Bentley Communities
Bentley Communities
  • Site
  • User
  • Site
  • Search
  • User
AutoPIPE
  • Product Communities
AutoPIPE
AutoPIPE Wiki 01. How to model a Viscous Damper in AutoPIPE
    • Sign In
    • -Pipe and Vessel Stress Analysis - Wiki
      • +ADL PIPE
      • -Bentley AutoPIPE
        • +- General Information about AutoPIPE
        • +- NEW User Guide for AutoPIPE
        • +- Technical Support - AutoPIPE
        • +Batch Processing, ITS, and ATS using AutoPIPE
        • AutoPIPE QA&R program
        • +Download - Install - Release Notes - AutoPIPE
        • +File / Model Management using AutoPIPE
        • +General - AutoPIPE
        • +Graphics - AutoPIPE
        • +Grids (Input & Results) - AutoPIPE
        • +Import and Export - AutoPIPE
        • +Known Issues in AutoPIPE (Enhancements, defects, etc..)
        • +Libraries - AutoPIPE
        • +License AutoPIPE -
        • +Loads and Load Sets - AutoPIPE
        • +Localization (Non-English Language) - AutoPIPE
        • -Modeling Approaches in AutoPIPE
          • .b - Cuts: Cold Spring Modeling example in AutoPIPE
          • .c Frames / Beams - Modeling in AutoPIPE
          • +.h - "Bend" - Modeling Approaches in AutoPIPE
          • +.i - "Flexible Joints" - Example Modeling Approaches in AutoPIPE
          • .k - Pipes - Modeling in AutoPIPE
          • .l - Rotating Equipment - Modeling in AutoPIPE
          • +01a. Model Different Types of PIPING in AutoPIPE
          • +01b.Model Different Types of PIPING Components - AutoPIPE
          • +01c. Model Non-metallic Plastic Piping (i.e. Plastic, PVC, PP, PPR, HDPE, PE, FRP, GRP, etc.)
          • +01d. Model a Ring Main (circular header) with AutoPIPE
          • 01e. Model a LONG PipeLines with AutoPIPE
          • +01f. Model Different Types of PIPING Routings (i.e. By-Pass, Join 2 pipe runs, etc..) using AutoPIPE
          • +02a. Model Subsea (Underwater) Piping - AutoPIPE
          • 02b. Modeling Offshore Piping per BS8010 or CSAZ662 section 11 Piping Codes
          • +02c. Model Soil Properties with Soil Calculator and Underground Piping in AutoPIPE
          • +03a. Model Rotating Equipment: Pumps, Compressor, Turbine in AutoPIPE
          • +03b. Modeling Vessel / Nozzles in AutoPIPE
          • -03c. Modeling Support and Beam Structures in AutoPIPE
            • -01. Different Types of Supports In AutoPIPE?
              • - How to model a real life support in AutoPIPE?
              • +a. Spring - Support Type in AutoPIPE - FAQ's
              • +c. V-stop - Support Type in AutoPIPE - FAQ's
              • +d. Incline - Support Type in AutoPIPE - FAQ's
              • +e. Line Stop - Support Type in AutoPIPE - FAQ's
              • +f. Guide - Support Type in AutoPIPE - FAQ's
              • -h. Damper - Support Type in AutoPIPE - FAQ's
                • 01. How to model a Viscous Damper in AutoPIPE
              • i. Tie/Link - Support Type in AutoPIPE - FAQ's
              • +k. Anchor - Support Type in AutoPIPE - FAQ's
            • +02. Available AutoPIPE Help Example Methods for Modeling Supports with related FAQ's.
            • +03. Beam Structure modeling in AutoPIPE
            • +04. General FAQ's about Supports and Beams in AutoPIPE
          • +03d. Modeling Anchors in AutoPIPE
          • +04a. Modeling Seimic Analysis - AutoPIPE
          • 04b. Model Buckling - AutoPIPE
          • +04d. Model Concentrated Forces - AutoPIPE
          • 04f. Model Vacuum (Negative Pressure) Piping in AutoPIPE
          • 04g. Model Fluid / Gas Density in AutoPIPE
          • +04h. Modeling Thermal type load cases with AutoPIPE
          • +04i. Model Pump / Compressor (Oscillating) Vibration - AutoPIPE
          • 04j. Model Flow (Oscillating) Vibration - AutoPIPE
          • +04k. Model Blast Loading in AutoPIPE
          • +04l. Model Cut short / Cut long in AutoPIPE
          • 04m. Model Cryogenic piping in AutoPIPE
          • 04n. How to model / perform Creep Analysis with AutoPIPE?
          • 04o. How to model a Smart Pig going thru the Pipeline in AutoPIPE?
          • 04p. Input node point displacement / acceleration from field data in AutoPIPE?
          • 04r. How to model a Relief Valve thrust force in an AutoPIPE model?
          • 04s. How to model a thrust via a flowing fluid (i.e. impulse-momentum change equation) to an AutoPIPE model?
          • 04t. How to model the load on a piping system installed on a ship, Rig, or FPSO (Floating Production Storage and Offloading) when using AutoPIPE?
          • +05a. Cut / Copy / Paste / Rotate / Move / Stretch Commands
          • +05b. AutoPIPE command - "Convert Point to" - Run, Bend, or Tee
          • +05d. Delete Command in AutoPIPE
          • 06a. Modeling approach to account for piping beyond modeled piping
          • 06b. Apply More Than 1 Piping Code In an AutoPIPE Model
          • 06c. How to model a liquid (water) / gas (foam or air) Fire Protection piping system in AutoPIPE?
          • 06d. How to model vaporization / boiling of liquid in pipe that causes a pressure wave to travel up the line in AutoPIPE?
          • 06e. How to model a pipe riser (vertical pipe) to correctly account for GR weight on each floor support in AutoPIPE
          • 06f. Modeling a Manway / access port in a pipe sidewall using AutoPIPE
          • 06g. Using load case displacement as a new starting point for analysis in AutoPIPE?
          • 06h. How to model node point shared by more than 1 model?
          • 06i. How to model miss aligned pipe pulled back into original position using AutoPIPE?
          • 06j. How to model lifting pipe segment(s) using AutoPIPE?
          • 06k. How to model piping systems not aligned with the global axis using AutoPIPE?
          • 7a. Modeling scenario using AutoPIPE: hot tapping a pipeline under operating condition, stresses in system after plant shutdown
          • 7b. Model Joule-Thomson effect and solving the transient heat transfer through the thickness of the pipe using AutoPIPE?
          • Tutorial - Water Hammer (Time History) Example - Modeling Approach in AutoPIPE
        • +Modules (i.e. Flange Analysis, Spring Hanger Selection, Rotating Equip, TTA) in AutoPIPE
        • +Piping codes - AutoPIPE
        • +Post Processing - AutoPIPE
        • +Printing - AutoPIPE
        • +Reports - AutoPIPE
        • Security
        • +Settings - AutoPIPE
        • +Stress Isometrics - AutoPIPE
        • +Technology Productivity Capabilities
        • +Warnings, Errors, Crashed, Confirm, etc.. messages in AutoPIPE
      • +Bentley AutoPIPE Nozzle (WinNOZL)
      • +Bentley AutoPIPE Vessel (powered by Microprotol)
      • +Bentley PlantFLOW
      • +Bentley PULS
    • Multi-lingual announcement from BENTLEY TECHNICAL SUPPORT.
    • Working at Home with AutoPIPE
    • +AutoPIPE Brand Learning Resources
    • +Attend a live meeting with an AutoPIPE Analyst

     
     Questions about this article, topic, or product? Click here. 

    01. How to model a Viscous Damper in AutoPIPE

    Applies To
    Product(s): AutoPIPE
    Version(s): ALL
    Environment: N/A
    Area: Modeling
    Original Author: Bentley Technical Support Group
    Date Logged
    & Current Version
    Aug. 2015
    09.06.02.06

    Problem:

    How to model a Viscous Damper in AutoPIPE?

    Solution:

    Dampers
    Following extract from AutoPIPE online help:

    When Damper is entered in the Support type field, the Support dialog is updated to include additional fields. Vibration dampers are active only for static seismic and dynamic load cases (E1 - E3, R1-R10, S1-S3, F1-F3, H1-H3, M1-M3); they have zero stiffness for all other load cases. A damper may act along one of the global axes or in a specified direction. When all of the data is entered, accept the dialog by clicking on OK; the Damper support symbol will then be drawn at the specified point as shown.

    Typically for a static earthquake analysis E1 to E3 a damper element is used to lock up (i.e stiffness = rigid only acts in the E1 to E3 cases) the pipe but be 'free" in the thermal case. What you are describing I assume is the viscous component of the damper to overcome in order to move or lock up the damper. This is usually not a consideration for stress analysis of static seismic cases where it is assumed the snubber is designed to 'lock up' under earthquake (because of the nature of the suddenly applied load, the viscous force is so high such as to act as a rigid restraint) then move under a slowly applied load like thermal. There will be some resistance to movement in the thermal case due to the viscous dampening action but in AutoPIPE automatically assumes zero stiffness.

    The damper stiffness =RIGID is commonly used.

    In the dynamic analysis like time history again the damper is assumed to 'lock up' depending on the stiffness.
    Yes it may be appropriate to enter the Ns/m (ie Force/Velocity) for the snubber but AutoPIPE can only handle constant stiffness acting supports across the full travel of the pipe support. And again the dampening action is assumed almost instantaneous such the damper will act as a rigid restraint.

    The following Enhancement has been logged:

    TFS-E138946 (CAE-CR-10939) - Update damper support to viscous damper

    See Also

    Damper - Support Type

    Bentley AutoPIPE

    • Snubber
    • viscous damper
    • AutoPIPE
    • Modeling
    • Damper
    • Share
    • History
    • More
    • Cancel
    • Mike Dattilio Created by Bentley Colleague Mike Dattilio
    • When: Tue, Aug 18 2015 1:12 PM
    • Mike Dattilio Last revision by Bentley Colleague Mike Dattilio
    • When: Mon, Aug 14 2017 6:00 PM
    • Revisions: 2
    • Comments: 0
    Recommended
    Related
    Communities
    • Home
    • Getting Started
    • Community Central
    • Products
    • Support
    • Secure File Upload
    • Feedback
    Support and Services
    • Home
    • Product Support
    • Downloads
    • Subscription Services Portal
    Training and Learning
    • Home
    • About Bentley Institute
    • My Learning History
    • Reference Books
    Social Media
    •    LinkedIn
    •    Facebook
    •    Twitter
    •    YouTube
    •    RSS Feed
    •    Email

    © 2023 Bentley Systems, Incorporated  |  Contact Us  |  Privacy |  Terms of Use  |  Cookies