Bentley Communities
Bentley Communities
  • Site
  • User
  • Site
  • Search
  • User
  • Welcome
  • Products
  • Support
  • About
  • More
  • Cancel
RAM | STAAD | ADINA
  • Product Communities
  • More
RAM | STAAD | ADINA
RAM | STAAD | ADINA Wiki Validation Problem on Torsion
    • Sign in
    • -RAM | STAAD | ADINA Wiki
      • +Integrated Structural Modeling
      • +Structural Analysis Support Solutions
      • +RAM Concept
      • +RAM Connection
      • +RAM Elements
      • +RAM SBeam
      • +RAM Structural System
      • -STAAD.Pro
        • +How is STAAD.Pro licensed
        • +Installation Requirements
        • Security
        • +Revision History
        • -STAAD.Pro Support Solutions
          • +STAAD.Pro Analysis Solutions
          • -STAAD.Pro Design Solutions
            • +IS 456 Documents
            • +STAAD.Pro Aluminum Design [FAQ]
            • +STAAD.Pro Concrete Design [FAQ]
            • +STAAD.Pro General Design Solutions
            • -STAAD.Pro Steel Design [FAQ]
              • +American Steel Code AISC [FAQ]
              • +API 2A-WSD 21st Edition [FAQ]
              • +BS 5950-1:2000 implementation
              • +Canadian Steel Code S16 [FAQ]
              • Deflection Check Parameters
              • Determination of Critical Load Case or Combination for Steel Design
              • -EN 1993-1-1:2005 (EC3)
                • Design of built up General section by using EN 1993-1-1:2005 code
                • Dimensioning of General sections for the design by using EN 1993-1-1:2005 code
                • Validation Problem on Reduced Moment Capacity as per CL6.2.8 of EN 1993-1-1:2005
                • Validation Problem on Torsion
                • WARNING: UNKNOWN NATIONAL ANNEX IS SPECIFIED. DEFAULT BS ANNEX IS USED
                • Why section class of the same member size is different?
              • Explanation on how SELECT OPTIMIZED works
              • General Steel Design Solutions
              • How to get design utilization ratio for each load case
              • If CAN 1 parameter is used for Deflection Check, Result is not Calculated Correctly
              • +IS 800:2007
              • Limiting section assignment or member selection to specific cross sections
              • Members are not getting designed
              • Procedure used by STAAD for MEMBER SELECTION
              • +SNiP SP 16.13330.2011
              • +STAAD.Pro EN 1993-1-1:2005 Implementation
              • Viewing members whose utilization ratio is within a desired range
            • +STAAD.Pro Timber Design [FAQ]
            • Verification problems on COMPRESSION CAPACITY of RHS (CF) section per Australian steel design code (AS 4100)
            • +Warnings and Errors related to IS13920 2016 concrete design in STAAD.Pro
          • +STAAD.Pro General Solutions
          • +STAAD.Pro General [FAQ]
          • +STAAD.Pro Verification Documents
          • STAAD.Pro Safety Related Features
          • List of Programs included in different types of License for STAAD.Pro
          • +STAAD.Pro Known Issues CE V22 Update 6
          • +Known Issues in previous versions of STAAD.Pro CONNECT Edition
          • +Known Issues in STAAD.Pro V8i
          • STAAD Product Releases in December 2018 and Associated Licensing Changes
          • +Procedure for Downloading STAAD.Pro CE
          • +STAAD.Pro Developing The Model [FAQ]
          • +STAAD.Pro Driver Downloads [FAQ]
          • +STAAD.Pro Import Export Solutions
          • +STAAD.Pro Import/Export [FAQ]
          • +STAAD.Pro Installation/Licensing Solutions
          • +STAAD.Pro Miscellaneous Solutions
          • +STAAD.Pro Miscellaneous [FAQ]
          • +STAAD.Pro Modeling Solutions
          • +STAAD.Pro OpenSTAAD [FAQ]
          • STAAD.Pro OpenSTAAD_Solutions
          • +STAAD.Pro Postprocessing FAQ's
          • +STAAD.Pro Postprocessing Solutions
          • +STAAD.Pro TechNotes [TN]
          • STAAD.Pro Crashing for DELL laptop when Browsing a File Location
        • +STAAD.Pro CONNECT Edition - Tips & Tricks
        • Links for Technical Videos available in Bentley Structural YouTube Channel
        • +Integrated RAM Connection Solutions
        • +Steel AutoDrafter
      • +STAAD Foundation Advanced
      • +STAAD Advanced Concrete Design (RCDC)
      • +STAAD.building
      • +STAAD RCDC FE
      • +Scenario Services
      • +STAAD.offshore
      • +Limcon
      • +Microstran
      • +MStower
      • +Structural Dashboard
      • +Structural WorkSuite
    • +Webinars
    • +RAM | STAAD Learning Resources

     
     Questions about this article, topic, or product? Click here. 

    Validation Problem on Torsion

       
      Applies To 
       
      Product(s): STAAD.Pro
      Version(s): All
      Environment:  N/A
      Area:  EN 1993-1-1:2005 (EC3)
      Subarea:  Validation Problem on Torsion
      Original Author: Shayan Roy
    Bentley Technical Support Group
       

                                                

       1.      Introduction:

    The following is a validation problem of a detailed torsion check including the warping stresses on a UB 203x203x60 which has been subjected to a uniformly distributed load across the full span and a torsional moment at the centre of the span.

    The detailed torsion check in the EN 1993-1-1:2005 implementation in STAAD.Pro has been invoked by using the TOR 2 parameter.  

    The combination of the uniformly distributed load and the torsional moment resembles the load acting at a distance from the shear center.

    The implementation calculates the torsional stresses and capacities as per P057. Please refer to  STAAD.Pro EN 1993-1-1:2005 implementation: Calculation of Torsional Capacities of Cross Sections as per SCI P057 for details on this.

    2 .     Validation Problem:

    .     

    A British I section beam (UB 203x203x60, S275 grade steel) , 4 m long fixed at both the ends has been subjected to a uniformly distributed load of 1 KN/m , a concentrated point load 1000 KN at the midpoint and a concentrated torque of 7.5 KNm at the midpoint.

     The maximum Bending Moment (Mz)  at the end is 51.33 KNm and at mid point is 50.7 KNm.

    Maximum Shear Force (VY) is 52KN is at the supports.

     

    3.1  .  Text Input Information.

    The following is the text input information of the Staad model:

    STAAD SPACE

    START JOB INFORMATION

    ENGINEER DATE 07-Oct-13

    END JOB INFORMATION

    INPUT WIDTH 79

    UNIT METER KN

    JOINT COORDINATES

    1 0 0 0; 2 4 0 0;

    MEMBER INCIDENCES

    1 1 2;

    DEFINE MATERIAL START

    ISOTROPIC STEEL

    E 2.05e+008

    POISSON 0.3

    DENSITY 76.8195

    ALPHA 1.2e-005

    DAMP 0.03

    TYPE STEEL

    STRENGTH FY 253200 FU 407800 RY 1.5 RT 1.2

    END DEFINE MATERIAL

    MEMBER PROPERTY BRITISH

    1 TABLE ST UC203X203X60

    CONSTANTS

    MATERIAL STEEL ALL

    SUPPORTS

    1 2 FIXED

    LOAD 1 LOADTYPE None  TITLE LOAD CASE 1

    MEMBER LOAD

    1 CMOM GX 7.5 2

    1 CON GY -100 2

    1 UNI GY -1

    PERFORM ANALYSIS

    PRINT MEMBER PROPERTIES

    PARAMETER 1

    CODE EN 1993-1-1:2005

    SGR 1 ALL

    CMT 3 ALL

    TORSION 2 ALL

    TRACK 2 ALL

    CHECK CODE ALL

    FINISH

     

    3.2 .     Manual Calculation:


     

    Section: UB 203x203x60

    Sectional Properties as per Bluebook

    A = 76.4 cm²;  D = 209.6 mm ;  b = 205.8 mm   ; t f = 14.2 mm; t w = 9.2 mm; r = 10.2 mm

    Zz = 584 cm2    ; Zy = 201 cm2   ; Iz = 6120 cm4    ; Iy = 2060 cm4

    J = 47.2 cm4;   H = 1.97x10 11 mm6     ;    G = 78846.15

    Hence, torsional bending constant, a = sqrt (EH/GJ) =sqrt (205000*1.97*1011 / 78846.15*47.2*104 ) = 1041.72 mm.

    A.  Calculation of Torsional Properties of the section:

     Normalized Warping Function

    By Appendix A, P075, pg 112 ,

    Wno = hB/4 = (209.6-14.2)*205.8 / 4 = 10053.3 mm2 .

    Warping Statical Moment

    Sw1 = hB2T/16 = (195.4*205.8^2*14.2)/6 = 7344862.36 mm4

    (In Staad, a member is designed at 13 intermediate sections along the length of the member and the most critical section is reported.  For the calculation purpose, we will only design only at z =1m and z =2m.)

     

    B.     Validation of the ratio reported for Clause 6.2.7(1):

     The critical ratio for this clause is evaluated at 1m from start of the member as per the STAAD Output File.

    As the ends are fixed for torsion and warping and the member is subjected to a concentrated torque, we will use Case 5 of Appendix B, P057 (as directed in Table 6.1, P057). This condition is specified by specifying the CMT parameter as 3.

      z   =1000, a = 1041.72, α= 0.5, αL/a = 1.9199,   z/a = 0.9599, L/a = 3.8398

    K1    =  {(1/0.999*(1-3.483)+1/23.297*(3.483-1)+3.3368-1.9199)} / {1/23.247*(23.269+3.483*23.269-3.483-1)-1.9199-3.3368}

            =   0.9989

    K2   =    1/0.9989*1/23.247*(3.483-1)+(3.483-23.269+3.8398*23.247)/23.247

           =   3.0955

    K3  =   0.043+3.3368- 3.483/0.999

           =     -0.1067

    K4  =   3.3368-3.4867+1.009

           = 0.851

    K5  = 1/0.99891*1/0.999*(1-3.483)+(1-3.483*23.269)/23.247

           =   -5.931

     

    Now,

    Ф’   =     (7.5*106) / (78846.15*47.2*104 )*1/1.9989*(0.744*1.1143-1.497+1)  

           =   3.3476*10-5

    Ф’’’ =  (7.5*106)/(78846.15*47.2*1041.722 *104 )*1/1.9989*(0.744*1.1143-1.497) 

           = - 6*10-11

    As per equation 2.2 of P057,

    Pure torsion component: Tp = GJ Ф’ = 78846.15 * 47.2*104 * 3.3476*10-5 / 106    = 1.25KNm (as reported by Staad)

    Warping Torsion component: Tw = -EH Ф’’’ = 205000*1.97*1011 * -6*10-11 / 106   = -2.42KNm (against the value                                                                                                                                                                reported  as 2.5 by STAAD)                                                                                                                                                                                     

    Pure Torsion Capacity:

     Tt, Rd=  fy/√3 *J/t   = 275/√3*(47.4*104)/14.2*1/106

              = 5.3 KNm (as reported by Staad)

    Warping Torsion Capacity:

     Tw, Rd = ( t*b^2*fy)/6 = ( 14.2*205.82*275)/6 1/106

                 = 27.6KNm (as reported by Staad).

     

    Torsional Resistance TRd = Tt, Rd+ Tw, Rd

     Now,  Tp/(Tt,Rd) = 1.25/5    = 0.236

     And,  (Tw )/(Tw,Rd) = 2.42/27.6  = 0.08.

    Hence, the critical ratio of 0.236 is reported by Staad for this clause. An extract from code check details of the STAAD Output file is as below:

    C.  Validation of the ratio calculated for clause 6.2.7(5):

    Clause 6.2.7(5) refers back to the yield criterion of clause 6.2.1(5). The critical ratio for this clause is reported at a distance of 2 metres from the start of the member.

     Torsion at section z=2m

    z =2000, a = 1041.72, α= 0.5, αL/a = 1.9199,   z/a = 1.9199, L/a = 3.8398

    ф   =  (7.5*106*1041.72)/(78846.15*47.2*104 )*1/(1+0.9989)*[(0.9989*(-.1067)+0.851)*(2.483)-3.3368+1.9199 

          = 0.045

     Ф’   =  (7.5*106)/(78846.15*47.2*104 )*1/1.9989*(0.744*3.3368-3.483+1)  

           = -4.243*10-8

    Ф’’  = (7.5*106)/(78846.15*47.2*1041.72*104 )*1/1.9989*(0.744*3.483-3.3368)

           = - 7.2146*10-8

    Ф’’’   = (7.5*106)/(78846.15*47.2*1041.722 *104 )*1/1.9989*(0.744*3.3368-3.483)

             = -9.295*10-11

     

     As per equation 2.2 of P057,

    Pure torsion component: Tp = GJ Ф’ = 78846.15 * 47.2*104 * 0.045 / 106    = 0.0016

    Warping Torsion component: Tw = -EH Ф’’’ = 205000*1.97*1011 * -9.295*10-11 / 106   = -3.75KNm                                                                                                                                                                                

    Stress Check at 2m, Check for Elastic Verification as per CL 6.2.1.(5)

    The program calculates the stress at 4 points of any cross sections as illustrated:

    Let us calculate the stress at mid span, z = 2m from the start of the member.

    Point 1:

    Bending Stress:

     σbz =    Mz/Zz   = (50.7*106)/(584*103 )                       (Zz= Iz/(y/2)   

                   = 86.82 N/mm²                       

    σbyt  =    Myt/Zy  = Ф* Mz/Zy                          ( CL 2.3, P057, pg 14)

             = (50.7*0.0045)/(201*103 

             = 11.34 N/mm²                                                       (Zy= Iz/(y/2)   

    Warping Stress:

    Warping Normal Stress: σwf =- E*Wns*φ”  ( CL 2.1.5 of P057, pg 10)

                                                        =-205000*10053.3*-7.2146*10^-8   = 148.7 N/mm²    

    Warping Shear Stress:  σtw = 0.  (Warping Shear is not produced at end point of flange)

     

    Pure Torsion Stress:

    Shear Stress:         =  Gt Ф’    ( CL 2.1.4 of P057, pg 9)  

                                     = 78846.15 * 14.2 * 4.23*10^-8 = 0.0475

     Direct Shear Stress                     

     Shear Stress due to Direct Shear V :  τb = 0.  (Shear Stress due to bending is not produced at the flange end)

    The stress check will be performed using equation 6.1 of EN 1993-1-1:2005 as given below:

    σxEd  = Axial stress + (Bending Stress)z +(Bending Stress)y + Normal Stress due to warping.

     τEd    =Shear stress due to Direct Shear + Shear stress due to pure torsion + Shear stress due to warping torsion.

        σxEd    = 86.82 + 11.34 + 148.7 = 246.86 N/mm²    

         τEd          = 0.0475

    Hence,  for point 1, the ratio is calculated as (246.86/275)2 + 3(0.0475/275)2 = 0.805.

     

    Point 2:

    Bending Stress:

     σbz = 86.82 N/mm²                    

    σbyt = 11.34 N/mm²                       

    Warping Stress:

    Warping Normal Stress: σwf  = 0  (Normal warping Stress is 0 at mid of flange)

    Warping Shear Stress:  σtw   =  -  (E*Wns*φ’’)/t  =  (-205000*734.486.104*-9.295*10 11 / 14.2 )

                                                        = 9.86 N/mm²                    

    Pure Torsion Stress:

    Shear Stress:  = 0.0475 (Same as point 1)

     

     Direct Shear Stress  

    Shear Stress due to Direct Shear  V :  τb  =(Vy*Qf)  /(Iz*t)  

    Where Vy is the shear at the section and Q f is the statical moment at the flange.

    Q f = (205.8*14.2*97.7)/2 =    = 142757 mm3

    Hence,

    τb= (50.7*103*142757) / (6120*104*14.2)   = 8.32 N/mm²                    

     σxEd = 86.82 + 11.34  = 98.16 N/mm²    

     τEd   = 8.32+9.86+0.0475 = 18.23 N/mm²    

    Hence, for point 2, the ratio is calculated as (98.16/275)2 + 3(18.23/275)2 = 0.14.

     

    Point 3:

    Stress at point 3 will be same as in point 2.

    Point 4:

    Bending Stress:

     σbz = 0 ( At mid web, bending stress is always 0)                    

    σbyt = 11.34 N/mm²                      

    Warping Stress:

    Warping Normal Stress: σwf = 0 (Normal warping Stress is 0 at web, warping is always at flange)

    Warping Shear Stress:  σtw = 0 (Warping Shear Stress is 0 at web, warping is always at flange)               

    Pure Torsion Stress:

    Shear Stress:   τtw = 0 ( Shear stress at mid web is 0 due to pure torsion)

    Direct Shear Stress             

    Shear Stress due to Direct Shear V:   τb  =(Vy*Qw)  /(Iz*t)   

    Where Vy is the shear at the section and Q w is the statical moment at the web.

    Q w = (205.8*14.2*97.7) + (90.6*9.2*90.6)/2

           = 323273 mm3

    Hence,  τb =  (50.7*103*323273)/(6120*104*9.2)   = 29.11 N/mm²    

                   

    σxEd  = 11.34 N/mm²    

      τEd   = 29.11 N/mm²    

    Hence, the ratio for point 4 is calculated as (11.34/275)2 + 3(29.11/275)2 = 0.035.

     

    Hence critical ratio is 0.805 at location 1 of the cross section. The same ratio is reported by Staad. An extract from the STAAD Output File is as below:


    D. Validation of the ratio calculated for ratio 6.2.7(9):

    As per clause 6.2.7(9) of the code, for combined shear and Torsional moment the plastic shear resistance accounting for Torsional effects should be reduced from Vpl,Rd to V pl,T,Rd and the design shear force should be less than this reduced shear strength. The critical ratio for this clause is calculated at a distance of 1 metre from the start of the section.

    Shear Area: Av = A-2btf + (tw+2r) +tf                                

                            =  7640-2*(205.8*14.2)+(9.2+2*10.2)*14.2

                           =  2215.6 mm2

    Hence, V pl,Rd =  (2215.6*275)/√3  

                               =  351.77 KN

     And,

        τ t, Ed   = Gt Ф’ = 78846.15*14.2*3.347*10-5

                        = 37.48 Nmm (Critical Section is 1 m from start of member, hence Ф’   corresponding to z =1m is used)

    Hence,  V pl, T,Rd = √(1-37.48/(1.25 275/√3)) )*351.7 = 316.6 KN = 316.6 KN

    V Ed at 1m is 51KN  (from Staad)

    So,

    (   V Ed ) / (V pl,T,Rd )   = 51/316.6 =  0.16 (against the value reported by Staad as 0.155)         

    An extract from the output file shows the ratio reported as below:

    E. Torsion Check as per CL A.2 of EN 1993-6:2007

    This clause is essentially for crane run-away beams and found in EN 1993-6:2007, Annex A. However, this is checked for I sections subjected to bending and torsion  in order to assess the interaction between torsion and lateral torsional buckling.

    Clause A.1 states that members that are subjected to combined bending and torsion should satisfy:

    The critical ratio is reported at the start of the member.

    Thus, z = 0.

    At z =0, we have Ф = 0.

    Where My,ed  = Major Axis Moment = 51.3 KNm

    My,Rd =Resistance Moment about the major axis = 180.4 KNm

    Mz,ED = Minor Axis Moment =  Ф x  My,ed = 0.    (CL 2.3, P057, pg 14)  

    Tw, ED = Design value of warping torsion = 3.75 KNm  

    Tw, RK = Warping Torsional resistance moment = 27.5 KNm

    kw = 0.7- (0.2*τ w,Ed) /( τ w,Rk /γM1 ) = 0.7- (0.2*3.75)/(27.5/1.0) = 0.6727

    kzw = 1- (Mz,Ed/(Mz,Rk/γM1 ) = 1-0 = 1

    kα = 1/ (1- (Mz,Ed)/Mz,Cr ))  = 1/(1-51.3/288.9) = 1.216    (The value of Mcr =288.9 KNm is taken from Staad result)

                                                                                                                                                                                     

    And,       Mb,RD  = χLT Wy fy / γM1                  

                                                                                                                                       

    Hence, χLT = 148.4/180.4 = 0.8226 (The Mb,RD , Wy , fy values has been taken from Staad)

     

    So equation A.1 stands to:

    (51.3)/(0.8226*180.4) + 0 + (0.6727*1*1.216*3.75)/(27.5)

     = 0.46 (STAAD reports the ratio as 0.45)

    An extract from the output file as below shows the ratio reported:

    A pdf version of this article can be downloaded from the following link:

    http://communities.bentley.com/products/structural/structural_analysis___design/m/structural_analysis_and_design_gallery/264639.aspx

     

    • EN 1993-1-1:2005 (EC3)
    • Validation Problem on Torsion
    • Share
    • History
    • More
    • Cancel
    • Shany Created by Shany
    • When: Tue, Oct 29 2013 2:55 AM
    • Steve Crabtree Last revision by Steve Crabtree
    • When: Fri, Jun 24 2016 10:01 AM
    • Revisions: 12
    • Comments: 1
    Recommended
    Related
    Communities
    • Home
    • Getting Started
    • Community Central
    • Products
    • Support
    • Secure File Upload
    • Feedback
    Support and Services
    • Home
    • Product Support
    • Downloads
    • Subscription Services Portal
    Training and Learning
    • Home
    • About Bentley Institute
    • My Learning History
    • Reference Books
    Social Media
    •    LinkedIn
    •    Facebook
    •    Twitter
    •    YouTube
    •    RSS Feed
    •    Email

    © 2022 Bentley Systems, Incorporated  |  Contact Us  |  Privacy |  Terms of Use  |  Cookies