Bentley Communities
Bentley Communities
  • Site
  • User
  • Site
  • Search
  • User
AutoPIPE
  • Product Communities
AutoPIPE
AutoPIPE Wiki 17. Typical questions related to a bend flexibility calculations and use in AutoPIPE
    • Sign In
    • -Pipe and Vessel Stress Analysis - Wiki
      • +ADL PIPE
      • -Bentley AutoPIPE
        • +- General Information about AutoPIPE
        • +- NEW User Guide for AutoPIPE
        • +- Technical Support - AutoPIPE
        • +Batch Processing, ITS, and ATS using AutoPIPE
        • AutoPIPE QA&R program
        • +Download - Install - Release Notes - AutoPIPE
        • +File / Model Management using AutoPIPE
        • +General - AutoPIPE
        • +Graphics - AutoPIPE
        • +Grids (Input & Results) - AutoPIPE
        • +Import and Export - AutoPIPE
        • +Known Issues in AutoPIPE (Enhancements, defects, etc..)
        • +Libraries - AutoPIPE
        • +License AutoPIPE -
        • +Loads and Load Sets - AutoPIPE
        • +Localization (Non-English Language) - AutoPIPE
        • -Modeling Approaches in AutoPIPE
          • .b - Cuts: Cold Spring Modeling example in AutoPIPE
          • .c Frames / Beams - Modeling in AutoPIPE
          • +.h - "Bend" - Modeling Approaches in AutoPIPE
          • +.i - "Flexible Joints" - Example Modeling Approaches in AutoPIPE
          • .k - Pipes - Modeling in AutoPIPE
          • .l - Rotating Equipment - Modeling in AutoPIPE
          • +01a. Model Different Types of PIPING in AutoPIPE
          • -01b.Model Different Types of PIPING Components - AutoPIPE
            • -a. Bend & Miter Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
              • 01. How to model an Elbow with Tapered weld joint for Nuclear NB analysis in AutopIPE?
              • 02. How to model a short, long (1.5D), 3D, 5D, or custom bend radius Elbows in AutoPIPE?
              • 03. How to correctly insert Valves, Reducers Or Other Components After Elbow Or After Tee in AutoPIPE?
              • 04. When a flanged or valve is modeled after an elbow in AutoPIPE, does it affect the stiffness of the elbow in the analysis? If so, how?
              • 05. How to add multiple points on a bend or very large radius bends in AutoPIPE?
              • 06. How does AutoPIPE calculate the weight of a typical pipe fittings (i.e. Tee, elbow, reducer, etc..)?
              • 07. How to model a Pulled Bend and a does AutoPIPE consider the thinning wall on the outer radius of a pulled bend?
              • 08. How would I model a 120 deg bend 6 ft radius bend in AutoPIPE?
              • 09. Can AutoPIPE analyze stress in pipelines where the pipe turns that are not standard 45 or 90 degree turns?
              • 10. How to model a Socket welded or threaded fittings (i.e. Bend, Tee, valve, Sockolet, Threadolet, etc..) in AutoPIPE?
              • 11. How to specify user stress indices to apply to only one end of a bend in an AutoPIPE model?
              • 12. In AutoPIPE, what SIF is being used in the calculations: Automatic Code calculated SIF, User Defined SIF or other?
              • 13. How to model a 3 degree mitered joint with 1 cut on the horizontal X-Y plane in AutoPIPE?
              • 14. How to model a S - bend that has bend angles less than 90 deg and is offset in the Side view in AutoPIPE
              • 15. How to convert all node points along an entire pipe line of imported survey data into bend points using AutoPIPE?
              • 16. How do I model large radius, back to back, bend piping using AutoPIPE?
              • 17. Typical questions related to a bend flexibility calculations and use in AutoPIPE
              • 18. How to model a Drip Pan Elbow in AutoPIPE?
              • 19. How to model a bend that is rolled an at some angle using AutoPIPE?
            • +b. Flanges Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • +c. Flexible Joint Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • d. GrayLoc Connector Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • f. Nozzle Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • g. Orifice Type Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • +h. Reducer Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • +i. Tee, Cross, or Branch Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • +j. Valves Piping Components - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • k. Victaulic / Grinnell grooved fittings - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • l. How to model EN 10253-2 Type B Butt-welding pipe fittings in AutoPIPE
            • m. Mule Ear Return or Plug Headers - Modeling Approaches, Tips, Techniques used in AutoPIPE
            • +N. How to model piping components (ex. Strainer, Filter, Flow Meter, etc...) in AutoPIPE?
            • Q. How to model an offset drip pipe in AutoPIPE?
            • r. How to model Pipe End Cap using AutoPIPE
          • +01c. Model Non-metallic Plastic Piping (i.e. Plastic, PVC, PP, PPR, HDPE, PE, FRP, GRP, etc.)
          • +01d. Model a Ring Main (circular header) with AutoPIPE
          • 01e. Model a LONG PipeLines with AutoPIPE
          • +01f. Model Different Types of PIPING Routings (i.e. By-Pass, Join 2 pipe runs, etc..) using AutoPIPE
          • +02a. Model Subsea (Underwater) Piping - AutoPIPE
          • 02b. Modeling Offshore Piping per BS8010 or CSAZ662 section 11 Piping Codes
          • +02c. Model Soil Properties with Soil Calculator and Underground Piping in AutoPIPE
          • +03a. Model Rotating Equipment: Pumps, Compressor, Turbine in AutoPIPE
          • +03b. Modeling Vessel / Nozzles in AutoPIPE
          • +03c. Modeling Support and Beam Structures in AutoPIPE
          • +03d. Modeling Anchors in AutoPIPE
          • +04a. Modeling Seimic Analysis - AutoPIPE
          • 04b. Model Buckling - AutoPIPE
          • +04d. Model Concentrated Forces - AutoPIPE
          • 04f. Model Vacuum (Negative Pressure) Piping in AutoPIPE
          • 04g. Model Fluid / Gas Density in AutoPIPE
          • +04h. Modeling Thermal type load cases with AutoPIPE
          • +04i. Model Pump / Compressor (Oscillating) Vibration - AutoPIPE
          • 04j. Model Flow (Oscillating) Vibration - AutoPIPE
          • +04k. Model Blast Loading in AutoPIPE
          • +04l. Model Cut short / Cut long in AutoPIPE
          • 04m. Model Cryogenic piping in AutoPIPE
          • 04n. How to model / perform Creep Analysis with AutoPIPE?
          • 04o. How to model a Smart Pig going thru the Pipeline in AutoPIPE?
          • 04p. Input node point displacement / acceleration from field data in AutoPIPE?
          • 04r. How to model a Relief Valve thrust force in an AutoPIPE model?
          • 04s. How to model a thrust via a flowing fluid (i.e. impulse-momentum change equation) to an AutoPIPE model?
          • 04t. How to model the load on a piping system installed on a ship, Rig, or FPSO (Floating Production Storage and Offloading) when using AutoPIPE?
          • +05a. Cut / Copy / Paste / Rotate / Move / Stretch Commands
          • +05b. AutoPIPE command - "Convert Point to" - Run, Bend, or Tee
          • +05d. Delete Command in AutoPIPE
          • 06a. Modeling approach to account for piping beyond modeled piping
          • 06b. Apply More Than 1 Piping Code In an AutoPIPE Model
          • 06c. How to model a liquid (water) / gas (foam or air) Fire Protection piping system in AutoPIPE?
          • 06d. How to model vaporization / boiling of liquid in pipe that causes a pressure wave to travel up the line in AutoPIPE?
          • 06e. How to model a pipe riser (vertical pipe) to correctly account for GR weight on each floor support in AutoPIPE
          • 06f. Modeling a Manway / access port in a pipe sidewall using AutoPIPE
          • 06g. Using load case displacement as a new starting point for analysis in AutoPIPE?
          • 06h. How to model node point shared by more than 1 model?
          • 06i. How to model miss aligned pipe pulled back into original position using AutoPIPE?
          • 06j. How to model lifting pipe segment(s) using AutoPIPE?
          • 06k. How to model piping systems not aligned with the global axis using AutoPIPE?
          • 7a. Modeling scenario using AutoPIPE: hot tapping a pipeline under operating condition, stresses in system after plant shutdown
          • 7b. Model Joule-Thomson effect and solving the transient heat transfer through the thickness of the pipe using AutoPIPE?
          • Tutorial - Water Hammer (Time History) Example - Modeling Approach in AutoPIPE
        • +Modules (i.e. Flange Analysis, Spring Hanger Selection, Rotating Equip, TTA) in AutoPIPE
        • +Piping codes - AutoPIPE
        • +Post Processing - AutoPIPE
        • +Printing - AutoPIPE
        • +Reports - AutoPIPE
        • Security
        • +Settings - AutoPIPE
        • +Stress Isometrics - AutoPIPE
        • +Technology Productivity Capabilities
        • +Warnings, Errors, Crashed, Confirm, etc.. messages in AutoPIPE
      • +Bentley AutoPIPE Nozzle (WinNOZL)
      • +Bentley AutoPIPE Vessel (powered by Microprotol)
      • +Bentley PlantFLOW
      • +Bentley PULS
    • Multi-lingual announcement from BENTLEY TECHNICAL SUPPORT.
    • Working at Home with AutoPIPE
    • +AutoPIPE Brand Learning Resources
    • +Attend a live meeting with an AutoPIPE Analyst

     
     Questions about this article, topic, or product? Click here. 

    17. Typical questions related to a bend flexibility calculations and use in AutoPIPE

    Applies To
    Product(s): AutoPIPE
    Version(s): ALL;
    Area:
    Date Logged
    & Current Version
    Aug. 2021
    12.06.00.48

    Problem:

    Various questions related to flexibility factor

    Solution:

    Question:

    What does it mean to have  flexibility factor = 1?

    Answer: 

    it means that the component does not have any flexibility taken into consideration. For example, a straight pipe has a flexibility factor equal to 1. 

    Question:

    How are flexibility factors incorporated into AutoPIPE's calculations?

    Answer: 

    Let us first understand AutoPIPE's methodology of handling stiffness for a straight pipe and a bend. Then discuss how flexibility factors influences these components.  

    AutoPIPE’s 12x12 stiffness matrix is used to solve Hooke’s law. That is, the relationship between deflection, x, and reaction, F:

    F = k x 

    The matrix, or k in our example, is 12x12 for the six degrees of freedom (DOF) and the two points of a pipe element.

    You can think of the matrix as being split into 4 quadrants, each a 6x6:

    Where

    - kii is the relationship of deflection of node I to reaction of node I

    - kij is the relationship of deflection of node J to reaction of node I

    - kji is the relationship of deflection of node I to reaction of node J

    - kjj is the relationship of deflection of node J to reaction of node J

    The full matrix looks like this for tangent (straight) pipes, where the red boxes represent the four quadrants explained above:

    AutoPIPE uses a different stiffness matrix for curved pipe which is much more complicated in nature.

    Calculation of DOF Flexibility on Node J

    Let the pipe wall shape factor

     

    The stiffness relationship between loads in the bend axial direction to translation in the axial direction consists of three components – axial, shear, bending. Here, you can see the flexibility factor, k, in the bending component.

    The stiffness relationship between loads in the X direction to deflections in the Y direction consists of the same three components evaluated in different ways. Again, you see the flexibility factor, k, in the bending component.

    Rotation to moment stiffness relationship is different altogether. For example, the axial rotation to axial moment, with torsional term applied is

    This forms a 6x6 matrix relationship of a nodes load to its deflections. This matrix is then reflected and inverted

    Calculation of DOF Flexibility on Node I

    The 6x6 stiffness block for relating loads from node I to deflection from node I, a matrix multiplication of  and translation matrix H is performed

    Calculation of DOF Flexibility on Node I-J

    Using the H translation matrix from the previous section, \mathcal{K}_{i,j} can be calculated as

    Complete Matrix

    The complete matrix can be visualized as four quadrants: I-I, J-J, I-J, J-I:

    Conclusion:

    A straight pipe has a flexibility factor of 1 and therefore does not affect the stiffness matrix. However a bend component considers a flexibility factor, k, under bending.  

    See Also

    Bend & Miter Piping Components - Modeling Approaches

    Confirm and modify the Bend and Tee flexibility factors

    Bentley AutoPIPE

    • bend
    • Flexibility Factor
    • AutoPIPE
    • stiffness
    • flexibility
    • matrix
    • Share
    • History
    • More
    • Cancel
    • Mike Dattilio Created by Bentley Colleague Mike Dattilio
    • When: Wed, Oct 27 2021 6:30 AM
    • Mike Dattilio Last revision by Bentley Colleague Mike Dattilio
    • When: Tue, Nov 2 2021 10:14 AM
    • Revisions: 4
    • Comments: 0
    Recommended
    Related
    Communities
    • Home
    • Getting Started
    • Community Central
    • Products
    • Support
    • Secure File Upload
    • Feedback
    Support and Services
    • Home
    • Product Support
    • Downloads
    • Subscription Services Portal
    Training and Learning
    • Home
    • About Bentley Institute
    • My Learning History
    • Reference Books
    Social Media
    •    LinkedIn
    •    Facebook
    •    Twitter
    •    YouTube
    •    RSS Feed
    •    Email

    © 2023 Bentley Systems, Incorporated  |  Contact Us  |  Privacy |  Terms of Use  |  Cookies