPE
        • +c. Technical Support - AutoPIPE
        • +d. Download - Install - Release Notes - AutoPIPE
        • +e. Features and Bugs in AutoPIPE
        • +f. License AutoPIPE -
        • +g. System Messages: Warnings, Errors, Crashed, Confirm, etc.. in AutoPIPE
        • h. QA&R program for AutoPIPE
        • i. Security
        • -❤︎ Support Solutions and FAQ's in AutoPIPE
          • +Batch Processing, ITS, and ATS using AutoPIPE
          • +File / Model Management using AutoPIPE
          • +General - AutoPIPE
          • +Graphics - AutoPIPE
          • +Grids (Input & Results) - AutoPIPE
          • +Import and Export - AutoPIPE
          • +Libraries - AutoPIPE
          • +Loads and Load Sets - AutoPIPE
          • +Localization (Non-English Language) - AutoPIPE
          • -Modeling Approaches in AutoPIPE
            • .b - Cuts: Cold Spring Modeling example in AutoPIPE
            • .c Frames / Beams - Modeling in AutoPIPE
            • +.h - "Bend" - Modeling Approaches in AutoPIPE
            • +.i - "Flexible Joints" - Example Modeling Approaches in AutoPIPE
            • .k - Pipes - Modeling in AutoPIPE
            • .l - Rotating Equipment - Modeling in AutoPIPE
            • .n - "Vessels" - Modeling Approaches in AutoPIPE
            • +01a. Model Different Types of PIPING in AutoPIPE
            • +01b.Model Different Types of PIPING Components - AutoPIPE
            • +01c. Model Non-metallic Plastic Piping (i.e. Plastic, PVC, PP, PPR, HDPE, PE, FRP, GRP, etc.)
            • +01d. Model a Ring Main (circular header) with AutoPIPE
            • 01e. Model a LONG PipeLines with AutoPIPE
            • +01f. Model Different Types of PIPING Routings (i.e. By-Pass, Join 2 pipe runs, etc..) using AutoPIPE
            • +02a. Model Subsea (Underwater) Piping - AutoPIPE
            • 02b. Modeling Offshore Piping per BS8010 or CSAZ662 section 11 Piping Codes
            • +02c. Model Soil Properties with Soil Calculator and Underground Piping in AutoPIPE
            • +03a. Model Rotating Equipment: Pumps, Compressor, Turbine in AutoPIPE
            • +03b. Modeling Vessel / Nozzles in AutoPIPE
            • +03c. Modeling Support and Beam Structures in AutoPIPE
            • +03d. Modeling Anchors in AutoPIPE
            • +04a. Modeling Seimic Analysis - AutoPIPE
            • 04b. Model Buckling - AutoPIPE
            • +04d. Model Concentrated Forces - AutoPIPE
            • 04f. Model Vacuum (Negative Pressure) Piping in AutoPIPE
            • 04g. Model Fluid / Gas Density in AutoPIPE
            • +04h. Modeling Thermal type load cases with AutoPIPE
            • -04i. Model Pump / Compressor (Oscillating) Vibration - AutoPIPE
              • 01. How to apply harmonic load case at a non-support point in AutoPIPE?
              • 02. Guidelines - Vibration Analysis Requirements On Lift Oil System
              • 03. How to model a Time history torque
            • 04j. Model Flow (Oscillating) Vibration - AutoPIPE
            • +04k. Model Blast Loading in AutoPIPE
            • +04l. Model Cut short / Cut long in AutoPIPE
            • 04m. Model Cryogenic piping in AutoPIPE
            • 04n. How to model / perform Creep Analysis with AutoPIPE?
            • 04o. How to model a Smart Pig going thru the Pipeline in AutoPIPE?
            • 04p. Input node point displacement / acceleration from field data in AutoPIPE?
            • 04r. How to model a Relief Valve thrust force in an AutoPIPE model?
            • 04s. How to model a thrust via a flowing fluid (i.e. impulse-momentum change equation) to an AutoPIPE model?
            • 04t. How to model the load on a piping system installed on a ship, Rig, or FPSO (Floating Production Storage and Offloading) when using AutoPIPE?
            • +05a. Cut / Copy / Paste / Rotate / Move / Stretch Commands
            • +05b. AutoPIPE command - "Convert Point to" - Run, Bend, or Tee
            • +05d. Delete Command in AutoPIPE
            • 06a. Modeling approach to account for piping beyond modeled piping
            • 06b. Apply More Than 1 Piping Code In an AutoPIPE Model
            • 06c. How to model a liquid (water) / gas (foam or air) Fire Protection piping system in AutoPIPE?
            • 06d. How to model vaporization / boiling of liquid in pipe that causes a pressure wave to travel up the line in AutoPIPE?
            • 06e. How to model a pipe riser (vertical pipe) to correctly account for GR weight on each floor support in AutoPIPE
            • 06f. Modeling a Manway / access port in a pipe sidewall using AutoPIPE
            • 06g. Using load case displacement as a new starting point for analysis in AutoPIPE?
            • 06h. How to model node point shared by more than 1 model?
            • 06i. How to model miss aligned pipe pulled back into original position using AutoPIPE?
            • 06j. How to model lifting pipe segment(s) using AutoPIPE?
            • 06k. How to model piping systems not aligned with the global axis using AutoPIPE?
            • 06l. Guidance for modelling Bell and Spigot type joint
            • 06M. How to model piping systems in which upper pipe is supported on lower pipe using AutoPIPE?
            • 7a. Modeling scenario using AutoPIPE: hot tapping a pipeline under operating condition, stresses in system after plant shutdown
            • 7b. Model Joule-Thomson effect and solving the transient heat transfer through the thickness of the pipe using AutoPIPE?
            • Tutorial - Water Hammer (Time History) Example - Modeling Approach in AutoPIPE
          • +Modules (i.e. Flange Analysis, Spring Hanger Selection, Rotating Equip, TTA) in AutoPIPE
          • +Piping codes - AutoPIPE
          • +Post Processing - AutoPIPE
          • +Printing - AutoPIPE
          • +Reports - AutoPIPE
          • +Settings - AutoPIPE
          • +Stress Isometrics - AutoPIPE
          • +Technology Productivity Capabilities
      • +.Bentley AutoPIPE Vessel (powered by Microprotol)
      • +ADL PIPE
      • +Bentley AutoPIPE Nozzle
      • +Bentley PlantFLOW
      • +Bentley PULS
    • +AutoPIPE Brand Learning Resources
    • +Attend a live meeting with an AutoPIPE Analyst

     
     Questions about this article, topic, or product? Click here. 

    01. How to apply harmonic load case at a non-support point in AutoPIPE?

    Applies To
    Product(s): AutoPIPE,
    Version(s): 2004, XM, & V8i
    Environment: N/A
    Area: Modeling
    Original Author: Bentley Technical Support Group

    Dec 2014, AutoPIPE V8i 09.06.01.10

    Problem:

    Whenever we have vibration problems in the field, we typically get velocity vs time data at the highest vibration points and usually there are no supports at these points. We were looking in to doing a harmonic analysis in AutoPIPE for the piping system, but I believe AutoPIPE requires a support if we need to specify harmonic loads in the form of displacement, velocity or acceleration. We cannot add a support at these locations just to input the velocity based harmonic loads as it would change the natural frequency of the system. Currently the only way to specify harmonic load to a point without support is to use a load based (force vs. time) forcing function in AutoPIPE, but unfortunately it is not the information that we get from the field. Is there a work around to this problem in AutoPIPE? 

    Solution:

    Yes per the online help displacement, velocity and acceleration can only be applied at a support or anchor while harmonic forces can be defined at any unrestrained node.

     

    Wiki article can be found here

    Attached is some vibration guidelines for modeling a pump oil lift system (see d) and PDF of presentation of features for designing Oil and Gas pipeline systems 

    See Also

    Model Pump / Compressor (Oscillating) Vibration

    Bentley AutoPIPE

    • harmonic
    • AutoPIPE
    • Dynamic Analysis
    • Vibration
    • Share
    • History
    • More
    • Cancel
    • Mike Dattilio Created by Bentley Colleague Mike Dattilio
    • When: Thu, Dec 18 2014 1:21 PM
    • Mike Dattilio Last revision by Bentley Colleague Mike Dattilio
    • When: Tue, Feb 28 2023 12:45 PM
    • Revisions: 2
    • Comments: 0
    Recommended
    Related
    Communities
    • Home
    • Getting Started
    • Community Central
    • Products
    • Support
    • Secure File Upload
    • Feedback
    Support and Services
    • Home
    • Product Support
    • Downloads
    • Subscription Services Portal
    Training and Learning
    • Home
    • About Bentley Institute
    • My Learning History
    • Reference Books
    Social Media
    •    LinkedIn
    •    Facebook
    •    Twitter
    •    YouTube
    •    RSS Feed
    •    Email

    © 2023 Bentley Systems, Incorporated  |  Contact Us  |  Privacy |  Terms of Use  |  Cookies