Hello, I am currently working on a building slab, I have modeled it with two different methods, one with all beams and plates objects and another with only beams using floor load command. The Y total loads are very similar, I assumed it as equals, but the distribution of the loads are very diferent, as the internal forces. The deformed shape and the Mz Diagrams are similar, same shape, but the absolute values are sensivelly different.. Why does it happen and wich model I should use?I attach both models.Thank you!
RDJ_S_2 COMPLETE MODEL.stdRDJ_S_2 BEAMS.std
You have posted this same question in three different forum threads. Please avoid doing that. It is good enough to post your question once and then wait for a response. If you do not hear back from anyone in a few days, you can always do a follow up on the same post. Thousands of our users refer to Bentley Communities for assistance and so all of us share the common responsibility to keep the content clean for the benefit of other users.
For the records, the answer to your question has been posted at
https://communities.bentley.com/products/ram-staad/f/ram-staad-forum/202033/seismic-mass-do-not-match-total-deadload-on-reaction
Good Day Sir! Please help. As I run the analysis , the SEISMIC MASS result do not match the total deadload in the reaction. What to do? Please help :(((
1. STAAD SPACE2. START JOB INFORMATION3. ENGINEER DATE4. END JOB INFORMATION5. INPUT WIDTH 796. UNIT METER KN7. JOINT COORDINATES8. 1 0 1 0; 2 1.25 1 0; 3 2.6 1 0; 4 3.85 1 0; 5 0 1 3; 6 1.25 1 3; 7 2.6 1 39. 8 3.85 1 3; 9 0 0 0; 10 3.85 0 0; 11 0 0 3; 12 3.85 0 3; 13 0 3 0; 14 3.85 3 010. 15 0 3 3; 16 3.85 3 311. MEMBER INCIDENCES12. 1 1 2; 2 2 3; 3 3 4; 4 1 5; 5 2 6; 6 3 7; 7 4 8; 8 5 6; 9 6 7; 10 7 8; 11 9 113. 12 10 4; 13 11 5; 14 12 8; 15 1 13; 16 4 14; 17 5 15; 18 8 16; 19 13 1414. 20 13 15; 21 14 16; 22 15 1615. DEFINE MATERIAL START16. ISOTROPIC CONCRETE17. E 2.17185E+00718. POISSON 0.1719. DENSITY 23.561620. ALPHA 1E-00521. DAMP 0.0522. TYPE CONCRETE23. STRENGTH FCU 2757924. END DEFINE MATERIAL25. MEMBER PROPERTY AMERICAN26. 11 TO 18 PRIS YD 0.2 ZD 0.227. 1 TO 10 19 TO 22 PRIS YD 0.2 ZD 0.1528. CONSTANTS29. MATERIAL CONCRETE ALL30. SUPPORTS31. 9 TO 12 FIXED32. MEMBER RELEASE33. 5 6 START MZ34. 5 6 END MZ35. DEFINE REFERENCE LOADS36. LOAD R1 LOADTYPE DEAD TITLE REF LOAD - DL37. SELFWEIGHT Y -138. MEMBER LOADSTAAD SPACE -- PAGE NO. 2
39. 1 TO 4 7 UNI GY 5.640. 5 6 UNI GY 5.441. 19 22 UNI GY 1.22442. END DEFINE REFERENCE LOADS43. FLOOR DIAPHRAGM44. DIA 1 TYPE RIG HEI 1 JOINT 1 TO 845. DIA 2 TYPE RIG HEI 3 JOINT 13 TO 16*** NOTE: NEITHER "MASS" NOR "GRAVITY" REFERENCE LOADTYPE IS PRESENT.MASS MODEL IS FORMED BY COMBINING ALL "DEAD" AND "LIVE" (IF ANY) REFERENCE LOADTYPES.
*** NOTE: MASS MODEL FORMED WILL BE USED IN SEISMIC/RESPONSE/TIME HISTORY LOADING, IF ANY.IF MASS MODEL IS SEPARATELY PROVIDED IN INDIVIDUAL LOADING, THE GENERATED MASSWILL BE REPLACED BY THE MASS PROVIDED IN INDIVIDUAL LOADING.
************************************************************************************FLOOR DIAPHRAGM UNIT - KN METE--------------- ----------------NO. TYPE FL. LEVEL FL. WT CENTRE OF MASS MASTER JOINT NO.X Z
1 RIGID 1.000 67.98 1.925 1.024 172 RIGID 3.000 4.03 1.925 1.500 18
************************************************************************************
47. DEFINE UBC LOAD48. ZONE 0.4 I 1 RWX 8.5 RWZ 8.5 STYP 4 CT 0.0731 NA 1 NV 149. REFERENCE LOAD Y
*** NOTE: SEISMIC WEIGHT TABLE IS PRESENT.THIS WEIGHT TABLEWILL BE CONSIDERED IN STATIC SEISMIC ANALYSIS.
50. R1 1.051. DEFINE WIND LOAD52. TYPE 1 WWX53. <! STAAD PRO GENERATED DATA DO NOT MODIFY !!!54. ASCE-7-2010:PARAMS 240.000 KMPH 0 1 3 0 0.000 FT 0.000 FT 0.000 FT 1 -55. 1 3.000 M 3.000 M 3.850 M 2.000 0.010 0 -56. 0 0 0 0 0.575 1.000 1.000 0.850 0 -57. 0 0 0 0.892 0.800 -0.55058. !> END GENERATED DATA BLOCK59. INT 1.68306 1.68306 HEIG 0 4.57260. TYPE 2 LWX61. <! STAAD PRO GENERATED DATA DO NOT MODIFY !!!62. ASCE-7-2010:PARAMS 240.000 KMPH 0 1 3 0 0.000 FT 0.000 FT 0.000 FT 1 -STAAD SPACE -- PAGE NO. 3
63. 1 3.000 M 3.000 M 3.850 M 2.000 0.010 1 -64. 0 0 0 0 0.575 1.000 1.000 0.850 0 -65. 0 0 0 0.892 -0.500 0.55066. !> END GENERATED DATA BLOCK67. INT -1.32657 -1.32657 HEIG 0 368. TYPE 3 WWZ69. <! STAAD PRO GENERATED DATA DO NOT MODIFY !!!70. ASCE-7-2010:PARAMS 240.000 KMPH 0 1 3 0 0.000 FT 0.000 FT 0.000 FT 1 -71. 1 3.000 M 3.850 M 3.000 M 2.000 0.010 0 -72. 0 0 0 0 0.575 1.000 1.000 0.850 0 -73. 0 0 0 0.895 0.800 -0.55074. !> END GENERATED DATA BLOCK75. INT 1.68564 1.68564 HEIG 0 4.57276. TYPE 4 LWZ77. <! STAAD PRO GENERATED DATA DO NOT MODIFY !!!78. ASCE-7-2010:PARAMS 240.000 KMPH 0 1 3 0 0.000 FT 0.000 FT 0.000 FT 1 -79. 1 3.000 M 3.850 M 3.000 M 2.000 0.010 1 -80. 0 0 0 0 0.575 1.000 1.000 0.850 0 -81. 0 0 0 0.895 -0.443 0.55082. !> END GENERATED DATA BLOCK83. INT -1.26066 -1.26066 HEIG 0 384. CHECK SOFT STORY ASCE785. LOAD 1 LOADTYPE SEISMIC TITLE EX86. UBC LOAD X 1 DEC 1 ACC 0.0587. PERFORM ANALYSIS
P R O B L E M S T A T I S T I C S-----------------------------------NUMBER OF JOINTS 18 NUMBER OF MEMBERS 22NUMBER OF PLATES 0 NUMBER OF SOLIDS 0NUMBER OF SURFACES 0 NUMBER OF SUPPORTS 4
SOLVER USED IS THE OUT-OF-CORE BASIC SOLVER
ORIGINAL/FINAL BAND-WIDTH= 12/ 5/ 48 DOFTOTAL PRIMARY LOAD CASES = 1, TOTAL DEGREES OF FREEDOM = 48TOTAL LOAD COMBINATION CASES = 0 SO FAR.SIZE OF STIFFNESS MATRIX = 3 DOUBLE KILO-WORDSREQRD/AVAIL. DISK SPACE = 12.1/ 862715.7 MB
STAAD SPACE -- PAGE NO. 4
VERTICAL STRUCTURAL IRREGULARITIES : SOFT STORY CHECK - ASCE/SEI 7-05-------- ---------- --------------STORY FL. LEVEL IN METE S T A T U S----- ----------------- --------------------X Z
1 1.00 OK OK2 3.00 OK OK
NOTE : NO SOFT STOREY IS DETECTED.
************************************************************ ** X DIRECTION : Ta = 0.167 Tb = 0.081 Tuser = 0.000 ** T = 0.081, LOAD FACTOR = 1.000 ** UBC TYPE = 97 ** UBC FACTOR V = 0.1294 x 73.89 = 9.56 KN ** ************************************************************************************************************************************
***NOTE: SEISMIC LOAD IS ACTING AT CENTER OF MASS FOR RIGID DIAPHRAGM.TORSION FROM STATIC ECCENTRICITY (esi) IS INCLUDED IN ANALYSIS.DYNAMIC ECCENTRICITY APPLIED = DEC - 1
LOAD NO.: 1 DIRECTION : X UNIT - METESTORY LEVEL DYN. ECC. (dec) ACC. ECC. (aec) DESIGN ECC.----- ----- --------------- --------------- ---------------X Z X Z X Zdec + aec dec + aecSTAAD SPACE -- PAGE NO. 5
1 1.00 0.00 0.00 0.19 0.15 0.00 0.152 3.00 0.00 0.00 0.19 0.15 0.00 0.15************************************************************************88. CHANGE89. LOAD 2 LOADTYPE SEISMIC TITLE EZ90. UBC LOAD Z 1 DEC 1 ACC 0.0591. PERFORM ANALYSIS
************************************************************ ** Z DIRECTION : Ta = 0.167 Tb = 0.077 Tuser = 0.000 ** T = 0.077, LOAD FACTOR = 1.000 ** UBC TYPE = 97 ** UBC FACTOR V = 0.1294 x 73.89 = 9.56 KN ** ************************************************************STAAD SPACE -- PAGE NO. 6
************************************************************************
LOAD NO.: 2 DIRECTION : Z UNIT - METESTORY LEVEL DYN. ECC. (dec) ACC. ECC. (aec) DESIGN ECC.----- ----- --------------- --------------- ---------------X Z X Z X Zdec + aec dec + aec
1 1.00 0.00 0.00 0.19 0.15 0.19 0.002 3.00 0.00 0.00 0.19 0.15 0.19 0.00************************************************************************92. CHANGE93. LOAD 3 LOADTYPE WIND TITLE WL194. WIND LOAD X 1 TYPE 1 YR 1 395. WIND LOAD -X 1 TYPE 2 YR 1 396. LOAD 4 LOADTYPE WIND TITLE WL297. WIND LOAD X -1 TYPE 1 YR 1 398. WIND LOAD -X -1 TYPE 2 YR 1 399. LOAD 5 LOADTYPE WIND TITLE WL3100. WIND LOAD Z 1 TYPE 3 YR 1 3101. WIND LOAD -Z 1 TYPE 4 YR 1 3STAAD SPACE -- PAGE NO. 7
102. LOAD 6 LOADTYPE WIND TITLE WL4103. WIND LOAD Z -1 TYPE 3 YR 1 3 ZR 3 3104. WIND LOAD -Z -1 TYPE 4 YR 1 3105. LOAD 7 LOADTYPE DEAD TITLE DL106. REFERENCE LOAD107. R1 -1.0108. LOAD 8 LOADTYPE LIVE TITLE LL109. MEMBER LOAD110. 19 22 UNI GY -1.35111. LOAD COMB 9 GENERATED NSCP 2015 DRIFT CHECK COMBINATION 1112. 7 1.2 8 0.5 1 1.0113. LOAD COMB 10 GENERATED NSCP 2015 DRIFT CHECK COMBINATION 2114. 7 1.2 8 0.5 2 1.0115. LOAD COMB 11 GENERATED NSCP 2015 DRIFT CHECK COMBINATION 3116. 7 1.2 8 0.5 1 -1.0117. LOAD COMB 12 GENERATED NSCP 2015 DRIFT CHECK COMBINATION 4118. 7 1.2 8 0.5 2 -1.0119. LOAD COMB 13 GENERATED NSCP 2015 DRIFT CHECK COMBINATION 5120. 7 0.9 1 1.0121. LOAD COMB 14 GENERATED NSCP 2015 DRIFT CHECK COMBINATION 6122. 7 0.9 2 1.0123. LOAD COMB 15 GENERATED NSCP 2015 DRIFT CHECK COMBINATION 7124. 7 0.9 1 -1.0125. LOAD COMB 16 GENERATED NSCP 2015 DRIFT CHECK COMBINATION 8126. 7 0.9 2 -1.0127. LOAD COMB 17 GENERATED NSCP 2015 USD COMBINATION 1128. 7 1.4129. LOAD COMB 18 GENERATED NSCP 2015 USD COMBINATION 2130. 7 1.2 8 1.6131. LOAD COMB 19 GENERATED NSCP 2015 USD COMBINATION 3132. 7 1.2 8 0.5133. LOAD COMB 20 GENERATED NSCP 2015 USD COMBINATION 4134. 7 1.2 3 0.5135. LOAD COMB 21 GENERATED NSCP 2015 USD COMBINATION 5136. 7 1.2 4 0.5137. LOAD COMB 22 GENERATED NSCP 2015 USD COMBINATION 6138. 7 1.2 5 0.5139. LOAD COMB 23 GENERATED NSCP 2015 USD COMBINATION 7140. 7 1.2 6 0.5141. LOAD COMB 24 GENERATED NSCP 2015 USD COMBINATION 8142. 7 1.2 8 0.5 3 1.0143. LOAD COMB 25 GENERATED NSCP 2015 USD COMBINATION 9144. 7 1.2 8 0.5 4 1.0145. LOAD COMB 26 GENERATED NSCP 2015 USD COMBINATION 10146. 7 1.2 8 0.5 5 1.0147. LOAD COMB 27 GENERATED NSCP 2015 USD COMBINATION 11148. 7 1.2 8 0.5 6 1.0STAAD SPACE -- PAGE NO. 8
149. LOAD COMB 28 GENERATED NSCP 2015 USD COMBINATION 12150. 7 1.2 8 0.5 1 1.0151. LOAD COMB 29 GENERATED NSCP 2015 USD COMBINATION 13152. 7 1.2 8 0.5 2 1.0153. LOAD COMB 30 GENERATED NSCP 2015 USD COMBINATION 14154. 7 0.9 3 1.0155. LOAD COMB 31 GENERATED NSCP 2015 USD COMBINATION 15156. 7 0.9 4 1.0157. LOAD COMB 32 GENERATED NSCP 2015 USD COMBINATION 16158. 7 0.9 5 1.0159. LOAD COMB 33 GENERATED NSCP 2015 USD COMBINATION 17160. 7 0.9 6 1.0161. LOAD COMB 34 GENERATED NSCP 2015 USD COMBINATION 18162. 7 0.9 1 1.0163. LOAD COMB 35 GENERATED NSCP 2015 USD COMBINATION 19164. 7 0.9 2 1.0165. LOAD COMB 36 NSCP 2015 ASD 1166. 7 1.0167. LOAD COMB 37 NSCP 2015 ASD 2168. 7 1.0 8 1.0169. LOAD COMB 38 NSCP 2015 ASD 3170. 7 1.0 8 0.75171. LOAD COMB 39 NSCP 2015 ASD 4172. 7 1.0 3 0.6173. LOAD COMB 40 NSCP 2015 ASD 5174. 7 1.0 4 0.6175. LOAD COMB 41 NSCP 2015 ASD 6176. 7 1.0 5 0.6177. LOAD COMB 42 NSCP 2015 ASD 7178. 7 1.0 6 0.6179. LOAD COMB 43 NSCP 2015 ASD 8180. 7 1.0 1 0.714286181. LOAD COMB 44 NSCP 2015 ASD 9182. 7 1.0 2 0.714286183. PERFORM ANALYSIS
NOTE : NO SOFT STOREY IS DETECTED.STAAD SPACE -- PAGE NO. 9
184. LOAD LIST 9 TO 44185. PRINT STORY DRIFT 0.004200STAAD SPACE -- PAGE NO. 10
STORY HEIGHT LOAD AVG. DISP(CM ) DRIFT(CM ) RATIO STATUS------------------------------------------------------------------------------------------(METE) X Z X ZBASE= 0.00 ALLOW. DRIFT = L / 238
1 0.00 9 0.0000 0.0000 0.0000 0.0000 L /999999 PASS10 0.0000 0.0000 0.0000 0.0000 L /999999 PASS11 0.0000 0.0000 0.0000 0.0000 L /999999 PASS12 0.0000 0.0000 0.0000 0.0000 L /999999 PASS13 0.0000 0.0000 0.0000 0.0000 L /999999 PASS14 0.0000 0.0000 0.0000 0.0000 L /999999 PASS15 0.0000 0.0000 0.0000 0.0000 L /999999 PASS16 0.0000 0.0000 0.0000 0.0000 L /999999 PASS17 0.0000 0.0000 0.0000 0.0000 L /999999 PASS18 0.0000 0.0000 0.0000 0.0000 L /999999 PASS19 0.0000 0.0000 0.0000 0.0000 L /999999 PASS20 0.0000 0.0000 0.0000 0.0000 L /999999 PASS21 0.0000 0.0000 0.0000 0.0000 L /999999 PASS22 0.0000 0.0000 0.0000 0.0000 L /999999 PASS23 0.0000 0.0000 0.0000 0.0000 L /999999 PASS24 0.0000 0.0000 0.0000 0.0000 L /999999 PASS25 0.0000 0.0000 0.0000 0.0000 L /999999 PASSSTAAD SPACE -- PAGE NO. 11
26 0.0000 0.0000 0.0000 0.0000 L /999999 PASS27 0.0000 0.0000 0.0000 0.0000 L /999999 PASS28 0.0000 0.0000 0.0000 0.0000 L /999999 PASS29 0.0000 0.0000 0.0000 0.0000 L /999999 PASS30 0.0000 0.0000 0.0000 0.0000 L /999999 PASS31 0.0000 0.0000 0.0000 0.0000 L /999999 PASS32 0.0000 0.0000 0.0000 0.0000 L /999999 PASS33 0.0000 0.0000 0.0000 0.0000 L /999999 PASS34 0.0000 0.0000 0.0000 0.0000 L /999999 PASS35 0.0000 0.0000 0.0000 0.0000 L /999999 PASS36 0.0000 0.0000 0.0000 0.0000 L /999999 PASS37 0.0000 0.0000 0.0000 0.0000 L /999999 PASS38 0.0000 0.0000 0.0000 0.0000 L /999999 PASS39 0.0000 0.0000 0.0000 0.0000 L /999999 PASS40 0.0000 0.0000 0.0000 0.0000 L /999999 PASS41 0.0000 0.0000 0.0000 0.0000 L /999999 PASS42 0.0000 0.0000 0.0000 0.0000 L /999999 PASS43 0.0000 0.0000 0.0000 0.0000 L /999999 PASS44 0.0000 0.0000 0.0000 0.0000 L /999999 PASS2 1.00 9 0.0194 -0.0002 0.0194 0.0002 L / 5164 PASS10 -0.0003 0.0175 0.0003 0.0175 L / 5727 PASS11 -0.0194 -0.0002 0.0194 0.0002 L / 5164 PASS12 0.0003 -0.0178 0.0003 0.0178 L / 5623 PASS13 0.0194 -0.0001 0.0194 0.0001 L / 5164 PASS14 -0.0003 0.0175 0.0003 0.0175 L / 5713 PASS15 -0.0194 -0.0001 0.0194 0.0001 L / 5164 PASS16 0.0003 -0.0177 0.0003 0.0177 L / 5636 PASS17 -0.0000 -0.0002 0.0000 0.0002 L /999999 PASSSTAAD SPACE -- PAGE NO. 12
18 -0.0000 -0.0002 0.0000 0.0002 L /999999 PASS19 -0.0000 -0.0002 0.0000 0.0002 L /999999 PASS20 0.0251 -0.0002 0.0251 0.0002 L / 3983 PASS21 -0.0251 -0.0002 0.0251 0.0002 L / 3983 PASS22 -0.0000 0.0283 0.0000 0.0283 L / 3537 PASS23 -0.0000 -0.0286 0.0000 0.0286 L / 3497 PASS24 0.0502 -0.0002 0.0502 0.0002 L / 1991 PASS25 -0.0502 -0.0002 0.0502 0.0002 L / 1991 PASS26 -0.0000 0.0567 0.0000 0.0567 L / 1763 PASS27 -0.0000 -0.0570 0.0000 0.0570 L / 1754 PASS28 0.0194 -0.0002 0.0194 0.0002 L / 5164 PASS29 -0.0003 0.0175 0.0003 0.0175 L / 5727 PASS30 0.0502 -0.0001 0.0502 0.0001 L / 1991 PASS31 -0.0502 -0.0001 0.0502 0.0001 L / 1991 PASS32 -0.0000 0.0567 0.0000 0.0567 L / 1762 PASS33 -0.0000 -0.0570 0.0000 0.0570 L / 1755 PASS34 0.0194 -0.0001 0.0194 0.0001 L / 5164 PASS35 -0.0003 0.0175 0.0003 0.0175 L / 5713 PASSSTAAD SPACE -- PAGE NO. 13
36 -0.0000 -0.0001 0.0000 0.0001 L /999999 PASS37 -0.0000 -0.0001 0.0000 0.0001 L /999999 PASS38 -0.0000 -0.0001 0.0000 0.0001 L /999999 PASS39 0.0301 -0.0001 0.0301 0.0001 L / 3319 PASS40 -0.0301 -0.0001 0.0301 0.0001 L / 3319 PASS41 -0.0000 0.0340 0.0000 0.0340 L / 2943 PASS42 -0.0000 -0.0343 0.0000 0.0343 L / 2919 PASS43 0.0138 -0.0001 0.0138 0.0001 L / 7230 PASS44 -0.0002 0.0125 0.0002 0.0125 L / 8030 PASS3 3.00 9 0.0650 -0.0009 0.0457 0.0008 L / 4378 PASS10 -0.0000 0.0566 0.0003 0.0391 L / 5109 PASS11 -0.0650 -0.0009 0.0457 0.0008 L / 4378 PASS12 -0.0000 -0.0585 0.0003 0.0407 L / 4914 PASS13 0.0650 -0.0007 0.0457 0.0006 L / 4378 PASS14 -0.0000 0.0568 0.0003 0.0393 L / 5083 PASS15 -0.0650 -0.0007 0.0457 0.0006 L / 4378 PASS16 -0.0000 -0.0582 0.0003 0.0405 L / 4938 PASS17 -0.0000 -0.0011 0.0000 0.0009 L /999999 PASS18 -0.0000 -0.0009 0.0000 0.0008 L /999999 PASS19 -0.0000 -0.0009 0.0000 0.0008 L /999999 PASS20 0.1219 -0.0009 0.0968 0.0008 L / 2065 PASS21 -0.1219 -0.0009 0.0968 0.0008 L / 2065 PASS22 -0.0000 0.1345 0.0000 0.1062 L / 1883 PASS23 -0.0000 -0.1364 0.0000 0.1078 L / 1856 PASS24 0.2439 -0.0009 0.1937 0.0008 L / 1032 PASS25 -0.2439 -0.0009 0.1937 0.0008 L / 1032 PASS26 -0.0000 0.2699 0.0000 0.2132 L / 938 PASS27 -0.0000 -0.2718 0.0000 0.2148 L / 931 PASSSTAAD SPACE -- PAGE NO. 14
28 0.0650 -0.0009 0.0457 0.0008 L / 4378 PASS29 -0.0000 0.0566 0.0003 0.0391 L / 5109 PASS30 0.2439 -0.0007 0.1937 0.0006 L / 1032 PASS31 -0.2439 -0.0007 0.1937 0.0006 L / 1032 PASS32 -0.0000 0.2702 0.0000 0.2134 L / 937 PASS33 -0.0000 -0.2716 0.0000 0.2146 L / 932 PASS34 0.0650 -0.0007 0.0457 0.0006 L / 4378 PASS35 -0.0000 0.0568 0.0003 0.0393 L / 5083 PASS36 -0.0000 -0.0008 0.0000 0.0006 L /999999 PASS37 -0.0000 -0.0008 0.0000 0.0006 L /999999 PASS38 -0.0000 -0.0008 0.0000 0.0006 L /999999 PASS39 0.1463 -0.0008 0.1162 0.0006 L / 1721 PASS40 -0.1463 -0.0008 0.1162 0.0006 L / 1721 PASS41 -0.0000 0.1617 0.0000 0.1277 L / 1565 PASS42 -0.0000 -0.1633 0.0000 0.1290 L / 1550 PASS43 0.0465 -0.0008 0.0326 0.0006 L / 6130 PASS44 -0.0000 0.0403 0.0002 0.0279 L / 7176 PASS186. PRINT DIA CRSTAAD SPACE -- PAGE NO. 15
************************************************************CENTRE OF RIGIDITY UNIT - METE------------------ -----------DIAPHRAM FL. LEVEL X-COORDINATE Z-COORDINATE
1 1.000 1.925 1.5002 3.000 1.925 1.500
************************************************************
187. FINISH
please help
The models are not the same because in the plate model, you are accounting for the stiffness of the slab whereas in the other model, you are not. Also there is a difference in the way plate pressure loads are transferred to the supporting beams vs the way floor loads are transferred. You need to choose the appropriate modeling approach keeping in mind the end goal of your analysis
There are lot of discussions in the following forum post which should help
https://communities.bentley.com/products/ram-staad/f/ram-staad-forum/56314/floor-load-vs-plate-load/599454#599454