Bentley Communities
Bentley Communities
  • Site
  • User
  • Site
  • Search
  • User
  • Welcome
  • Products
  • Support
  • About
  • More
  • Cancel
AutoPIPE
  • Product Communities
  • More
AutoPIPE
AutoPIPE Wiki Q. How to model a Flanged Cross component using Back to Back Tee components in AutoPIPE?
    • Sign in
    • -Pipe and Vessel Stress Analysis - Wiki
      • +ADL PIPE
      • -Bentley AutoPIPE
        • +- General Information about AutoPIPE
        • +- NEW User Guide for AutoPIPE
        • +- Technical Support - AutoPIPE
        • +Batch Processing, ITS, and ATS using AutoPIPE
        • AutoPIPE QA&R program
        • +Download - Install - Release Notes - AutoPIPE
        • +File / Model Management using AutoPIPE
        • +General - AutoPIPE
        • +Graphics - AutoPIPE
        • +Grids (Input & Results) - AutoPIPE
        • +Import and Export - AutoPIPE
        • +Known Issues in AutoPIPE (Enhancements, defects, etc..)
        • +Libraries - AutoPIPE
        • +License AutoPIPE -
        • +Loads and Load Sets - AutoPIPE
        • +Localization (Non-English Language) - AutoPIPE
        • -Modeling Approaches in AutoPIPE
          • .b - Cuts: Cold Spring Modeling example in AutoPIPE
          • .c Frames / Beams - Modeling in AutoPIPE
          • +.h - "Bend" - Modeling Approaches in AutoPIPE
          • +.i - "Flexible Joints" - Example Modeling Approaches in AutoPIPE
          • .k - Pipes - Modeling in AutoPIPE
          • .l - Rotating Equipment - Modeling in AutoPIPE
          • +01a. Model Different Types of PIPING in AutoPIPE
          • -01b.Model Different Types of PIPING Components - AutoPIPE
            • +a. Bend & Miter Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • +b. Flanges Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • +c. Flexible Joint Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • d. GrayLoc Connector Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • f. Nozzle Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • g. Orifice Type Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • +h. Reducer Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • -i. Tee, Cross, or Branch Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
              • 01. How does AutoPIPE calculate the weight of a typical pipe fittings (i.e. Tee, elbow, reducer, etc..)?
              • 02. How to model branch fitting (i.e. tee, weldolet, sockolet,etc..) on strait pipe using one of 3 methods: Single Point Method, 2-Point Method, or 3-Point Method.
              • 03. How to model a branch (elbolet, weldolet, sockolet, etc...) fitting on an elbow?
              • -04. How to model a flanged cross pipe fitting with center of cross to face of flange measurement = 1 foot?
                • Q. How to model a Flanged Cross component using Back to Back Tee components in AutoPIPE?
              • 05. Added information about USER SIF values in AutoPIPE:
              • 06. How to model a Y-pipe fitting?
              • 07. How to correct a incorrectly modeled Tee?
              • 08. How to connect Branch Piping to Header Piping to form a Tee component (i.e. tee, weldolet, sockolet, etc..) in AutoPIPE?
              • 10. How to model a Reducing Tee using AutoPIPE?
              • 11. Cannot model branch piping on Tee component in AutoPIPE, why?
              • 12. How to model a Saddle Contour supported Tee branch connection in AutoPIPE?
              • 13. How to model a modified Y-pipe fitting?
            • +j. Valves Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • k. Victaulic / Grinnell grooved fittings - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • l. How to model EN 10253-2 Type B Butt-welding pipe fittings in AutoPIPE
            • m. Mule Ear Return or Plug Headers - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • N. How to model piping components (ex. Strainer, Filter, Flow Meter, etc...) in AutoPIPE?
            • Q. How to model an offset drip pipe in AutoPIPE?
            • r. How to model Pipe End Cap using AutoPIPE
          • +01c. Model Non-metallic Plastic Piping (i.e. Plastic, PVC, PP, PPR, HDPE, PE, FRP, GRP, etc.)
          • +01d. Model a Ring Main (circular header) with AutoPIPE
          • 01e. Model a LONG PipeLines with AutoPIPE
          • +01f. Model Different Types of PIPING Routings (i.e. By-Pass, Join 2 pipe runs, etc..) using AutoPIPE
          • +02a. Model Subsea (Underwater) Piping - AutoPIPE
          • 02b. Modeling Offshore Piping per BS8010 or CSAZ662 section 11 Piping Codes
          • +02c. Model Soil Properties with Soil Calculator and Underground Piping in AutoPIPE
          • +03a. Model Rotating Equipment: Pumps, Compressor, Turbine in AutoPIPE
          • +03b. Modeling Vessel / Nozzles in AutoPIPE
          • +03c. Modeling Support and Beam Structures in AutoPIPE
          • +03d. Modeling Anchors in AutoPIPE
          • +04a. Modeling Seimic Analysis - AutoPIPE
          • 04b. Model Buckling - AutoPIPE
          • +04d. Model Concentrated Forces - AutoPIPE
          • 04f. Model Vacuum (Negative Pressure) Piping in AutoPIPE
          • 04g. Model Fluid / Gas Density in AutoPIPE
          • 04h. Modeling Thermal Bowing Analysis with AutoPIPE
          • +04i. Model Pump / Compressor (Oscillating) Vibration - AutoPIPE
          • 04j. Model Flow (Oscillating) Vibration - AutoPIPE
          • +04k. Model Blast Loading in AutoPIPE
          • +04l. Model Cut short / Cut long in AutoPIPE
          • 04m. Model Cryogenic piping in AutoPIPE
          • 04n. How to model / perform Creep Analysis with AutoPIPE?
          • 04o. How to model a Smart Pig going thru the Pipeline in AutoPIPE?
          • 04p. How to model a Relief Valve thrust force in an AutoPIPE model?
          • 04p. Input node point displacement / acceleration from field data in AutoPIPE?
          • +05a. Cut / Copy / Paste / Rotate / Move / Stretch Commands
          • +05b. AutoPIPE command - "Convert Point to" - Run, Bend, or Tee
          • +05d. Delete Command in AutoPIPE
          • 06a. Modeling approach to account for piping beyond modeled piping
          • 06b. Apply More Than 1 Piping Code In an AutoPIPE Model
          • 06c. How to model a liquid (water) / gas (foam or air) Fire Protection piping system in AutoPIPE?
          • 06d. How to model vaporization / boiling of liquid in pipe that causes a pressure wave to travel up the line in AutoPIPE?
          • 06e. How to model a pipe riser (vertical pipe) to correctly account for GR weight on each floor support in AutoPIPE
          • 06f. Modeling a Manway / access port in a pipe sidewall using AutoPIPE
          • 06g. Using load case displacement as a new starting point for analysis in AutoPIPE?
          • 06h. How to model node point shared by more than 1 model?
          • 06i. How to model miss aligned pipe pulled back into original position using AutoPIPE?
          • 06j. How to model lifting pipe segment(s) using AutoPIPE?
          • 7a. Modeling scenario using AutoPIPE: hot tapping a pipeline under operating condition, stresses in system after plant shutdown
          • 7b. Model Joule-Thomson effect and solving the transient heat transfer through the thickness of the pipe using AutoPIPE?
          • Tutorial - Water Hammer (Time History) Example - Modeling Approach in AutoPIPE
        • +Modules (i.e. Flange Analysis, Spring Hanger Selection, Rotating Equip, TTA) in AutoPIPE
        • +Piping codes - AutoPIPE
        • +Post Processing - AutoPIPE
        • +Printing - AutoPIPE
        • +Reports - AutoPIPE
        • Security
        • +Settings - AutoPIPE
        • +Stress Isometrics - AutoPIPE
        • +Technology Productivity Capabilities
        • +Warnings, Errors, Crashed, Confirm, etc.. messages in AutoPIPE
      • +Bentley AutoPIPE Nozzle (WinNOZL)
      • +Bentley AutoPIPE Vessel (powered by Microprotol)
      • +Bentley PlantFLOW
      • +Bentley PULS
    • Multi-lingual announcement from BENTLEY TECHNICAL SUPPORT.
    • Working at Home with AutoPIPE
    • +AutoPIPE Brand Learning Resources
    • +Attend a live meeting with an AutoPIPE Analyst

     
     Questions about this article, topic, or product? Click here. 

    Q. How to model a Flanged Cross component using Back to Back Tee components in AutoPIPE?

    Applies To
    Product(s): AutoPIPE
    Version(s): ALL
    Area: Modeling
    Original Author: Bentley Technical Support Group
    Date Logged
    & Current Version
    Jan 2019
    12.00.00.14

    Problem:

    How to model a flanged cross pipe fitting with center of cross to face of flange measurement = 1 foot using Back to Back tee?

    Solution:

    There are 2 methods of creating a Cross piping component in AutoPIPE

    1. Model using Cross component

    2. Model using back to back Tee components

    Use procedure below to model with back to back Tee components,  or click here for instructions to model with a single Cross component

    A. Select a node point in the model

    B. Use Insert Tee command

    Length = 1 ft

    Type of tee = Other

    SIF in / out = enter value (ex. 1.0)

    Note: The user must enter a custom SIF values as the default values are wrong. Most piping codes (i.e. ASME B31.1, B31.3, etc..) do not have SIF calculations for cross fittings. Only available options are: A. hand calculate the SIF value using other reference materials B. contact the manufacture to have them supply an SIF value, or C. analyze with an FEA application to provide the calculated value based on the cross's geometry. 

    Press OK to continue

    C. Select the branching blue arrow, (notice the segment changed from A to *B*)

    D Use insert Run command to enter branch piping, distance = 1 ft 

    Press OK to continue

    E. Select Run arrow, notice that the segment changed from B back to A

    F. Use Insert Tee command

    Length = enter a small value (ex. 0.01) 

    Type of tee = Other

    SIF in / out = enter value (ex. 1.0), again enter user SIF values as mentioned above.

    Press OK to continue

    G. Select the branching blue arrow, (notice the segment changed from A to *C*)

    Note: selecting the branch arrow is easy, by confirming current node point is A03, and then press the UP arrow on the keyboard

    H. Use insert Run command to enter branch piping, distance = 1 ft 

    Press OK to continue

    I. Select Run Arrow from node point A03.

    Note, selecting the arrow is easy using the keyboard arrows Up / Down switches between connected segments at a node point, Left / Right arrow moves up and down the segment respecively. 

    J. Use insert Run command to enter branch piping, distance = 1 ft 

    Press OK to continue

    K. The cross piping is complete

    L. Add additional piping in all directions from the Cross as needed

    M. To add the flanges, first start by selecting all 4 node points where the flanges are to be inserted. Then use insert Flange command

    Configure flange dialog as needed

    Press OK to continue

    N. Done

    See Also

    Tee, Cross, or Branch Piping Components - Modeling Approaches

    Bentley AutoPIPE

    • Cross
    • Pipe
    • Back to Back Tee
    • AutoPIPE
    • Component
    • Share
    • History
    • More
    • Cancel
    • Mike Dattilio Created by Bentley Colleague Mike Dattilio
    • When: Wed, Jan 16 2019 9:34 AM
    • Mike Dattilio Last revision by Bentley Colleague Mike Dattilio
    • When: Wed, Jan 16 2019 9:51 AM
    • Revisions: 6
    • Comments: 0
    Recommended
    Related
    Communities
    • Home
    • Getting Started
    • Community Central
    • Products
    • Support
    • Secure File Upload
    • Feedback
    Support and Services
    • Home
    • Product Support
    • Downloads
    • Subscription Services Portal
    Training and Learning
    • Home
    • About Bentley Institute
    • My Learning History
    • Reference Books
    Social Media
    •    LinkedIn
    •    Facebook
    •    Twitter
    •    YouTube
    •    RSS Feed
    •    Email

    © 2021 Bentley Systems, Incorporated  |  Contact Us  |  Privacy |  Terms of Use  |  Cookies