Bentley Communities
Bentley Communities
  • Site
  • User
  • Site
  • Search
  • User
  • Welcome
  • Products
  • Support
  • About
  • More
  • Cancel
RAM | STAAD | OpenTower
  • Product Communities
  • More
RAM | STAAD | OpenTower
RAM | STAAD | OpenTower Wiki RAM Frame - Diaphragm Constraints and Gravity Forces in Shear Walls
    • Sign in
    • Working Remotely with RAM or STAAD
    • -RAM | STAAD | OpenTower Wiki
      • +Integrated Structural Modeling
      • +Limcon
      • +Microstran
      • +MStower
      • +RAM Concept
      • +RAM Connection
      • +RAM Elements
      • +RAM SBeam
      • -RAM Structural System
        • +Known Issues in Ram Structural System
        • +RAM Structural System - Feature Articles
        • +RAM Structural System Release Notes
        • -RAM Structural System Support Solutions
          • +RAM Structural System - General Topics
          • +RAM Structural System - RAM Concrete
          • +RAM Structural System - RAM Foundation
          • -RAM Structural System - RAM Frame
            • ASCE 7, AISC 360, and the Direct Analysis Method in the RAM Structural System
            • CoreBrace Buckling Restrained Braces
            • Earth Pressure in RAM Structural System
            • Missing Load Cases from Generated RAM Frame Load Combinations
            • Program Crash after Changing Beam Size in View/Update Dialog in RAM Frame - Steel Mode
            • RAM Frame - Additional Lateral Restraint
            • +RAM Frame - Building and Frame Story Shear
            • RAM Frame - Center of Rigidity
            • RAM Frame - Criteria - B1 & B2
            • +RAM Frame - Criteria - Diaphragms
            • RAM Frame - Diaphragm Constraints and Gravity Forces in Shear Walls
            • RAM Frame - DXF
            • RAM Frame - Dynamic Analysis FAQ
            • RAM Frame - Eigenvalue Error [TN]
            • +RAM Frame - Load Cases
            • RAM Frame - Masses
            • RAM Frame - Notional Loads
            • RAM Frame - Overlapping Node Numbers in Plan View
            • RAM Frame - Rigid Diaphragm Constraints and Frame Shear [TN]
            • RAM Frame - Rigid End Zone assumptions
            • RAM Frame - Second Order Effects with BS 5950-1:2000
            • RAM Frame - Seismic Loads [FAQ]
            • +RAM Frame - Steel Standard and Seismic Provisions
            • RAM Frame - Tension Only [FAQ]
            • RAM Frame - Wind Loads [FAQ]
            • RAM Frame Analysis Stalls
            • RAM Frame Numbers
            • RAM Frame P-Delta [TN]
            • +RAM Frame Troubleshooting [TN]
            • RAM Frame Wall Groups FAQ
            • RAM Instability In Finite Element Analysis [TN]
            • RAM Meshing and Segmentation [TN]
            • RAMSS Truss Modeling And Design [TN]
            • +Red Status Lights for Lateral Load Cases in RAM Frame
          • +RAM Structural System - RAM Modeler
          • +RAM Structural System - RAM Steel
          • +RAM Structural System Tutorial
          • +What is RAM DataAccess? [TN]
        • RAM Structural System V17.0 License Consolidation
        • RAM Structural System Videos
      • +Scenario Services
      • +STAAD Advanced Concrete Design (RCDC)
      • +STAAD RCDC FE
      • +STAAD Foundation Advanced
      • +STAAD.building
      • +OpenTower Designer
      • +STAAD.offshore
      • +STAAD.Pro
      • +Structural Analysis Support Solutions
      • +Structural Dashboard
      • +Structural WorkSuite
      • Structural Synchronizer Links
    • +Seminars and Events
    • +Webinars

     
     Questions about this article, topic, or product? Click here. 

    RAM Frame - Diaphragm Constraints and Gravity Forces in Shear Walls

      Product(s): RAM Structural System
      Version(s): Any
      Environment:  N/A
      Area:  Analysis
      Original Author:

    While shear walls are primarily a lateral force resisting system they also carry gravity loads including their self-weight. Gravity loads typically produce axial loads as the main force components for walls. However, asymmetric gravity loading and frames could produce shears and bending moments of significant magnitude in shear walls. This is due to the diaphragm action in most typical shear wall buildings. Any differential vertical displacement in a shear wall system causes the diaphragm to displace in the vertical and rotational direction resulting in re-distribution of both vertical and horizontal loads. The net lateral load under gravity load will, of course, remain zero.

    First, take the case of a single wall, 10’ wide with 2 levels of 10’ in height, but with no rigid diaphragm. At one corner, a vertical load of 10 kips is applied at each level. The resulting overturning moment is equal to 10k x 5’ eccentricity = 50k’. Since there are no other elements connected to this free body (and since the wall element is not meshed into smaller parts), the net shear at the base is zero. There is, however, some lateral displacement due to this asymmetric loading. In other words, this shear wall will lean to the right.

    Now consider two identical walls connected by a rigid diaphragm (or a stiff beam). The presence of the diaphragm inhibits the lateral deformation and internal shear forces can now occur. The wall moments are reduced by this effect, but the shear forces can be significant. The forces and reactions in the opposing walls counteract each other, so there is still no net shear (only the left wall reactions are depicted here). It is also of note that when the walls are meshed the relative corner will change.
     
     

    See Also

    RAM SS Walls FAQ

    Ram Frame - Rigid Diaphragm Constraints and Frame Shear

    Structural Product TechNotes And FAQs

    • analysis
    • RAM Frame
    • RAM Structural System
    • Diaphragm
    • Shear
    • Support Solutions
    • Share
    • History
    • More
    • Cancel
    • Karl G Created by Bentley Colleague Karl G
    • When: Tue, Apr 18 2017 12:02 PM
    • Revisions: 1
    • Comments: 0
    Recommended
    Related
    Communities
    • Home
    • Getting Started
    • Community Central
    • Products
    • Support
    • Secure File Upload
    • Feedback
    Support and Services
    • Home
    • Product Support
    • Downloads
    • Subscription Services Portal
    Training and Learning
    • Home
    • About Bentley Institute
    • My Learning History
    • Reference Books
    Social Media
    •    LinkedIn
    •    Facebook
    •    Twitter
    •    YouTube
    •    RSS Feed
    •    Email

    © 2021 Bentley Systems, Incorporated  |  Contact Us  |  Privacy |  Terms of Use  |  Cookies